A
€V

Process Synchronization

Reading:
Silberschatz
chapter 6

Additional Reading:

Ctallinac
W’ CCATTT] Ivu

chapter 5

EEL 602

/4

N

Outline

» Concurrency
= Competing and Cooperating Processes

» The Critical-Section Problem
= Fundamental requirements, Attempts

s Dekker’s algorithm

= Peterson’s algorithm

= Bakery algorithm

= Hardware synchronization

» Semaphores
s Classical Problems

» Monitors

EEL 602

N

Concurrency

L/

Motivation: Overlap computation with 1/0;
simplify programming

» Hardware parallelism: CPU computing, one or more 1/O
devices are running at the same time

» Pseudo parallelism: rapid switching back and forth of the
CPU among processes, pretending to run concurrently

» Real parallelism: can only be achieved by multiple CPUs

Real parallelism — not possible in single CPU systems

EEL 602

Concurrent Processes

N

In a multiprogramming environment, processes executing
concurrently are either
competing or cooperating

Responsibilities of OS

Competing processes: Careful allocation of resources,
proper isolation of processes from each other

Cooperating processes: Protocols to share some
resources, allow some processes to interact with each
other; Sharing or Communication

EEL 602 4

Competing Processes

N

L/

Compete for devices and other resources
Unaware of one another

Example:
Independent processes running on a computer

Properties:
Deterministic - Start/Stop without side effects
Reproducible - Proceed at arbitrary rate

EEL 602

Cooperating Processes

N

L/

Aware of each other, by communication or by sharing
resources, may affect the execution of each other

Example:
Transaction processes in Railways/Airline/Stocks

Properties:

Shares Resources or Information
Non-deterministic

May be irreproducible

Race Condition

EEL 602

Why Cooperation?

N

» Share Some Resources
= One checking accounts or res. files — Many tellers

» Speed up
= Read next block while processing current one

= Divide jobs into smaller pieces and execute them
concurrently

» Modularity
s Construct systems in modular fashion

EEL 602

Competition for Resources

N

L/

» Conflicting Demands
= |/O devices, memory, process time,...
= Blocked process — Slow or never gets access

> Problems
s Mutual exclusion

s Enforcement of mutual exclusion
+ Deadlock
+ Starvation

EEL 602

Process Cooperation

N

L/

» Cooperation by Sharing
= Multiple process — Shared file/database
= Control problems — Mutual exclusion, deadlock, starv
= Data items may be accessed in different modes
= Data Coherence or Racing

» Cooperation by Communication
= Sync various activities
= No sharing, No mutual exclusion
» Starvation and Deadlock

EEL 602

THe Producer/Consumer Problem

b
Y

L/

» Also called as bounded-buffer problem

» A producer produces data that is consumed by a
consumer (e.g. spooler and printer)

» A buffer holds the data which is not yet consumed
» There exists several producers and consumers
» Code for the Producer/Consumer Process?

-
T T

EEL 602

-
N
» Two logical pointers; in and out
» in - next free position in the buffer
> in == out, Empty; ((in +1) % BUFFER_SIZE == out, Full
O Producer process O Consumer process
item nextProduced; item nextConsumed,;
while (1) { while (1) {
while ((in + 1) % BUFFER_SIZE) == out) while (in == out)
; [* do nothing */ ; [* do nothing */
buffer[in] = nextBﬂff?; . néxtConsumed Zduffer[out]; [
in=(in +1) % BUFFER _ IEE; 1 oul = (out +1) % UFFER_SIZE;4 h
} }
EEL 602 11

out i

N

The Potential Problem

Last solution allows BUFFER_SIZE — 1
Remedy — use integer variable, counter = 0

» Shared data

m #define BUFFER_SIZE 10

m typedef struct {

|

m }item;

m item buffer[BUFFER_SIZE];
m intin =0;

m intout =0;

m int counter = 0;

EEL 602

12

A Potential Problem

N

O Consumer process O Producer process

item nextConsumed; item nextProduced,;

while (1) { while (1) {
while (counter == 0) while (counter == BUFFER_SIZE)

; [* do nothing */ , [* do nothing */

nextConsumed = buffer[out]; buffer[in] = nextProduced,
out = (out + 1) % BUFFER_SIZE; in =(in + 1) % BUFFER_SIZE;
counter--; counter++;

} }

» The statements

counter++;
counter--;

must be performed atomically.

» Atomic operation means an operation that completes in its entirety
without interruption.

EEL 602 13

Race Condition

N

L/

» Race condition — Several processes access and manipulate shared
data concurrently.

Final value of the shared data — Process that finishes last

» To prevent race conditions, concurrent processes must be
synchronized.

EEL 602 14

An Example

N

time

8:00

8:05

8:10

8:15

8:20
8:25
8:30

8:35

Person A

Look in fridge. Out of milk

Leave for store.
Arrive at store.
Buy milk.

Leave the store.

Arrive home, put milk away.

Person B

L ook in [ridge. Out of milk
i eave lor store.

Arnve at store.

Suy miilk.

i eave Lhe slore.

Arnve home, CH! CH!

Someone gets milk, but NOT everyone (too much milk!)

EEL 602

15

Mutual Exclusion

N

L/

» If cooperating processes are not synchronized, they may face
unexpected timing errors — too-much-milk-problem

» Mutual exclusion is a mechanism to avoid data inconsistency. It
ensure that only one process (or person) is doing certain things at
one time.

Example: Only one person buys milk at a time.

EEL 602

Critical Section

N

L/

» A section of code or collection of operations in which only one

process may be executing at a given time, which we want to make
atomic

Atomic operations are used to ensure that cooperating processes
execute correctly

» Mutual exclusion mechanisms are used to solve CS problems

EEL 602 17

Critical Section

N

Requirements for the solution to CS problem

same CS

» Progress — processes wishing to enter critical section will eventually

do so in finite time

only, without blocking

EEL 602

Mutual exclusion — no two processes will simultaneously be inside the

Bounded waiting — processes will remain inside its CS for a short time

18

Critical Section Problem - Attempts

N

L/

» General structure of process

do {
Initialization
entry protocol
critical section
exit protocol
reminder section
} while (1);

» Only two processes (P; and P;)

» Process may share some common variables — Sync

their actions

EEL 602

19

Attempt 1: Taking Turns

N

J@ Approach — keep a track of CS usage with a shared variable turn

4 Initialization:
shared int turn;

turn = 7/,

& Entry protocol: (for process i)
/* wait until it's our turn */
while (turn = /) {

§

& Exit protocol: (for process i)
/* pass the turn on */
turn = s ;

Problem?

EEL 602 20

Attempt 2: Using Status Flags

N

J@ Approach — Usage of a shared boolean array named as flags for
each process; flag values — BUSY when in CS or FREE otherwise.
& Initialization:

typedef char boolean;

... Shared boolean flags[n - 1];
... flags[/] = FREE;

... flags[y] = FREE;

4 Entry protocol: (for process i)

/* wait while the other process is in its CS */
while (flags[/] == BUSY) {
}

/* claim the resource */
flags[/] = BUSY;

Exit protocol: (for process i)
/* release the resource */

flags[/] = FREE;

EEL I(?OrZObIem? 21

Attempt 3: Using Status Flags Again

N

%
¥ Approach — same as attempt 2, but now each process sets its own
flag before testing others flag to avoid violating mutual exclusion.

@ Initialization:

typedef char boolean;

... Shared boolean flags[n - 1];
... flags[/] = FREE;

... flags[/] = FREE;
4 Entry protocol: (for process i)

/* claim the resource */
flags[/] = BUSY;
/* wait if the other process is using the resource */
while (flags[/] == BUSY) {
}

& Exit protocol: (for process i)

/* release the resource */

flags[/] = FREE;
Problem?
EEL 602 22

Attempt 4: Last Try!

N

%
49 Approach — same as attempt 3, but now we periodically clear and
reset our own flag while waiting for other one, to avoid deadlock.

@ Initialization:

typedef char boolean;
shared boolean flags[n - 1];
... flags[/] = FREE;

... flags[/] = FREE;

4 Entry protocol: (for process i)

/* claim the resource */
flags[/] = BUSY;
/* wait if the other process is using the resource */
while (flags[/] == BUSY) {
flags[/] = FREE;
delay a while ;
flags[/] = BUSY; }

< Exit protocol: (for process i)

/* release the resource */

flags[/] = FREE;

EEL 602 23

Problem?

Dekker’s Algorithm

N

& Approach — same attempt 4, but now we judiciously combine the turn
variable (attempt 1) and the status flags.

& Initialization:

typedef char boolean;
shared boolean flags[n - 1];
shared int turn;

... turn = 7;
... flags[/] = FREE;
... flags[/] = FREE;

& Entry protocol: (for process i)

EEL 602 24

Dekker’s Algorithm

N

& Entry protocol: (for process i)

/* claim the resource */

flags[/] = BUSY;

/* wait if the other process is using the resource */
while (flags[/] == BUSY) {

/* if waiting for the resource, also wait our turn */

if turn 1= 7){
/* but release the resource while waiting */
flags[/] = FREE;
while (turn 1= 7) {

}
flags[/] = BUSY;

}
& Exit protocol: (for process i)

/* pass the turn on, and release the resource */
turn = /;

Peterson’s Algorithm

N

%
¥ Approach — similar to Dekker’s algorithm; after setting our flag we
Immediately give away the turn; By waiting on the and of two
conditions, we avoid the need to clear and reset the flags.

& Initialization:

typedef char boolean;

shared boolean flags[n - 1];
shared int turn;

- tUrR-=-£-
... flags[/] = FREE;
... flags[/] = FREE;

4 Entry protocol: (for process i)

EEL 602

26

Peterson’s Algorithm

N

& Entry protocol: (for process i)

/* claim the resource */
flags[/] = BUSY;

/* give away the turn */

turn = /;

/* wait while the other process is using the resource *and* has the turn */
while ((flags[/] == BUSY) && (turn != /7)) {

}

<& Exit protocol: (for process i)

/* release the resource */
flags[/] = FREE;

EEL 602

27

N

Multi-Process Solutions

Dekker’s and Peterson’s algorithms — can be generalized for N
processes, however:

- N must be fixed and known in advance
- Again, the algorithms become too much complicated and expensive

Implementing a mutual exclusion mechanism is difficult!

Bakery Algorithm

& Goal — Solve the CS problem for n processes

4@ Approach — Customers take numbers — lowest number gets service
next (here service means entry to the CS)

EEL 602 28

Bakery Algorithm

N

%
& Approach — The entering process checks all other processes sequentially, and
waits for each one which has a lower number. Ties are possible; these are resolved

using process IDs.

& Initialization:

typedef char boolean;

shared boolean choosing[n]
shared int num[n];

for j=0;j < n; j++){
numlj] = 0;

}

EEL 602

29

Bakery Algorithm

N

& Entry protocol: (for process i)

/* choose a number */

choosingli] = TRUE;

numli] = max(num[0], ..., num[n-1]) + 1;
choosingli] = FALSE;

/* for all other processes */
for =0;j < n;j++){

/* wait if the process is currently choosing */
while (choosinglj]) {}

/* wait if the process has a number and comes ahead of us */
if (num[j] > 0) &&
((num(j] < numli]) ||
(num(j] == numli]) && (j <) {
while (num[j] > 0) {}
}
}

& Exit protocol: (for process i)

/* clear our number */
EEL 602 num[i] = 0: 30

Bakery Algorithm — Why choosing|i]?

N

J . .
4 choosing[i] — What happens if you leave it out

& Mutual Exclusion — Violation

Lets comment choosing]i] to examine the algorithm!

EEL 602 31

Bakery Algorithm — Why choosing|i]?

N

& Entry protocol: (for process i)

/* choose a number */

choosing|[i] = TRUE;

numli] = max(num[O0], ..., num[n-1]) + 1;
choosing[i] = FALSE;

/* for all other processes */
for (j=0;j < n; j++){

/* wait if the process is currently choosing */
while (choosing[j]) {}

/* wait if the process has a number and comes ahead of us */
if (num(j] > 0) &&
((num(j] < numli]) ||
(num[j] == numli]) && (j <)) {
while (num[j] > 0) {}

} » - Consider 2 Process — P, & P,

} » Same token P, goes to CS after 2 iterations

@ Exit protocol: (for process i) | » Later P, blocked-unblocked — After 2
iterations enters CS!!

/* clear our number */
EEL602 pumli] = O: 32

Hardware Solutions

N

%
» Use of hardware instructions to mask interrupts. The solution for N

processes would be as simple as below:
For Process |

while (TRUE) {
disablelnterrupts();

<Critical Section i>

enablelnterrupts();

» Problems
- Only one system-wide CS active at a time
- No OS allows user access to privileged instructions
- Not correct solution for multiprocessor machine

EEL 602

N

Hardware Solutions

» Special Machine Instructions
= Performed in a single instruction cycle

= Access to the memory location is blocked for any
other instructions

» Test and Set Instruction
boolean testset (int 1) {

1T (== 0){

1 = 1;

return true;
¥
else {

return false;
ks

}

EEL 602

Hardware Solutions

N

L/

» Exchange Instruction

voild exchange(int register, iInt memory) {
int temp;

temp = memory;

memory = register;

register = temp;

EEL 602

Hardware Solutions

N

L/

» Sample Program

const int n = /* number of processes */;

int bolt;
void P (int i)

{

}
void main()
{
bolt:=-0;
parbegin (P(1), P(2), ...
}

EEL 602

while (true);

{

while (Itestset (bolt))
/* do nothing */

/* critical section */;

bolt = 0;
/* remainder */

}

, P(n));

» Test and Set Instruction

boolean testset (int i) {

if (i ==0) {

1= 1;

return true;
s
else {

return false;
}

36

Hardware Solutions

N

L/

» Advantages

= Applicable to any # processes, single/multiple
processors sharing main memory

= Verification is simple/easy
= Can be used to support multiple CS

» Disadvantages

= Busy waiting — Consumes processors time

m Starvation is possible — Selection of waiting
process is arbitrary

s Deadlock is possible — The flag can only be reset
by low priority process but has been preempted by
high priority process

EEL 602

37

N

Semaphores
robe/test/wait Release

» S, Semaphore (an integer variable) —» Operation P and V

= When a process executes P(S) , S is decremented by one
e S > 0 — Process continues execution; or

e S <0 — Process is stopped and put on a waiting
gueue associated with S.

= When a process executes V(S), S is incremented by one
e S > 0 — Process continues execution; or

e S <0 — Process is removed from the waiting
gueue and is permitted to continue execution;
process which evoked V(S) can also continue
execution,

» P andV are indivisible/atomic — Cannot be interrupted in between
» Only one process can execute P or V at a time on given Semaphore

EEL 602 38

Implementation

N

» Busy Waiting
= TWO process solutions
= Loop continuously in entry code
= Problem — Multiprogramming systems
s Spinlock — Spins while waiting for Lock

n Useful
+ Multiprocessor System, No context switch time
+ Locks are expected to be held for short time

» Semaphore Solution

= P, wait — block itself into a waiting queue
= V, sighal — waiting queue to ready gqueue

EEL 602

39

Implementation

N

struct semaphore {
int count;
gueue Type queue

}

void wait(semaphore s)
{
s.count--;
if (s.count < 0)
{
place this process in the s.queue;
block this process

}
}
void signal(semaphore s)
{

s.count++;

if (s.count <= 0)

{

remove a process p from the s.queue;
place process p on the ready queue

EEL 6}02 }

40

Mutual Exclusion

N

L/
» Sample Program

const int n = /* number of processes */
semaphore s=1;

void P (int i)
{
while (true);
{
wait(s);
/* critical section */;
signal(s);
/* remainder */
}
}
void main()
{

parbegin (P(1), P(2), ..., P(n));
}

Above program can also handle the requirement that more than one process be allowed
/nside CS at a time, How?

EEL 602 41

Mutual Exclusion

N

Quene for Value of

semaphore lock semaphore lock A B C
____________________________ e J\“;ML I
111 [o]
S SRR QU - I I
o1 !
e S semWaitflock)

(S | |
........................... sy S T

[1C] o1

\J

__________________________________ semSiganlilock) . ___ _
111 [o] l
... semSiganliock)
111 |

EEL 602

» Example - Three Process Accessing Shared Data using Semaphore

Nete that normal
exechfion can
proceed in parafiel
Bt thai crifical
regions are serialized,

42

Semaphore Types

N

» Integer/Counting/General Semaphore
» Binary Semaphore
» Fairest Policy —» FIFO

» Order of removing process from waiting queue

s Strong Semaphore — Includes policy definition
+ Guarantees freedom from Starvation
+ Typically provided by most OS

s Weak Semaphore — Does not specify the order

EEL 602 43

N

EEL 602

I A l'-'.

L e

Remaanhars Ready ameme

l B I.-

| SRS

— [[[1]

[0 T Talelo—

Blocked gqueus

®

Semaphore Ready quoene

I n "-'.

—_ [| | [8]

o T T Tafe—

Blocked gqueus

@

Semaphore Ready qoene

Processor

_,.|||||E:: s=0 —» [[B[a[c}—

Blocked gqueue

®

Semaphore Ready gqoemne

[C I'-'.

— [[111

L= T

@ (U

Semanhnre Ready quene
Processor

[D l'.'.

L« [[e]a]c]

Blocked queus

©)

Semaphore Ready «qmeme

Processor
l D I.-

N I Ty

— | | [B]a] 1: s=02 |— [[] [e}—

Blocked gqueus

Semaphore Ready quoene

44

Possible Implementations

N

L/

» No existing hardware implements P and V operations
directly

» Semaphores — Build up using hardware sync primitives

» Uniprocessor Solution
s Usually — disable interrupts

» Multiprocessor Solution
s Use hardware support for atomic operations

Possible Usage
= Mutual Exclusion — Initialize semaphore to one

= Synchronization — Initialize semaphore to zero

= Multiple instances — Initialize semaphore to # of
Instances

EEL 602 45

Two Possible Implementations

N

wait(semaphore s)

{

disable interrupts

s.count--;

if (s.count < 0)

{

place this process in the s.queue;

block this process and enable interrupts

}

else
enable interrupts

signal(semaphore s)

{

disable interrupts

s.count++;

if (s.count <= 0)

{

remove a process p from the s.queue;
place process p on the ready queue

}

EEL 6}02 enable interrupts

46

The Producer/Consumer Problem

N

/Semaphore freeSpace,
initially n
Semaphore avalilltems,
intrailly O

O Producer process

1tem nextProduced;

while (1) {
wait(freeSpace); =
buffer[in] = nextProduced;-..

in = (in+l) mod n;
signal (availltems);

}

EEL 602

% Number of empty buffers

% Number of Ffull buffers

d Consumer process
1tem nextConsumed;

while (1) {
xwait(availltems);
"~ nextConsumed =buffer[out]
. out = (out+l) mod n;
“..signal (freeSpace);

}

47

Deadlock and Starvation

N
\J

» Deadlock

» Let S and Q be two semaphores initialized to 1
P, P

1
wait(S); wait(Q);
wait(Q); walt(S);

signa;I(S); signa.I(Q);
signal(Q) signal(S);

» Starvation - indefinite blocking; A process may never
be removed from the semaphore queue in which it is
suspended.

EEL 602 48

Implementing S as a Binary Semaphore

N

> Initialization:

EEL 602

J » Data structures:

binary-semaphore S1, S2;
int C:

S1=1
S2=0
C = Initial value of semaphore S

49

Implementing S

» walt operation

N

wait(S1);
C--
It (C <0){

wait(S2);
}
signal(S1);

» signal operation
wait(S1);
C ++;
if (C<=0)
signal(S2);
else
signal(S1);

EEL 602

signal(S1);

50

N

Problems with Semaphores

L/

» The P(S) and V(S) signals are scattered among several processes.
Therefore its difficult to understand their effects.

» Incorrect usage — timing errors (difficult to detect; only with some
particular execution sequence which are rare)

» One bad process or programming error can kill the whole system or
put the system in deadlock

Solution?
High-level language constructs

Critical Regions, Eventcounts, Sequencers, Path Expressions,
Serializsers, Monitors, ...

A fundamental high-level synchronization construct — Monitor
type

EEL 602 51

N

Monitor

L/

» A monitor type presents a set of programmer defined operations
which can provide mutual exclusion within the monitor

m Procedures
= Initialization code
s Shared data

» Monitor Properties
s Shared data can only be accessed by monitors procedures

= Only one process at a time can execute in the monitor (executing a
monitor procedure)

» Shared data may contain condition variables

EEL 602

Monitor

N

EEL 602

monitor monitor-name

{
shared variable declarations
procedure body P1 (...){
}
procedure body P2 (...){
}
procedure body Pn (...){
}
{

initialization code

}

}

53

N

Condition Variables

%
» Condition variables — To allow a process to wait in a monitor

» Condition variables can only be used with following operations

s Condition: X,y
+ Declaring a condition variable

m X.wait

* Process invoking x.wait is suspended until another process invokes
x.signal

= X.Signal

+ Resumes exactly one suspended process. If no process is suspended this
operation has no effect

» If x.signal is evoked by a process P, after Q — suspended
= Signal and Wait
= Signal and Continue

» Resuming processes within monitor; x.wait(c) — conditional-wait
EEL 602 54

Monitor Architecture

N

shared data

queues associated with {
X, y conditions

entry queue

operations

initialization
code

EEL 602

55

N

Monitor Architecture

EEL 602

monitor waiting area

—

.

condition ¢l

cwaiticl)

- |

.

condition cn

cwaitica)

[| =1

.

&

rgent quene

Entrance
:Iil:

MONITOR

condition variables

csignal

—] | O—C]

initialization code

:Iil:
Exit

56

N

Classical Synchronization Problems

L/

> Bounded-Buffer Problem

» Dining-Philosophers Problem

» Readers and Writers Problem

EEL 602

S7

N

Dining-Philosophers Problem

W
L ==

» Example of large class of concurrent-control problems
» Provide deadlock-free and starvation-free solution
» Chopstick - Semaphore
s semaphore chopstick[5];
+ Initially chopstick —» 1

EEL 602 58

Dining-Philosophers Problem

N

» Philosopher i

do {
wait(chopstick[i])
wait(chopstick[(i+1) mod 5])

eat
signal(chopstick]i]);
signal(chopstick[(i+1) mod 5]);
think

} W.r.wlile (1);

» Problem — Deadlock

EEL 602 59

N

Dining-Philosophers Problem

» Possible solutions against deadlock
= Allow at most 4 philosophers to sit simultaneously

= Allow a philosopher to pick chopstick only if both
chopsticks are available,

= Odd philosopher — first left then right chopstick

» Satisfactory solution must guard against Starvation
Deadlock-free solution does not eliminate possible starvation

EEL 602 60

N
\J

Dining Philosophers Example

» Deadlock-free solution using monitor

» Chopsticks pick up — Only if both of them are available

= Distinguish among 3 states of a philosopher

monitor dp

{
enum {thinking, hungry, eating} state[5];

condition sel f[5] 5, /* delay yourself when hungry but unable to obtain chopsticks */

void pickup(int 1) /*NextSlide */
void putdown(iInt 1) /*NextsSlide*/
void test(int 1) /* Next Slide */
void 1nit({
for (aint 1 = 0; 1 < 5; 1++)
state[1] = thinking;

} state [i1]= eating only if
} state [(1+4) mod 5] != eating &&
state [(1+1) mod 5] !'= eating

EEL 602

61

Dining Philosophers Example

A
h monitor dp dp-pickup(r)
‘ .
enum {thinking, hungry, eating} state[5]; v
condition self[5]; eat
void pickup(int 1) { o
state[i] = hungry; dp.putdown(i)
test[i];

iIT (state[1] != eating)
self[i].-wait();
¥

void putdown(int 1) {

state[i] = thinking;

/* test left and right neighbors */
test((i+4) mod 5);

test((i+1l) mod 5);

}

void test(int 1) {

it ((state[(1 + 4) mod 5] = eating) &&

(state[1] == hungry) &&

(state[(1 + 1) mod 5] != eating)) {
state[i] = eating;
self[i]-signal();

b
}
void nit() {
for (int 1 = 0; 1 < 5; 1++)
state[i1] = thinking;
}
} » Problem?

EEL 602

First Solution - Dining Philosophers

/> program diningphilosophers */
semaphore fork [5] = {1};

int i:

void philosopher (int i)

N

while (true)

{

think ();
wait (fork[i]);
wait (fork [(i+1)] mod 5]);
eat ();
signal (fork[i]);
signal (fork [(i+1)] mod 5]);
}
}

void main()

{
parbegin (philosopher (0), philosopher (1), philosopher (2), philosopher (3), philosopher
(4));

}

EEL 602 63

Second Solution - Dining Philosophers

/\

/> program diningphilosophers */
semaphore fork [5] = {1};
semaphore room = {4};

int i:
void philosopher (int i)
{
while (true)
{
think ();
e wait (room);
: wait (forkli]);
wait (fork [(i+1)] mod 5]);
eat ();
signal (fork[i]);
: signal (fork [(i+1)] mod 5]);
i signal (room);
}
}
void main()
{
parbegin (philosopher (0), philosopher (1), philosopher (2), philosopher (3), philosopher
(4));

EEL 602 ’ 64

Readers-Writers Problem

» File/Record is to be shared among several concurrent processes
» Many readers, Exclusively one writer at a time

N

Reader Writer
Readers v X

Writers X X

» Several variations
= No reader should wait for other readers to finish simply because a
writer is waiting
= Once a writer is ready, writer performs its write ASAP
» Possible starvation
» Solution — First variation
int readcount = 0;
semaphore mutex,
initially 1
semaphore wrt,
initially 1

EEL 602

N

Readers-Writers Problem

Writer: Reader:
_ wait(wrt) — wart(mutex);
readcount++;
wﬁénm is performed 1T (readcount ==
T wart(wrt);
— signal(wrt) ~ signal (mutex) ;

reading i1s performed

— wart(mutex) ;
readcount--;
iIT (readcount ==

— signal (mutex):

EEL 602

1)

0)

\

signal(wrt); _/

Readers-Writers Problem

N
\J

/* program readersandwriters®/
int readcount, writecount;

semaphore x = 1, vy =1, z = 1, wsem = 1, rsem = 1;

wvoid reader()
{
while (true)
{
.- semWait (z):
semWait (rsem);
... SEMWait ()7
: readcount++;
if (readcount == 1)
: semWait (wsem)4¥
‘- semSignal (x);
: semSignal (rsem);
.. gsemSignal (z):
READUNIT() ;
... SemWait (x=) s
: readcount——;
if (readcount == 0)
: semSignal (wsem);
‘s gemSignal (x);
H
}
wvoid writer ()
{
while (true)
{
e SEmWait (y);

writecounti+;
if (writecount
semWait Arsem)

" semSignal (y)s
senmWait (wsem) s
WRITEUNIT () ;
semSignal (wsem);

Leee SEDWait (y);

: writecount—:;
if (writecount =— 0)
: semSignal (rsem);

‘s semSignal (y):

H

}
wvoid main ()
{

readcount = writecount = 0;

parbegin (reader, writer):;

Readers only iIn the system:
e wsem set

/r//no queues

Writgrs only in the system:
wsem and rsem set

/erlter)/queues on wsem

L

Last Solution, Writers — Starvation

No new readers are allowed to access the
data once at least one writer has declared
desire to write

a

67

N

Readers-Writers Problem

/* program readersandwriters®/
int readcount, writecount;

semaphore x = 1, vy =1, z = 1, wsem = 1, rsem = 1;

wvoid reader()
{
while (true)
{
Lo SemMWait (z);
: semWait (rsem);
... SEMWait ()7
: readcount++;

if (readcount == 1)
semWait (wsem) ;

e semSignal (x);
: semSignal (rsem);
.. gsemSignal (z):
READUNIT() ;
... SemWait (x=) s
: readcount——;
if (readcount == 0)
: semSignal (wsem);
‘s gemSignal (x);
H
}
void writer ()
{
while (true)
{
e SEmWait (y);
: writecounti+;
if (writecount =— 1)
semiWait (rsem) ;
" semSignal (y)s
semWait (wsem) ;
WRITEUNIT () ;
semSignal (wsem);
Leee SEDWait (y);
: writecount—:;
if (writecount =— 0)
: semSignal (rsem);
‘s semSignal (y):
H
}
wvoid main ()
{
readcount = writecount = 0;
parbegin (reader, writer):;

Readers only iIn the system:
e wsem set
e NO queues

Writgrs only in the system:
e wsgem and rsem set
e Writers queues on wsem

Both |[Readers and Writers with Read First:
e wsem set by reader

e rsem set by writer

e all writers queues on wsem

e oOne reader queues on rsem

e other readers queues on z

Both |Readers and Writers with write First
e wsem set by writer

e rsem set by writer

e writers queues on wsem

° or
or

1e reader gueues on rsem
her readers queues on z

68

N

Synchronization in Pthreads

> Pthread API

Mutex locks, condition variables, read-write locks for thread
synchronization

> Pthreads Mutex Locks

Protecting CS using mutex

include <pthread.h>
pthread_mutex_t mutex;

/* create the mutex lock */
pthread_mutex_init(&mutex, NULL);

/* acquire the mutex lock */
pthread_mutex_lock(&mutex);

[**** Critical Section ****/

/* release the mutex lock */
pthread_mutex_unlock(&mutex);

EEL 602

69

N

Synchronization in Pthreads

» Pthread Semaphores
include <semaphore.h>
sem_t sem;

/* create the semaphore and initialize to 8 */
sem_init(&sem,0,8)

= wait() > sem_wait()
= signal() » sem_post()

Protecting CS using semaphore

include <semaphore.h>
sem_t mutex;

/* create the semaphore */
sem_init(&mutex, 0, 1);

/* acquire the semaphore */
sem_wait(&mutex);

/7'\‘7'\‘7'\‘7'\‘ Cl’ltlca| SeCtlon :'::'::'::':/

/* release the semaphore */
sem_post(&mutex);

EEL 602

70

N

Synchronization using Win32 API

» Win 32 mutex Locks
include <windows.h>
HANDLE Mutex;

/* create a mutex lock*/
Mutex = CreateMutex(NULL, FALSE, NULL);

/* Acquiring a mutex lock created above */
WaitForSingleObject(Mutex, INFINITE);

/* Release the acquired lock */
ReleaseMutex(Mutex) ;

» Win 32 Semaphores
include <windows.h>

HANDLE Sem;

/* create a semaphore*/
Sem = CreateSemaphore(NULL, 1, 5, NULL);

/* Acquiring the semaphore */
WaitForSingleObject(Semaphore, INFINITE);

/* Release the semaphore, signal() */
ReleaseSemaphore(Sem, 1, NULL);

EEL 602

Synchronization in Linux

N

» Current versions — processes running in kernel mode
can also be preempted, when higher priority process
available

» Linux Kernel — Spinlocks and Semaphores for locking in
kernel

» Locking mechanisms

= Uniprocessor — Enabling and disabling kernel preemption
+ preempt _disable(), preempt _enable()

= Multiprocessor — Spinlocks

+ Kernel is designed such that spinlocks are held only for short
duration

EEL 602 12

Synchronization in Linux

N

» Atomic Operations — Special data type, atomic_t
= ATOMIC INT (int 1), Int atomic read(atomic_t *v)
= void atomic_add(int 1, atomic_t *v)

= void atomic _sub(int 1, atomic_t *v)

» Spinlocks — Only one thread at a time can acquire spinlock
= void spin_lock(spinlock t *t)
m void spin_unlock(spinlock_t *lock)

» Reader-Writer Spinlock — Exclusive access to spinlock that intends
to update the data structure, favors readers

» Semaphores — Binary, Counting, Reader-Writer
= vVoid sema_ iInit(struct semaphore *sem, Int count)
= vVoid init MUTEX(struct semaphore *sem)
= void init MUTEX locked(struct semaphore *sem)
= Void 1nit _rwsem(struct rw_semaphore *sem)

EEL 602 73

Synchronization in Windows XP

N
\J

» Kernel access global resources
= Uniprocessor — Temporarily masks interrupts for all interrupt
handlers
= Multiprocessor
+ Uses spinlocks to protect access to global resources
+ Spinlocks — only to protect short code segment
+ A thread will never be preempted while holding a spinlock

» Thread synchronization outside kernel — dispatcher
objects

s Using dispatcher objects, threads synchronize using different
mechanisms (mutexes, semaphores, events, timers)

= Singled state, Nonsingled state

» Dispatcher objects may also provide events — much like
a condition variable

EEL 602 74

Minor Il

N

» Syllabus — Scheduling, Synchronization,
Deadlocks

» Open Book/Notes

= Can bring your own notes

m Can also bring class lecture slides

m EXxchange of notes/materials — Strictly prohibited
= No textbook is allowed

= No xerox of book(s) is allowed

» Type of questions —» Remains Open!

Good Luck!

EEL 602 75

