
EEL 602 1

Interprocess Communication

Reading:
Silberschatz
chapter 4

Additional Reading:
Stallings
chapter 6

EEL 602 2

Outline
Introduction

Shared memory systems
POSIX shared memory
Message passing systems

Direct communication
Indirect communication
Buffering
Exception conditions
A Case Study for UNIX Signals

Using keyboard
Using command line
Using system calls

Client-Server communication
Sockets
Remote procedure calls
Remote method invocation

EEL 602 3

Process Cooperation
Independent Process
Cooperating Process
Why Cooperation?

Information Sharing
Computation Speed-up
Modularity
Convenience

What is IPC?
Shared Memory
Message Passing

EEL 602 4

Shared Memory: Read and write data in shared region
Maximum speed & convenience, within computer

(e.g. UNIX pipes)
Message Passing: Exchange messages between cooperating process

Useful for exchanging small amount of data
Implementation ease for intercomputer communication Vs SM

(e.g. UNIX Sockets)

Interprocess Communication
Cooperating process require IPC to exchange data and
information. Two models:

EEL 602 5

Permission: Normal case, one process cannot access
others memory

Shared memory region – resides on address space of process
creating shared memory region
Communication process – attach to this address space

POSIX Shared Memory:
Process creates shared memory segment

Segment_id = shmget(IPC_PVT, size, S_IRUSR | S_IWUSR)
IPC_PVT – Identifier to shared memory segment
size in bytes
mode, S_IRUSR/S_IWUSR – Owner R/W

Other process attach it their address apace
Shared_memory = (char *) shmat (id, NULL, 0)
id – Integer identifier to shared memory segment
Pointer location in memory to attach shared memory, NULL lets OS
Flag – 0, both read & write in shared region

Usage
sprintf(shared_memory, “Learning POSIX Shared Memory Usage”)
shmdt() – detach, shmctl() - remove

Shared Memory Systems
Memory speeds, Faster than message passing

EEL 602 6

Producer-Consumer problem: Common paradigm for
cooperating process

e.g. assembly code from compiler – assembler
html files & images – client web browser

Shared Memory Solution: Use a buffer in shared memory
filled up by consumer, emptied by consumer, ensure sync

Unbounded buffer – No limit, producer can always produce,
consumer may wait for new items

Bounded buffer – Fixed buffer size, consumer must wait if
empty, producer must wait if full

Shared Memory Systems

EEL 602 7

Producer/Consumer Problem
Several Consumers and producers, Code?

Buffer hold the data which is not yet consumed
Two logical pointers; in and out
in (out) - next (first) free (full) position in the buffer
in == out, Empty; ((in +1) % BUFFER_SIZE == out, Full

Producer Process

item nextProduced;

while (1) {
while ((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;

}

Consumer Process

item nextConsumed;

while (1) {
while (in == out)

; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

}

EEL 602 8

Fixed size Vs Variable size messages

Basic operations
send (message) – transmission of message
receive (message) – receipt of a message

Links Logical Implementation rather than its Physical Implementation

Important design issues
Form of communication – Direct Vs Indirect
Error handling – How to deal with the exception conditions?
Buffering – How and where the messages are stored?

Automatic or Explicit Buffering

Message Passing Systems
- Communicate & Sync actions without sharing the same address space
- Useful in distributed environment, chat programs on www

EEL 602 9

A link is established automatically between every pair of process
wishing to communicate, but the process need to know each others
identity

A unique link is associated with two process

The link is usually bidirectional but it can be unidirectional

Direct Communication
A communication link in direct communication has following properties

EEL 602 10

Symmetric Addressing
send (P, message) – Send message to process P
receive (Q, message) – Receive message from Q

Asymmetric Addressing
Variant of above scheme, only sender names the receiver
and receiver is does not have to know the name of specific

send (P, message) – Send message to process P
receive (id, message) – Receive a pending (posted) message from
any process, when the message arrives, id is set to the name of
process

Disadvantage – Limited modularity, process identifier

Naming
Direct Communication

Process must explicitly name the receiver or sender of a message

EEL 602 11

A link is established between two process only if they ‘share’ a mailbox

A link may be associated with more than two process

Communication process may have different links between them, each
corresponding to one mailbox

The link is usually bidirectional but it can be unidirectional

Indirect Communication
Communication Link Properties

EEL 602 12

Messages are sent to or received from mailboxes or
ports. The send and receive primitives can take following
forms:

send (A, message) – Send message to mailbox A
receive (A, message) – Receive message from mailbox A

This form of communication decouples the sender and
receiver, thus allowing greater flexibility

Generally a mailbox is associated with many senders and
receivers

A mailbox may be owned either by a process or OS

If mailbox is owned by a process – Owner and user

Indirect Communication

EEL 602 13

Synchronous – synchronization required for communicating process
– both send and receive are blocking operations
– also known as rendezvous

Asynchronous – send operation is always almost non-blocking
– receive operation can have blocking (waiting)

or non blocking (polling) variants

Synchronization
Design options for implementing send and receive primitives:

EEL 602 14

Zero Capacity
No messages waiting, used in synchronous communication

Bounded Capacity
When buffer is full, sender must wait

Indefinite Capacity
The sender never waits

In non-zero capacity cases (asynchronous) the sender is unaware of
the status of the message it sends. Hence additional mechanisms
are needed to ensure the delivery and receipt of a message.

Buffering
Messages exchanged by communicating process resides in a temporary
queue. Such queues can be implemented in three ways:

EEL 602 15

Process Terminates
Either a sender or a receiver may terminate before a message is
processed

Lost Messages
A message may be lost in the communication link sue to hardware/line
failure

Scrambled Messages
A message arrives in a state that cannot be processed

Primitives not suitable for synchronization in distributed systems
Semaphores require global memory
Monitors require centralized control

Message passing is a mechanism suitable not only for IPC, but also for
synchronization, in both centralized and distributed environments.

Exception Conditions
Single machine environment - usually shared memory messages
Distributed environment – messages are occasionally lost,
duplicated, delayed, or delivered out of order. Some common
exception/error conditions that require proper handling.

EEL 602 16

Signals
Various notifications sent to a process to notify it of important event
They interrupt whatever the process is doing at that time
Unique integer number and symbolic name (/usr/include/signal.h)
See the list of signals supported in your system <kill -l>
Each signal may have a signal handler, function that gets called when
process receives the signal

Handling Signals
Used by OS to notify the processes that some event has occurred
Event notification mechanism for a specific application

Sending Signals
One process to another, including itself
Kernel (OS) to process

A case study – UNIX signals
A UNIX signal is a form of IPC used to notify a process of an event.
- generated when event first occurs
- delivered when the process takes an action on that signal
- pending when generated but not yet delivered.
Signals, also called software interrupts, generally occur asynchronously

EEL 602 17

Sending Signals Using Keyboard
Ctrl-C

System sends an INT signal (SIGINT) to running process
By default – Immediately terminates the running process

Ctrl-Z
System sends an TSTP signal (SIGSTP) to running process
By default – Suspends the execution of running process

Sending Signals Using Command Line
kill - <signal> <PID>

Signal name or number, e.g. kill – INT 1560, similar to Ctrl-C
If no Signal name?

fg
Resume the execution of process suspended by Ctrl-Z by sending CONT
signal

raise <signal>
Process sends signal to itself

signal <signal, SIGARG func>
System Call, A process may declare a function to serve a particular signal as
above. When signal is received,
Process is interrupted and func is called immediately, resumes once executed

A case study – UNIX signals

EEL 602 18

Using the signal() system call, a process can:

Ignore the signal – only two signals, SIGKILL (kill-9 PID) and
SIGSTOP (Ctrl-Z) cannot be ignored

Catch the signal – tell the kernel to call a function whenever the
signal occurs

Let the default action apply – depending upon the signal, the default
action can be:

exit – perform all activities as if the exit system call is requested
core – first produce core image on the disk and then perform the
exit activities
stop – suspend the process
ignore – disregard the signal

What to do with a signal?

EEL 602 19

Sending Signals Using System Calls
#include <unistd.h> /* standard UNIX functions, like getpid()*/
#include <sys/types.h> /* various type definitions, like pid_t */
#include <signal.h> /* signal name macros, and the kill() prototype */

/* first, find my own process ID */
pid_t my_pid = getpid(); /* now that i got my PID, send myself the STOP signal. */
kill(my_pid, SIGSTOP);

A case study – UNIX signals

EEL 602 20

Using signal() system call
#include <unistd.h> /* standard UNIX functions, like getpid()*/
#include <sys/types.h> /* various type definitions, like pid_t */
#include <signal.h> /* signal name macros, and the kill() prototype */

/* first, here is the signal handler */
void catch_int(int sig_num)
{

/* re-set the signal handler again to catch_int, for next time */
signal(SIGINT, catch_int);
/* and print the message */
printf("Don't do that");
fflush(stdout);

}
.
. /* and somewhere later in the code.... */
. /* set the INT (Ctrl-C) signal handler to 'catch_int' */
signal(SIGINT, catch_int); /* now, lets get into an infinite loop of doing nothing. */
for (;;)

pause();

A case study – UNIX signals

EEL 602 21

A case study – UNIX signals
Core dump

A core dump is an unstructured record of the contents of working
memory at a specific time
Generally used to debug a program that has terminated abnormally
(crashed)
Nowadays, it typically refers to a file containing the memory image
of a particular process, but originally it was a printout of the entire
contents of working memory
The name comes from core memory and the image of dumping a
bulk commodity (such as gravel or wheat)

Generating Core dump of a running process
To generate a core file named 'core' in the current working directory
for the process with a process id of 1230, use:
<gcore 1230>

EEL 602 22

Some possible signals, their #, and their default handling

SIGNAL ID DEFAULT DESCRIPTION

SIGHUP 1 Termin. Hang up; sent to process when kernel assumes that user of a
process is not doing any useful work

SIGINT 2 Termin. Interrupt. Generated when we enter CNRTL-C
SIGQUIT 3 Core Generated when at terminal we enter CNRTL-\
SIGILL 4 Core Generated when we executed an illegal instruction
SIGTRAP 5 Core Trace trap; triggers the execution of code for process tracking
SIGABRT 6 Core Generated by the abort function
SIGFPE 8 Core Floating Point error
SIGKILL 9 Termin. Termination (can't catch, block, ignore)
SIGBUS 10 Core Generated in case of hardware fault
SIGSEGV 11 Core Generated in case of illegal address
SIGSYS 12 Core Generated when we use a bad argument in a system service call
SIGPIPE 13 Termin. Generated when writing to a pipe or a socket while no process is

reading at other end
………. ….. ……… ………
………. ….. ……… ………

Many more…

A case study – UNIX signals

EEL 602 23

Shared memory, message passing
Several other strategies for communication in client-server
systems:

Sockets

Remote Procedure Calls

Remote Method Invocation (Java)

Client-Server Communication

EEL 602 24

Sockets
A socket is defined as an endpoint for
communication
A socket is identified by an IP address
Concatenated with port number
Sockets use client-server architecture
The socket 161.25.19.8:1625 refers to port 1625
on host 161.25.19.8
Communication consists between a pair of
sockets

EEL 602 25

Socket Communication

EEL 602 26

Socket Communication - Summary
Server Side
1. socket();
2. bind();
3. listen();
4. accept();
5. send()/recv()

Client Side
1. socket();
2. connect();
3. send()/recv()

When you first create the socket descriptor with socket(), the
kernel sets it to blocking. If you don't want a socket to be blocking,
you have to make a call to fcntl():

#include <unistd.h>
#include <fcntl.h>
#include <sys/socket.h>
sockfd = socket(AF_INET, SOCK_STREAM, 0);
fcntl(sockfd, F_SETFL, O_NONBLOCK);

EEL 602 27

Remote Procedure Calls
Remote procedure call (RPC) abstracts procedure calls
between processes on networked systems

Stubs → Client-side proxy for the actual procedure on
the server

Client-side stub locates server and marshalls the parameters
Server-side stub receives this message, unpacks the
marshalled parameters, and performs the procedure on server

Data Representation client and server machines
Big-endian Vs Little-endian, XDR

Semantics
at most once, exactly once

EEL 602 28

Execution of RPC

EEL 602 29

Remote Method Invocation
Remote Method Invocation (RMI) is a Java
mechanism similar to RPCs

RMI = RPC + Object-Orientation
RMI allows a Java program on one machine
to invoke a method on a remote object

EEL 602 30

RMI and RPCs
Fundamental differences

RPCs support procedural programming while
RMI is object based, it supports invocation of
methods on remote objects

RPCs the parameters to remote procedures are
ordinary data structures, while it is possible to
pass objects as parameters to remote
procedures (Java applications distributed across
the network)

EEL 602 31

Marshalling Parameters

