
EEL 602 1

Process Synchronization

Reading:
Silberschatz
chapter 6

Additional Reading:
Stallings
chapter 5

EEL 602 2

Outline
Concurrency

Competing and Cooperating Processes
The Critical-Section Problem

Fundamental requirements, Attempts
Dekker’s algorithm
Peterson’s algorithm
Bakery algorithm
Hardware synchronization

Semaphores
Classical Problems

Monitors

EEL 602 3

Hardware parallelism: CPU computing, one or more I/O
devices are running at the same time

Pseudo parallelism: rapid switching back and forth of the
CPU among processes, pretending to run concurrently

Real parallelism: can only be achieved by multiple CPUs

Concurrency

Motivation: Overlap computation with I/O;
simplify programming

Real parallelism → not possible in single CPU systems

EEL 602 4

Concurrent Processes

In a multiprogramming environment, processes executing
concurrently are either
competing or cooperating

Responsibilities of OS

Competing processes: Careful allocation of resources,
proper isolation of processes from each other

Cooperating processes: Protocols to share some
resources, allow some processes to interact with each
other; Sharing or Communication

EEL 602 5

Competing Processes

Compete for devices and other resources
Unaware of one another

Example:
Independent processes running on a computer

Properties:
Deterministic - Start/Stop without side effects
Reproducible - Proceed at arbitrary rate

EEL 602 6

Cooperating Processes

Aware of each other, by communication or by sharing
resources, may affect the execution of each other

Example:
Transaction processes in Railways/Airline/Stocks

Properties:
Shares Resources or Information
Non-deterministic
May be irreproducible
Race Condition

EEL 602 7

Share Some Resources
One checking accounts or res. files → Many tellers

Speed up
Read next block while processing current one
Divide jobs into smaller pieces and execute them
concurrently

Modularity
Construct systems in modular fashion

Why Cooperation?

EEL 602 8

Conflicting Demands
I/O devices, memory, process time,...
Blocked process → Slow or never gets access

Problems
Mutual exclusion
Enforcement of mutual exclusion

Deadlock
Starvation

Competition for Resources

EEL 602 9

Cooperation by Sharing
Multiple process → Shared file/database
Control problems → Mutual exclusion, deadlock, starv
Data items may be accessed in different modes
Data Coherence or Racing

Cooperation by Communication
Sync various activities
No sharing, No mutual exclusion
Starvation and Deadlock

Process Cooperation

EEL 602 10

The Producer/Consumer Problem
Also called as bounded-buffer problem
A producer produces data that is consumed by a
consumer (e.g. spooler and printer)
A buffer holds the data which is not yet consumed
There exists several producers and consumers
Code for the Producer/Consumer Process?

Previous Class

EEL 602 11

The Producer/Consumer Problem
Two logical pointers; in and out
in - next free position in the buffer
in == out, Empty; ((in +1) % BUFFER_SIZE == out, Full

Producer process

item nextProduced;

while (1) {
while ((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;

}

Consumer process

item nextConsumed;

while (1) {
while (in == out)

; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

}

Previous Class

EEL 602 12

The Potential Problem

Last solution allows BUFFER_SIZE – 1
Remedy → use integer variable, counter = 0

Shared data

#define BUFFER_SIZE 10
typedef struct {

. . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
int counter = 0;

EEL 602 13

A Potential Problem
Consumer process

item nextConsumed;

while (1) {
while (counter == 0)

; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
counter--;

}

The statements

counter++;
counter--;
must be performed atomically.

Atomic operation means an operation that completes in its entirety
without interruption.

Producer process

item nextProduced;

while (1) {
while (counter == BUFFER_SIZE)

; /* do nothing */
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}

EEL 602 14

Race Condition
Race condition → Several processes access and manipulate shared
data concurrently.
Final value of the shared data → Process that finishes last

To prevent race conditions, concurrent processes must be
synchronized.

EEL 602 15

time Person A Person B

8:00 Look in fridge. Out of milk

8:05 Leave for store.

8:10 Arrive at store. Look in fridge. Out of milk

8:15 Buy milk. Leave for store.

8:20 Leave the store. Arrive at store.

8:25 Arrive home, put milk away. Buy milk.

8;30 Leave the store.

8:35 Arrive home, OH! OH!

An Example

Someone gets milk, but NOT everyone (too much milk!)

time Person A Person B

8:00 Look in fridge. Out of milk

8:05 Leave for store.

8:10 Arrive at store. Look in fridge. Out of milk

8:15 Buy milk. Leave for store.

8:20 Leave the store. Arrive at store.

8:25 Arrive home, put milk away. Buy milk.

8;30 Leave the store.

8:35 Arrive home, OH! OH!

EEL 602 16

Mutual Exclusion
If cooperating processes are not synchronized, they may face
unexpected timing errors → too-much-milk-problem

Mutual exclusion is a mechanism to avoid data inconsistency. It
ensure that only one process (or person) is doing certain things at
one time.

Example: Only one person buys milk at a time.

EEL 602 17

Critical Section
A section of code or collection of operations in which only one
process may be executing at a given time, which we want to make
atomic

Atomic operations are used to ensure that cooperating processes
execute correctly

Mutual exclusion mechanisms are used to solve CS problems

EEL 602 18

Critical Section
Requirements for the solution to CS problem

Mutual exclusion – no two processes will simultaneously be inside the
same CS

Progress – processes wishing to enter critical section will eventually
do so in finite time

Bounded waiting – processes will remain inside its CS for a short time
only, without blocking

EEL 602 19

Critical Section Problem - Attempts
General structure of process

do {
Initialization

entry protocol
critical section

exit protocol
reminder section

} while (1);

Only two processes (Pi and Pj)

Process may share some common variables → Sync
their actions

EEL 602 20

Attempt 1: Taking Turns
◈ Approach → keep a track of CS usage with a shared variable turn

◈ Initialization:
shared int turn;
...

turn = i ;
◈ Entry protocol: (for process i)

/* wait until it's our turn */
while (turn != i) {
}

◈ Exit protocol: (for process i)
/* pass the turn on */
turn = j ;

Problem?

EEL 602 21

Attempt 2: Using Status Flags
◈ Approach → Usage of a shared boolean array named as flags for

each process; flag values – BUSY when in CS or FREE otherwise.
◈ Initialization:

typedef char boolean;
... shared boolean flags[n - 1];
... flags[i] = FREE;
... flags[j] = FREE;

◈ Entry protocol: (for process i)
/* wait while the other process is in its CS */
while (flags[j] == BUSY) {
}

-->
/* claim the resource */
flags[i] = BUSY;

Exit protocol: (for process i)
/* release the resource */

flags[i] = FREE;

Problem?

EEL 602 22

Attempt 3: Using Status Flags Again
◈ Approach → same as attempt 2, but now each process sets its own

flag before testing others flag to avoid violating mutual exclusion.
◈ Initialization:

typedef char boolean;
... shared boolean flags[n - 1];
... flags[i] = FREE;
... flags[j] = FREE;

◈ Entry protocol: (for process i)
/* claim the resource */
flags[i] = BUSY;

/* wait if the other process is using the resource */
while (flags[j] == BUSY) {
}

◈ Exit protocol: (for process i)
/* release the resource */

flags[i] = FREE;

Problem?

EEL 602 23

Attempt 4: Last Try!
◈ Approach → same as attempt 3, but now we periodically clear and

reset our own flag while waiting for other one, to avoid deadlock.
◈ Initialization:

typedef char boolean;
shared boolean flags[n - 1];
... flags[i] = FREE;
... flags[j] = FREE;

◈ Entry protocol: (for process i)
/* claim the resource */
flags[i] = BUSY;

/* wait if the other process is using the resource */
while (flags[j] == BUSY) {
flags[i] = FREE;
delay a while ;
flags[i] = BUSY; }

◈ Exit protocol: (for process i)
/* release the resource */

flags[i] = FREE;

Problem?

EEL 602 24

Dekker’s Algorithm
◈ Approach → same attempt 4, but now we judiciously combine the turn

variable (attempt 1) and the status flags.

◈ Initialization:
typedef char boolean;
shared boolean flags[n - 1];
shared int turn;
... turn = i ;
... flags[i] = FREE;
... flags[j] = FREE;

◈ Entry protocol: (for process i)

EEL 602 25

Dekker’s Algorithm

◈ Entry protocol: (for process i)
/* claim the resource */
flags[i] = BUSY;
/* wait if the other process is using the resource */
while (flags[j] == BUSY) {

/* if waiting for the resource, also wait our turn */
if (turn != i) {

/* but release the resource while waiting */
flags[i] = FREE;
while (turn != i) {
}
flags[i] = BUSY;

}
}

◈ Exit protocol: (for process i)
/* pass the turn on, and release the resource */
turn = j ;

flags[i] = FREE;

EEL 602 26

Peterson’s Algorithm
◈ Approach → similar to Dekker’s algorithm; after setting our flag we

immediately give away the turn; By waiting on the and of two
conditions, we avoid the need to clear and reset the flags.

◈ Initialization:
typedef char boolean;
shared boolean flags[n - 1];
shared int turn;
... turn = i ;
... flags[i] = FREE;
... flags[j] = FREE;

◈ Entry protocol: (for process i)

EEL 602 27

Peterson’s Algorithm

◈ Entry protocol: (for process i)

/* claim the resource */
flags[i] = BUSY;

/* give away the turn */
turn = j ;
/* wait while the other process is using the resource *and* has the turn */
while ((flags[j] == BUSY) && (turn != i)) {
}

◈ Exit protocol: (for process i)
/* release the resource */
flags[i] = FREE;

EEL 602 28

Multi-Process Solutions
Dekker’s and Peterson’s algorithms → can be generalized for N
processes, however:

- N must be fixed and known in advance
- Again, the algorithms become too much complicated and expensive

Implementing a mutual exclusion mechanism is difficult!

◈ Goal – Solve the CS problem for n processes
◈ Approach – Customers take numbers → lowest number gets service

next (here service means entry to the CS)

Bakery Algorithm

EEL 602 29

Bakery Algorithm
◈ Approach → The entering process checks all other processes sequentially, and

waits for each one which has a lower number. Ties are possible; these are resolved
using process IDs.

◈ Initialization:
typedef char boolean;
...
shared boolean choosing[n]
shared int num[n];
...
for (j=0; j < n; j++) {
num[j] = 0;
}
...

EEL 602 30

Bakery Algorithm
◈ Entry protocol: (for process i)

/* choose a number */
choosing[i] = TRUE;
num[i] = max(num[0], ..., num[n-1]) + 1;
choosing[i] = FALSE;

/* for all other processes */
for (j=0; j < n; j++) {

/* wait if the process is currently choosing */
while (choosing[j]) {}

/* wait if the process has a number and comes ahead of us */
if ((num[j] > 0) &&
((num[j] < num[i]) ||
(num[j] == num[i]) && (j < i))) {

while (num[j] > 0) {}
}

}

◈ Exit protocol: (for process i)
/* clear our number */
num[i] = 0;

EEL 602 31

Bakery Algorithm – Why choosing[i]?
◈ choosing[i] → What happens if you leave it out

◈ Mutual Exclusion → Violation
Lets comment choosing[i] to examine the algorithm!

EEL 602 32

Bakery Algorithm – Why choosing[i]?
◈ Entry protocol: (for process i)

/* choose a number */
choosing[i] = TRUE;
num[i] = max(num[0], ..., num[n-1]) + 1;
choosing[i] = FALSE;

/* for all other processes */
for (j=0; j < n; j++) {

/* wait if the process is currently choosing */
while (choosing[j]) {}

/* wait if the process has a number and comes ahead of us */
if ((num[j] > 0) &&
((num[j] < num[i]) ||
(num[j] == num[i]) && (j < i))) {

while (num[j] > 0) {}
}

}

◈ Exit protocol: (for process i)
/* clear our number */
num[i] = 0;

Consider 2 Process → Po & P1
Same token P1 goes to CS after 2 iterations
Later P0 blocked-unblocked → After 2
iterations enters CS!!

EEL 602 33

Hardware Solutions
Use of hardware instructions to mask interrupts. The solution for N
processes would be as simple as below:

For Process i
while (TRUE) {

disableInterrupts();

<Critical Section i>

enableInterrupts();
…

}

Problems
-- Only one system-wide CS active at a time
-- No OS allows user access to privileged instructions
-- Not correct solution for multiprocessor machine

EEL 602 34

Hardware Solutions
Special Machine Instructions

Performed in a single instruction cycle
Access to the memory location is blocked for any
other instructions

Test and Set Instruction
boolean testset (int i) {

if (i == 0) {
i = 1;
return true;

}
else {

return false;
}

}

EEL 602 35

Hardware Solutions
Exchange Instruction

void exchange(int register, int memory) {

int temp;
temp = memory;
memory = register;
register = temp;

}

EEL 602 36

Hardware Solutions
Sample Program
const int n = /* number of processes */;
int bolt;
void P (int i)
{

while (true);
{

while (!testset (bolt))
/* do nothing */

/* critical section */;
bolt = 0;
/* remainder */
}

}
void main()
{

bolt = 0;
parbegin (P(1), P(2), … , P(n));

}

Test and Set Instruction
boolean testset (int i) {

if (i == 0) {
i = 1;
return true;

}
else {

return false;
}

}

EEL 602 37

Hardware Solutions
Advantages

Applicable to any # processes, single/multiple
processors sharing main memory
Verification is simple/easy
Can be used to support multiple CS

Disadvantages
Busy waiting → Consumes processors time
Starvation is possible → Selection of waiting
process is arbitrary
Deadlock is possible → The flag can only be reset
by low priority process but has been preempted by
high priority process

EEL 602 38

Semaphores
S, Semaphore (an integer variable) → Operation P and V

When a process executes P(S) , S is decremented by one
• S ≥ 0 → Process continues execution; or
• S < 0 → Process is stopped and put on a waiting

queue associated with S.

When a process executes V(S), S is incremented by one
• S > 0 → Process continues execution; or
• S ≤ 0 → Process is removed from the waiting

queue and is permitted to continue execution;
process which evoked V(S) can also continue
execution.

P and V are indivisible/atomic → Cannot be interrupted in between
Only one process can execute P or V at a time on given Semaphore

PROBERN
Probe/test/wait

VERHOGEN
Release

EEL 602 39

Implementation
Busy Waiting

Two process solutions
Loop continuously in entry code
Problem → Multiprogramming systems
Spinlock → Spins while waiting for Lock
Useful

Multiprocessor System, No context switch time
Locks are expected to be held for short time

Semaphore Solution
P, wait → block itself into a waiting queue
V, signal → waiting queue to ready queue

EEL 602 40

Implementation
struct semaphore {

int count;
queue Type queue

}

void wait(semaphore s)
{

s.count--;
if (s.count < 0)
{
place this process in the s.queue;
block this process

}
}
void signal(semaphore s)
{

s.count++;
if (s.count <= 0)
{
remove a process p from the s.queue;
place process p on the ready queue

}
}

EEL 602 41

Mutual Exclusion
Sample Program

const int n = /* number of processes */
semaphore s=1;
void P (int i)
{

while (true);
{

wait(s);
/* critical section */;
signal(s);
/* remainder */

}
}
void main()
{

parbegin (P(1), P(2), … , P(n));
}

Above program can also handle the requirement that more than one process be allowed
inside CS at a time, How?

EEL 602 42

Mutual Exclusion
Example - Three Process Accessing Shared Data using Semaphore

EEL 602 43

Semaphore Types
Integer/Counting/General Semaphore
Binary Semaphore
Fairest Policy → FIFO
Order of removing process from waiting queue

Strong Semaphore → Includes policy definition
Guarantees freedom from Starvation
Typically provided by most OS

Weak Semaphore → Does not specify the order

EEL 602 44

Example

EEL 602 45

Possible Implementations
No existing hardware implements P and V operations
directly
Semaphores → Build up using hardware sync primitives
Uniprocessor Solution

Usually → disable interrupts
Multiprocessor Solution

Use hardware support for atomic operations

Possible Usage
Mutual Exclusion → Initialize semaphore to one
Synchronization → Initialize semaphore to zero
Multiple instances → Initialize semaphore to # of

instances

EEL 602 46

Two Possible Implementations
wait(semaphore s)
{

while (testset(s.flag))
/*do nothing*/;

s.count--;
if (s.count < 0)
{
place this process in the s.queue;
block this process (must also set s.flag to 0);
}
else

s.flag =0;
}

signal(semaphore s)
{

while (testset(s.flag))
/*do nothing*/;

s.count++;
if (s.count <= 0)
{
remove a process p from the s.queue;
place process p on the ready queue
}
s.flag =0;

}

disable interrupts

enable interrupts

and enable interrupts

disable interrupts

enable interrupts

EEL 602 47

The Producer/Consumer Problem
Semaphore freeSpace,

initially n
Semaphore availItems,

intiailly 0

Producer process

item nextProduced;

while (1) {
wait(freeSpace);
buffer[in] = nextProduced;
in = (in+1) mod n;
signal(availItems);
}

% Number of empty buffers

% Number of full buffers

Consumer process

item nextConsumed;

while (1) {
wait(availItems);
nextConsumed =buffer[out];
out = (out+1) mod n;
signal(freeSpace);
}

EEL 602 48

Deadlock and Starvation
Deadlock

Let S and Q be two semaphores initialized to 1
P0 P1

wait(S); wait(Q);
wait(Q); wait(S);

M M

signal(S); signal(Q);
signal(Q) signal(S);

Starvation – indefinite blocking; A process may never
be removed from the semaphore queue in which it is
suspended.

EEL 602 49

Data structures:
binary-semaphore S1, S2;
int C:

Initialization:
S1 = 1
S2 = 0
C = initial value of semaphore S

Implementing S as a Binary Semaphore

EEL 602 50

Implementing S
wait operation

wait(S1);
C--;
if (C < 0) {

signal(S1);
wait(S2);

}
signal(S1);

signal operation
wait(S1);
C ++;
if (C <= 0)

signal(S2);
else

signal(S1);

EEL 602 51

Problems with Semaphores
The P(S) and V(S) signals are scattered among several processes.
Therefore its difficult to understand their effects.

Incorrect usage → timing errors (difficult to detect; only with some
particular execution sequence which are rare)

One bad process or programming error can kill the whole system or
put the system in deadlock

Solution?
High-level language constructs

Critical Regions, Eventcounts, Sequencers, Path Expressions,
Serializsers, Monitors, …

A fundamental high-level synchronization construct → Monitor
type

EEL 602 52

Monitor
A monitor type presents a set of programmer defined operations
which can provide mutual exclusion within the monitor

Procedures
Initialization code
Shared data

Monitor Properties
Shared data can only be accessed by monitors procedures
Only one process at a time can execute in the monitor (executing a
monitor procedure)

Shared data may contain condition variables

EEL 602 53

Monitor
A monitor type presents a set of programmer defined operations
which can provide mutual exclusion within the monitor

Procedures
Initialization code
Shared data

Monitor Properties
Shared data can only be accessed by monitors procedures
Only one process at a time can execute in the monitor (executing a
monitor procedure)

Shared data may contain condition variables

monitor monitor-name
{

shared variable declarations
procedure body P1 (…) {

. . .
}
procedure body P2 (…) {

. . .
}
procedure body Pn (…) {

. . .
}
{

initialization code
}

}

EEL 602 54

Condition Variables
Condition variables → To allow a process to wait in a monitor

Condition variables can only be used with following operations
Condition : x, y

Declaring a condition variable

x.wait
Process invoking x.wait is suspended until another process invokes
x.signal

x.signal
Resumes exactly one suspended process. If no process is suspended this
operation has no effect

If x.signal is evoked by a process P, after Q → suspended
Signal and Wait
Signal and Continue

Resuming processes within monitor; x.wait(c) → conditional-wait

EEL 602 55

Monitor Architecture

EEL 602 56

Monitor Architecture

EEL 602 57

Classical Synchronization Problems

Bounded-Buffer Problem √

Dining-Philosophers Problem

Readers and Writers Problem

EEL 602 58

Dining-Philosophers Problem

Example of large class of concurrent-control problems
Provide deadlock-free and starvation-free solution
Chopstick → Semaphore

semaphore chopstick[5];
Initially chopstick→ 1

EEL 602 59

Dining-Philosophers Problem

Problem → Deadlock

Philosopher i:
do {

wait(chopstick[i])
wait(chopstick[(i+1) mod 5])

…
eat
…

signal(chopstick[i]);
signal(chopstick[(i+1) mod 5]);

…
think
…

} while (1);

EEL 602 60

Dining-Philosophers Problem
Possible solutions against deadlock

Allow at most 4 philosophers to sit simultaneously
Allow a philosopher to pick chopstick only if both
chopsticks are available,
Odd philosopher → first left then right chopstick

Satisfactory solution must guard against Starvation
Deadlock-free solution does not eliminate possible starvation

EEL 602 61

Dining Philosophers Example
Deadlock-free solution using monitor
Chopsticks pick up → Only if both of them are available

Distinguish among 3 states of a philosopher

monitor dp
{
enum {thinking, hungry, eating} state[5];
condition self[5];/* delay yourself when hungry but unable to obtain chopsticks */

void pickup(int i) /* Next Slide */

void putdown(int i) /* Next Slide */

void test(int i) /* Next Slide */

void init() {
for (int i = 0; i < 5; i++)

state[i] = thinking;
}

}
state [i]= eating only if

state [(i+4) mod 5] != eating &&
state [(i+1) mod 5] != eating

EEL 602 62

Dining Philosophers Example
monitor dp

{
enum {thinking, hungry, eating} state[5];
condition self[5];

void pickup(int i) {
state[i] = hungry;
test[i];
if (state[i] != eating)

self[i].wait();
}

void putdown(int i) {
state[i] = thinking;
/* test left and right neighbors */

test((i+4) mod 5);
test((i+1) mod 5);
}

void test(int i) {
if ((state[(i + 4) mod 5] != eating) &&
(state[i] == hungry) &&
(state[(i + 1) mod 5] != eating)) {

state[i] = eating;
self[i].signal();

}
}

void init() {
for (int i = 0; i < 5; i++)

state[i] = thinking;
}

}

dp.pickup(i)
…
…
eat
…

dp.putdown(i)

Problem?

EEL 602 63

/* program diningphilosophers */
semaphore fork [5] = {1};
int i:
void philosopher (int i)

{
while (true)
{

think ();
wait (fork[i]);
wait (fork [(i+1)] mod 5]);
eat ();
signal (fork[i]);
signal (fork [(i+1)] mod 5]);

}
}
void main()
{

parbegin (philosopher (0), philosopher (1), philosopher (2), philosopher (3), philosopher
(4));

}

First Solution - Dining Philosophers

EEL 602 64

/* program diningphilosophers */
semaphore fork [5] = {1};
semaphore room = {4};
int i:
void philosopher (int i)

{
while (true)
{

think ();
wait (room);
wait (fork[i]);
wait (fork [(i+1)] mod 5]);
eat ();
signal (fork[i]);
signal (fork [(i+1)] mod 5]);
signal (room);

}
}
void main()
{

parbegin (philosopher (0), philosopher (1), philosopher (2), philosopher (3), philosopher
(4));

}

Second Solution - Dining Philosophers

EEL 602 65

Readers-Writers Problem
File/Record is to be shared among several concurrent processes
Many readers, Exclusively one writer at a time

Several variations
No reader should wait for other readers to finish simply because a
writer is waiting
Once a writer is ready, writer performs its write ASAP

Possible starvation
Solution → First variation

int readcount = 0;
semaphore mutex,

initially 1
semaphore wrt,

initially 1

××Writers

×Readers

WriterReader

EEL 602 66

Readers-Writers Problem
Writer:

wait(wrt)
…

writing is performed
…

signal(wrt)

Reader:
wait(mutex);

readcount++;
if (readcount == 1)

wait(wrt);
signal(mutex);

…

reading is performed
…

wait(mutex);
readcount--;
if (readcount == 0)

signal(wrt);
signal(mutex):

EEL 602 67

Readers-Writers Problem
Readers only in the system:
• wsem set
• no queues

Writers only in the system:
• wsem and rsem set
• Writers queues on wsem

Last Solution, Writers → Starvation

No new readers are allowed to access the
data once at least one writer has declared a
desire to write

EEL 602 68

Readers-Writers Problem
Readers only in the system:
• wsem set
• no queues

Writers only in the system:
• wsem and rsem set
• Writers queues on wsem

Both Readers and Writers with Read First:
• wsem set by reader
• rsem set by writer
• all writers queues on wsem
• one reader queues on rsem
• other readers queues on z

Both Readers and Writers with write First
• wsem set by writer
• rsem set by writer
• writers queues on wsem
• one reader queues on rsem
• other readers queues on z

EEL 602 69

Synchronization in Pthreads
Pthread API

Mutex locks, condition variables, read-write locks for thread
synchronization

Pthreads Mutex Locks
Fundamental synchronization techniques used with pthreads
Data type → pthread_mutex_t
Create mutex → pthread_mutex_init(&mutex,NULL)
Acquire mutex → pthread_mutex_lock()
Release mutex → pthread_mutex_unlock()
Return 0 → Correct Operation, nonzero error code otherwise

Protecting CS using mutex

include <pthread.h>
pthread_mutex_t mutex;

/* create the mutex lock */
pthread_mutex_init(&mutex, NULL);

/* acquire the mutex lock */
pthread_mutex_lock(&mutex);

/**** Critical Section ****/

/* release the mutex lock */
pthread_mutex_unlock(&mutex);

EEL 602 70

Synchronization in Pthreads
Pthread Semaphores
include <semaphore.h>
sem_t sem;

/* create the semaphore and initialize to 8 */
sem_init(&sem,0,8)

wait() → sem_wait()
signal() → sem_post()

Protecting CS using semaphore

include <semaphore.h>
sem_t mutex;

/* create the semaphore */
sem_init(&mutex, 0, 1);

/* acquire the semaphore */
sem_wait(&mutex);

/**** Critical Section ****/

/* release the semaphore */
sem_post(&mutex);

EEL 602 71

Synchronization using Win32 API
Win 32 mutex Locks
include <windows.h>
HANDLE Mutex;

/* create a mutex lock*/
Mutex = CreateMutex(NULL, FALSE, NULL);

/* Acquiring a mutex lock created above */
WaitForSingleObject(Mutex, INFINITE);

/* Release the acquired lock */
ReleaseMutex(Mutex);

Win 32 Semaphores
include <windows.h>
HANDLE Sem;

/* create a semaphore*/
Sem = CreateSemaphore(NULL, 1, 5, NULL);

/* Acquiring the semaphore */
WaitForSingleObject(Semaphore, INFINITE);

/* Release the semaphore, signal() */
ReleaseSemaphore(Sem, 1, NULL);

EEL 602 72

Synchronization in Linux
Current versions → processes running in kernel mode
can also be preempted, when higher priority process
available

Linux Kernel → Spinlocks and Semaphores for locking in
kernel

Locking mechanisms
Uniprocessor → Enabling and disabling kernel preemption

preempt_disable(), preempt_enable()

Multiprocessor → Spinlocks
Kernel is designed such that spinlocks are held only for short
duration

EEL 602 73

Synchronization in Linux
Atomic Operations → Special data type, atomic_t

ATOMIC_INT (int i), int atomic_read(atomic_t *v)
void atomic_add(int i, atomic_t *v)
void atomic_sub(int i, atomic_t *v)

Spinlocks → Only one thread at a time can acquire spinlock
void spin_lock(spinlock_t *t)
void spin_unlock(spinlock_t *lock)

Reader-Writer Spinlock → Exclusive access to spinlock that intends
to update the data structure, favors readers

Semaphores → Binary, Counting, Reader-Writer
void sema_init(struct semaphore *sem, int count)
void init_MUTEX(struct semaphore *sem)
void init_MUTEX_locked(struct semaphore *sem)
Void init_rwsem(struct rw_semaphore *sem)

EEL 602 74

Synchronization in Windows XP
Kernel access global resources

Uniprocessor → Temporarily masks interrupts for all interrupt
handlers
Multiprocessor

Uses spinlocks to protect access to global resources
Spinlocks → only to protect short code segment
A thread will never be preempted while holding a spinlock

Thread synchronization outside kernel → dispatcher
objects

Using dispatcher objects, threads synchronize using different
mechanisms (mutexes, semaphores, events, timers)
Singled state, Nonsingled state

Dispatcher objects may also provide events → much like
a condition variable

EEL 602 75

Minor II
Syllabus → Scheduling, Synchronization,
Deadlocks

Open Book/Notes
Can bring your own notes
Can also bring class lecture slides
Exchange of notes/materials → Strictly prohibited
No textbook is allowed
No xerox of book(s) is allowed

Type of questions → Remains Open!

Good Luck!

