A
€V

Memory Management

Reading:
Silberschatz
chapter 9

Reading:

Stallings
chapter 7

EEL 602

/4

N

Outline

Background

Issues in Memory Management
Logical Vs Physical address, MMU
Dynamic Loading

YV V V V V

Memory Partitioning
= Placement Algorithms
= Dynamic Partitioning

Buddy System

Paging

Memory Segmentation
Example — Intel Pentium

YV V VYV VY

EEL 602

N
\J

Background

» Main memory — fast, relatively high cost, volatile

» Secondary memory — large capacity, slower, cheaper
than main memory and is usually non volatile

» The CPU fetches instructions/data of a program from
memory; therefore, the program/data must reside in the
main (RAM and ROM) memory

» Multiprogramming systems — main memory must be
subdivided to accommodate several processes

» This subdivision is carried out dynamically by OS and
known as memory management

EEL 602

Issues In Memory Management

N

» Relocation: Swapping of active process in and out of
main memory to maximize CPU utilization
= Process may not be placed back in same main memory region!
= Ability to relocate the process to different area of memory

» Protection: Protection against unwanted interference by
another process

Must be ensured by processor (hardware) rather than OS

» Sharing: Flexibility to allow several process to access the
same portions of the main memory

» Efficiency: Memory must be fairly allocated for high
processor utilization, Systematic flow of information
between main and secondary memory

EEL 602

N

Compiler — Generates Object Code

compiler or
assembler

other
object
modules

Linker — Combines the Object code into

a single self sufficient executable code

system
library

dynamically

loader

loaded
system
library

dynamic
linking

in-meamory
binary
memaory
image

Execution — dynamic memory allocation

EEL 602

Binding of Instructions and Data to Memory

load
time

Loading — Copies executable
code into memory

execution
time (run
time)

N

Binding of Instructions and Data to Memory

Address binding of instructions and data to memory addresses can
happen at three different stages

» Compile time: If memory location known a priori,
absolute code can be generated; must recompile code if

starting location changes

» Load time: Must generate relocatable code if memory
location is not known at compile time

» Execution time: Binding delayed until run time if the
process can be moved during its execution from one
memory segment to another — most general purpose OS

EEL 602 6

Logical Vs Physical Address Space

N

» Each logical address is bound to physical
address space;

= Logical address — generated by the CPU; also
referred to as virtual address

s Physical address — address seen by the memory unit

» Logical and physical addresses ;

= |dentical in compile-time and load-time address-
binding schemes

= Differ in execution-time address-binding scheme
» Logical address <> Virtual address

EEL 602 7

Memory-Management Unit (MMU)

N
\J

» The runtime mapping from virtual — physical address

relocation
register

logical physical
address address

CPU ';@ » memory

346 14346

» Relocation reqister is added to every address —
generated by user process

» The user program — logical addresses, it never sees

the real physical addresses
EEL 602

N

Dynamic Loading

» Routine i1s not loaded until it is called

» Better memory-space utilization — unused
routine is never loaded

» Useful to handle infrequently occurring cases,
e.g. error handling routines

» No special support from the OS required
Implemented through user program design

EEL 602

N

Memory Partitioning

Two schemes — used in several variations of now-obsolete OS

> Fixed Partitioning: OS occupies fixed portion of main memory, rest available for
multiple processes. Two alternatives;

= Equal size fixed partitions — any process < partition size can be loaded
= Unequal size partitions — several unequal size partitions, process of matching sizes

Operuling Sy«lem Operutimg Syslem
&M &M

™
4M

M

aM
M

M

M
M

T M

EM

aM

i) Egpralsize partifions i) Unequal-size partitions

» Problems with equal size fixed partitions:
= If program is bigger than a partition size, use of overlays

= Main memory utilization is extremely inefficient; Internal Fragmentation — waste of space
internal to partition due to the fact that block of data loaded is smaller than partition

EEL 602 10

Uneqgual-Size Partitions

N

Assign each processes the smallest partition to which it will fit

» Advantages:

s Process are always assigned in such a way as to minimize
wasted memory within a partition — internal fragmentation

= Relatively simple and require minimal OS software and
overhead

» Disadvantages:

= Limitations on the active number of processes, number of
partitions specified at system generation time

= Small jobs cannot utilize partition space efficiently; In most
cases it is an inefficient technique

EEL 602 11

Placement Algorithm with Partitions

N

» Equal-size partitions
= Because all partitions are of equal size, it does not
matter which partition is used

» Unequal-size partitions

= Can assign each process to the smallest partition
within which it will fit

= Queue for each partition size

s Processes are assigned in such a way as to minimize
wasted memory within a partition

EEL 602 12

Placement Algorithm with Partitions

N

Operating
System

Operating
System

New
Processes

(a) One process queue per partition (b) Single queue

EEL 602

Dynamic Partitioning

N

! Developed to address the drawbacks of fixed partitioning

» Partitions of variable length and number; Process in bought into main
memory, it is allocated exactly as much memory as it requires

» Leaves Holes

s First at the end — eventually lot of small holes
= Memory becomes more fragmented with time, memory utilization {

» External Fragmentation
= Memory that is external to all partitions becomes increasingly fragmented

» Compaction
= Used to overcome external fragmentation
s OS shifts processes so that free memory is together in one block
= Compaction requires use of dynamic relocation capability
= Time consuming procedure and wasteful of processor time

EEL 602 14

N

EEL 602

Operating
System

(@)

Process 1

XMt

148

Process 3

(e}

Uiperating
System

Process 1

(b)

Process 1

Process 4

Process 3

(1)

2

60

XM

EM
1,01

18M

4M

Dynamic Partitioning

Chperating
System

Process 1

Process 1

e

(c)

Process 4

Process 3

(g)

aM

L4n

M

X

EM
1,01

18M

4M

Process 1

Process 2

Process 3

(d)

Process 2

Process 4

Process 3

(h)

20M

18M

1401

i

&M
[0

180

4M

15

Placement Algorithms

N

~ Compaction is time consuming — OS must be clever in plugging holes
while assigning processes to memory

» Three placement algorithms — Selecting among free
blocks of main memory

» Best-Fit: Closest in size to the request

» First-Fit: Scans the main memory from the beginning
and first available block that is large enough

» Next-Fit: Scans the memory from the location of last
placement and chooses next available block that is large
enough

EEL 602 16

Placement Algorithms - Example

N

Allocation of 16 MB block using three placement algorithms

&M
12M First Fit 12M
M
60
Best Fit
= 15M ;,
aaaaa e 20
block (14K)
M &M
6N L]
D Allecated Black
[] Froobiock
148 D Pomsible new allocation 14M
MNext Fit
JanM
20M
(a) Before (bp After

EEL 602

Placement Algorithms

N

» Which of the above approaches is the best?
Process Size/Sequence, General Comments

s First-Fit -> Simplest, usually the best and fastest

s Next-Fit — Slightly worst results with next fit
Compaction may be more frequently required

s Best-Fit— Usually the worst performer; main memory
IS quickly littered by blocks too small to satisfy
memory allocation requests

Compaction - more frequently than other algorithms

EEL 602 18

Buddy System

N

» Drawbacks

s Fixed partitioning: Limits number of active process, inefficient
If poor match between partition and process sizes

= Dynamic Partitioning: Complex to maintain, includes the
overhead of compaction
» Compromise may be the Buddy System - Entire space
available is treated as a single block of 2V

> If arequest of size s such that 2V-1 < s < 2V, entire block
Is allocated

s Otherwise block is split into two equal buddies

s Process continues until smallest block greater than or equal to s
IS generated

EEL 602 19

N

Buddy System - Example

Initial block size 1 MB; First request A is for 100 KB

1 Mbyte block | 1M

Request 00K [A=128K| 128K | 256 K | 512K

Request 20 K [A=128 K| 128K | B=256K | 512K

Request 64 K | A= 128 K [c=s4k[64 K | B=256K | S12K

Request 256 K | A = 128 K [c=s4k[64 K | B=256K | D =256 K | 256 K
Release B | A= 128 K [c=s4x[64 K | 256 K | D =256 K | 256 K
Release A | 128K [c=s1x[64 K| 256 K | D =256 K | 256 K

Request 75K | E= 128K [c=o4k[64 K | 256 K | D =256 K | 256 K
Release C |E=128K| 128K | 256 K | D =256 K | 256 K
Release E | 512K | D =256 K | 256 K
Release D | 1M

EEL 602

20

Buddy System - Example

N

Binary tree representation immediately after Release B request.

1M

512K

256K

128K

64K

h L h r
[A= I8 KfE-ux64K| 256 K [D=256K | 256 K |

EEL 602

Relocation

N

» A process may occupy different partitions which means different
absolute memory locations during execution (from swapping)

Relative address

3
» Adder Program

Interrupt to
operating system

Stack

FProcess image in
main memory

» Compaction will also cause a program to occupy a different partition
which means different absolute memory locations

EEL 602 22

Paging

N

» Partitioning main memory — small equal fixed-size chunks
s Each process is divided into the same size chunks — pages
m Chunks of memory — frames or page frames

» Advantages
= No external fragmentation
= Internal fragmentation — only a fraction of last page of a process

» OS maintains a page table for each process
m Contains frame location for each page in the process
= Memory address — a page number, a offset within the page
s Processor hardware — logical-to-physical address translation

EEL 602 23

Paging - Example

N

Assignment of process pages to free frames

Frame
number

= - R T

-]

10
11
12
13
14

(a) Fifteen Available Frames

EEL 602

Main memory

- - R B e —

-
= e ko= g

Main memory

A0
Al
A2
A3

{b) Load Process A

= = Y R L. L

[T
B W ko= D S

Main memory
A.D
Al
A2

Al
NN
BTN
ANNNE: 2

() Load Process B

24

Paging - Example

N
\J

Assignment of process pages to free frames.

EEL 602

= B = R L

e
= e b = D W

Main memory

A0
Al
A2

A
IR
LN
NN
N
AR,
ARG,

PRI

(d) Load Process C

= B - A L —

e
= W bk = T W

Main memory

A

A.l

A2

A2

WK T

L

LB,

VARG

(e) Swap out B

= - R L

-
a fd ko= T W

Main memaory

A0

Al

A2

A2

D

D.1

D.2
A 7777

L

ARG,

”/// é‘é‘—‘Y//

D.d

(f1 Load Process [

25

Paging - Example

N

Main memory

0 AD
1 Al
2 A2
3 A3
4 D0
5 D.1
6 D.2
1 W
8 A
N72%77/
W0 L Ca
11 D.3
12 D.4
13
14
0 0 0| N 0| 7
1 1 1| N 1| 8
2] 2 2| N 2] 9
3 3 Process B 310
Process A page table Process C
page table page table

EEL 602

Data structures for page tables at time epoch (f)

4
5
6

11

12

Process D
page table

PO

13
14

Free frame
list

26

Paging - Example

N

» Convenience in Paging scheme
= Frame size —» power of 2

= Relative address (wrt origin of program) and the logical address
(page # and offset) are same

s Example - 16 bit address, page size — 1K or 1024 bytes
+ Maximum 64 (25) pages of 1K bytes each

» Advantages
m Logical addressing — transparent to programmer, assembler, linker

= Relatively easy to implement a function to perform dynamic
address translation at run time

EEL 602 27

N

EEL 602

Relative address = 1502
(0000010111011110]

(

User process
(2700 bytes)
..r"l.“-n
1

\

{a) Partitioning

Page# = 1, Offset =478

Paging - Example

Logical address =

(0000010111011110|

Page 1 Page 0

Page 2

r

T
478

4 <
\
) =
(b} Paging

(page size = 1K)

fragmentation

28

N

Paging - Example

Logical-to-physical address translation in Paging

16-bit logical address
6-bit page# 10-bit offset

Y rF
L J L 4

lolojolofol1]o[1[2[a]ofalal1]1]0]
—_—
|

[=]

000101

D00110
011001
Process
page table <

r——-—_..-"'-._.—-—-..l.-—————___—-"*‘--.__———-.\
lofojo]1f1fojo]1]1f1]ol1]2[1[1]0]

-

ba

16-bit physical address
ia) Paging

EEL 602

29

N

Paging - Example

Logical-to-physical address translation in Paging

EEL 602

logical physical

address address | f0000 ... 0000

CPU

e Erre |

bl e

o{| =

» f

R physical
memory

page table

30

Implementation of Page Table

N

» Different methods of storing page tables, OS dependent
» Pointer to page table —» PCB

» Hardware implementation of page tables
= Page table — Set of dedicated high speed registers, Simplest
= Suitable for small page table sizes, Usually very large

requirements

» Page table is kept in main memory
s Page-table base register (PTBR) points to the page table
= TWO memory access, page table and other for data/instruction
= Memory access slowed by a factor of two

» Solution to the two memory access problem

s Usage of a special fast-lookup hardware cache called
associative memory or translation look-aside buffers (TLBS)

= TLB contains Page # — Frame #, Small # of TLB entries (64-
1024)

EEL 602 31

N

Paging Hardware With TLB

logical
address
CPU —>| p | d |
page frame
number number
Eg TLB hit physical
E address
4 ¥
LfldFr—
TLB t
p{
TLB miss
» f
_ physical
memory
page table

EEL 602

32

Shared Pages

N

» Shared code

= One copy of read-only (reentrant) code shared
among processes, e.g. text editors, compilers

= Shared code must appear in same location in the

logical address space of all processes

» Private code and data
s Each process keeps a separate copy of the code and

data
= The pages for the private code and data can appear
anywhere in the logical address space

EEL 602 33

Shared Pages Example

e
\J
ed 1 0
| 3
ed?2 4 1| data
ed3 8 2| data3
I 1
data 1 page table 3 ed 1
. for P, ed 1
process P, B 4 ed?
ed?2
4 5
ed3 6
7 6| ed3
data 2 page table
for PE 7 data 2
e process P,
3 8
ed?2 4
9
ed3 £
I 2 10
data 3 page table
for P,
process F,

Sharing of code in paging environment

EEL 602

Segmentation

N

» Memory-management scheme that supports user view of
memory

» Program — Collection of segments (name and length)

» Complier automatically constructs segments reflecting
Input program

» Example — A C complier might create separate
segments for the following

main program,

procedure,

function,

object,

local variables, global variables,
common block,

stack,

symbol table, arrays

EEL 602 35

N

Segmentation

» The program/process and its associated data is divided
Into a number of segments

» All segments of all programs do not have to be of the

same length

» There Is a maximum segment length

» Addressing consist of two parts - a segment number and
an offset

» Since segments are not equal, segmentation is similar to
dynamic partitioning
EEL 602 36

N

Address Translation Architecture

_,S{

limit |base

segment
table
CPU [s d

es

_ Y

no
\{
trap: addressing error physical memory

EEL 602

37

N

User’s View of a Program

subroutine stack
symbol
table
Sqrt
main
program

logical address

EEL 602

38

Logical View of Segmentation

N

user space physical memory space

EEL 602

Example of Segmentation

N

L/

EEL 602

subroutine stack

segment 3

symbol
segment 0 table

Sqrt segment 4

main
program

segment 1 segment 2

logical address space

B WON=-O

limit

base

1000
400
400
1100
1000

1400
6300
4300
3200
4700

segment table

1400

2400

3200

4300
4700

5700

6300

6700

physical memory

segment 0

segment 3

segment 2

segment 4

segment 1

40

Sharing

N

EEL 602

of Segments

editor

segment 0

data 1

segment 1

logical memory
process P,

editor

segment 0

data 2

segment 1

logical memory
process P,

limit | base

25286 | 43062
4425 | 68348

- o

segment table
process P,

limit | base

25286 | 43062
8850 | 90003

- o

segment table
process P,

43062

68348
72773

90003

98553

editor

data 1

data 2

physical memory

N

Segmentation

» Compared to dynamic partition, segmentation program may occupy
more than one partition and these partitions need not be contiguous

» Segmentation eliminates the need for internal fragmentation but like
dynamic partitioning it suffers from external fragmentation

» Process is broken in small pieces, the external fragmentation is less
with segmentation than dynamic partition

» Paging is invisible to the programmer, segmentation is usually visible

EEL 602

42

N

Segmentation

EXAMPLE: Logical Addresses.

Relative address = 1502

(0000010111011110]

User process

EEL 602

(2700 bytes)

(

.
F 1

\

(a) Partitioning

Page# = |, Offset=478

Logical address =

[000001j0111011110]

Pape 1 Page 0

Page 2

r

_,,,
478

e
&

—
Internal

"

(b} Paging
(page size = 1K)

fragmentation

Logical address =
Segment# = |, Offset = 752

[0001j001011110000]

Segment 0
750 bytes

752

&

Segment 1
1950 bytes
e

\

(c) Segmentation

43

Segmentation

N

EXAMPLE:
Logical-to-physical address translation in Segmentation

P 16-bit logical address .

4-bit segment # 12-bit offset R

lojojo[1]ojo[1/o[2[1[2]1]o]o]0]0

= ~ -
Length Base

0(001011102110f0000020000000000
1(011110011110J0020000000200000——————»

Process segment table

~— — —
lojof1]ofojof1[1]ojo]o[1]0[0]0]0]

-

16-bit physical address
(b} Segmentation

EEL 602

44

Hierarchical Page Tables

N

» Most systems support a large logical address space
m 232 264 page table itself becomes excessively large

» Break up the logical address space into multiple page
tables

» A simple technique is a two-level page table

EEL 602 45

Two-Level Paging Example

N

» A logical address (32-bit machine with 4K page size) is divided into:
= a page number consisting of 20 bits
= a page offset consisting of 12 bits

» Since the page table is paged, page number is further divided into:
= a 10-bit page number
= a 10-bit page offset

» Thus, alogical address is as follows:

page number page offset
P P2 d
10 10 12

where p; is an index into the outer page table, and p, Is the
displacement within the page of the outer page table

EEL 602 46

N

Two-Level Page-Table Scheme

,.//1'

=T
i
/ . 10Q
500 N
\ :
~ 100 V| 500

.

708

outer page B
table . \ 09
900 /><
page of 929

page table

page table

memory

EEL 602

47

N

Address-Translation Scheme

» Address-translation scheme for a two-level 32-bit

paging architecture

logical address
Bi [P [d

.

g >

=

outer page d 4
table {

page of
page table

EEL 602

48

