

Reading:

Silberschatz

chapter 2

Additional Reading:

Stallings chapter 1, 2

Outline

- □ Computer Hardware
- □ CPU Components
- □ Registers
- ☐ Instruction Execution
- Interrupt and Trap
- Memory
 - □ Hierarchy
 - □ Cache
- Dual Mode Operation
- Protection
 - Hardware
 - Memory
 - ☐ CPU, I/O

Computer Hardware

Why study hardware?

OS exploits hardware resources to provide set of services

- > Key Elements
 - CPU or Processor
 - Main Memory
 - typically volatile
 - also referred as real memory or primary memory
 - I/O modules
 - secondary memory devices
 - communications equipment
 - terminals
 - System bus
 - communication among processors, memory, and I/O modules

CPU Components

Computer Components: Top-Level View

Processor Registers

- User-Visible registers
 - Helps programmer to minimize main memory references
 - Typically two types of registers
 - 1. Data registers
 - 2. Address registers
 - Index
 - Segment pointer
 - Stack pointer

User-Visible Registers

- Data registers
 - General purpose (programmers or machine)
 - May be dedicated (floating-point and integer operations)
- > Address registers
 - Index
 - Involves adding an index to base value to get effective address
 - Segment pointer
 - When memory is divided into segments, memory is referenced by a segment and an offset
 - Stack pointer
 - Points to top of stack

Control and Status Registers

Mostly not visible to user, organization is machine specific

- Program Counter
 - Contains the address of instruction to be fetched
- ➤ Instruction Register
 - Contains the instruction most recently fetched
- Program Status Word (PSW)
 - Condition codes
 - Interrupt enable/disable
 - Supervisor/user mode

Control and Status Registers

- Condition Codes or Flags
 - Bits set by the processor hardware as a result of operations
 - Examples
 - Positive result
 - Negative result
 - Zero
 - Overflow

Instruction Execution

- ➤ Instruction Cycle processing required for single instruction
- Two step processing in simplest form
 - Processor reads instructions from memory one at time
 - Fetches
 - Processor executes each instruction

Basic Instruction Cycle

Instruction Fetch and Execute

- The processor fetches the instruction from memory
- Program counter (PC) holds address of the instruction to be fetched next
- Processor increments the PC after each fetch

Instruction Register

- > Fetched instruction is loaded in IR
- Instruction categories
 - Processor-memory
 - Transfer data between processor and memory
 - Processor-I/O
 - Data transferred to or from a peripheral device
 - Data processing
 - Arithmetic or logic operation on data
 - Control
 - Alter sequence of execution

Interrupts

- Common Class of Interrupts
 - Program
 - Result of instruction execution, e.g. arithmetic overflow, division by zero or illegal memory reference
 - Timer
 - Processors timer, functions on regular basis
 - I/O
 - Generated by I/O controller, signal or error
 - Hardware Failure
 - Power failure or memory parity error

Interrupt and Trap

Mechanisms to interrupt the normal processing of processor

- > Trap
 - Trap is the notification of an <u>internal event</u>, highest priority
 - Traps are immediate and occur <u>synchronously</u> with the current activity of processor (result of program execution)
- > Interrupt
 - Interrupt is the notification of an <u>external event</u>
 - Occur <u>asynchronously</u> with the current activity of processor

Program Flow of Control

(a) No Interrupts

(b) Interrupts; short I/O wait

(c) Interrupts; long I/O wait

Interrupts

Simple Interrupt Processing

Multiple Interrupts

> Disable new interrupts while an interrupt is being processed

Sequential interrupt processing

Multiple Interrupts

- Disadvantages of sequential interrupt processing
 - Does not account for relative priority or time critical needs
 - I/O device may fill and overflow
- Define priorities and serve in order

Multiple Interrupts

Example: Time sequence of multiple interrupts with priorities

Memory Hierarchy

- Design Constraints
 - How much?
 - Open ended, large capacity
 - How fast?
 - Mach the processor, do not wish to wait
 - How expensive?
 - Reasonable relationship to other components
- Tradeoff among three components
 - Faster access time, greater cost per bit
 - Greater capacity, smaller cost per bit
 - Greater capacity, slower access speed

Memory Hierarchy

- > As one goes down
 - Decreasing cost per bit
 - Increasing capacity
 - Increasing access time

Key to success – Decrease the frequency of access

EEL 602

Caching

- Copying information into faster storage system; main memory can be viewed as a fast cache for secondary storage
- Use of high-speed memory to hold recentlyaccessed data
- Requires a cache management policy

Caching

Cache Read Operation

EEL 602

Typical Memory Hierarchy

© 2003 Elsevier Science (USA). All rights reserved.

EEL 602

Hardware Protection

- ➤ Sharing of Resources → Utilization and Problems
- OS must ensure that an incorrect program cannot cause other programs to execute incorrectly
- Hardware Protection
 - Dual-Mode Operation
 - I/O Protection
 - Memory Protection
 - CPU Protection

Dual-Mode Operation

Provide hardware support to differentiate between at least two modes of operations

■ User Mode → execution done on behalf of a user

■ Monitor Mode (also kernel mode or system mode) → execution done on behalf of operating system

Dual-Mode Operation

- Mode bit added to computer hardware to indicate current mode: Monitor (0) or User (1)
- When an interrupt or fault occurs hardware switches to monitor mode

- Privileged instructions can be issued only in monitor mode
- MSDOS (8088 architecture) No Mode bit
- Win 2000, IBM OS/2 (advanced versions of Intel CPU, Pentium)
 provide dual-mode operation

I/O Protection

- ➤ All I/O instructions → privileged instructions
- Must ensure that a user program could never gain control of the computer in monitor mode
- ➤ All I/O instructions → through OS, checks if valid

EEL 602

I/O Protection

Use of system call to perform I/O

EEL 602

Memory Protection

- ➤ Memory protection → Prevent interrupt vector and interrupt service routines from user program
- Range of legal addresses two registers
 - Base register → holds the smallest legal physical memory address
 - Limit register → contains the size of the range
- Memory outside the defined range is protected

Memory Protection

Use of base and limit register

EEL 602

Hardware Address Protection

Hardware Protection

- The load instructions for the base and limit registers are privileged instructions
- When executing in monitor mode, OS has unrestricted access to both monitor and user's memory

CPU Protection

- Prevent user program from struck in infinite loop or never returning control to OS
- Timer interrupts computer after specified period to ensure OS system maintains control
 - Timer is decremented every clock tick
 - When timer reaches the value 0, an interrupt occurs
- Timer commonly used to implement time sharing
- Load-timer is a privileged instruction