
1EEL 602

Deadlocks

Reading:
Silberschatz
chapter 8

Additional Reading:
Stallings
chapter 6

2EEL 602

Outline
System Model
Deadlock Characterization
Methods for Handling Deadlocks
Deadlock Prevention
Deadlock Avoidance

Safe State
Resource Allocation Graph Algorithm
Bankers Algorithm

Deadlock Detection
Recovery from Deadlock
Combined Approach to Deadlock Handling

3EEL 602

Real-life Example

Bridge traffic can only be in one direction
Each entrance of a bridge can be viewed as a resource
If a deadlock occurs, it can be resolved if one car backs
up (preempt resources and rollback)
Several cars may have to be backed up if a deadlock
occurs
Starvation is possible

4EEL 602

The Deadlock Problem
A set of process → Deadlock state

When every process in the set is waiting for an event
that can be caused only by another process in set

Examples
Space is available for allocation of 200Kbytes
Following sequence of events occur

P1 P2
… …

Request 80 Kbytes; Request 70 Kbytes;
… …

Request 60 Kbytes; Request 80 Kbytes;

5EEL 602

Deadlock Example
Deadlock occurs if receive is blocking

Design Errors → Deadlocks
May be quite subtle and difficult to detect
Require rare combination of events → Deadlock
Considerable time, may be years to detect the problem

P1

. . .

. . .
Receive(P2);

Send(P2, M1);

P2

. . .

. . .
Receive(P1);

Send(P1, M2);

6EEL 602

Deadlock Example
/*thread_one runs in this function*/

void *do_work_one(void *param)
{

pthread_mutex_lock(&first_mutex);
pthread_mutex_lock(&second_mutex);
/**
* Do some work
*/

pthread_mutex_unlock(&second_mutex);
pthread_mutex_unlock(&first_mutex);

pthread_exit(0);
}

/*thread_two runs in this function*/
void *do_work_two(void *param)
{

pthread_mutex_lock(&second_mutex);
pthread_mutex_lock(&first_mutex);
/**
* Do some work
*/

pthread_mutex_unlock(&first_mutex);
pthread_mutex_unlock(&second_mutex);

pthread_exit(0);
}

7EEL 602

Deadlock Characterization

Mutual exclusion
Only one process at a time can use a resource

Hold and wait
A process holding at least one resource and waiting to acquire
additional resources held by other processes

No preemption
A resource can be released only voluntarily by the process
holding it, after that process has completed its task

Circular wait
Set {P0, P1, …, P0} of waiting processes
P0 → P1, P1 → P2, …, Pn–1 → Pn, and Pn → P0

Deadlock can arise if four conditions hold simultaneously

8EEL 602

Resource-Allocation Graph

V is partitioned into two types

P = {P1, P2, …, Pn}, set of all the processes
R = {R1, R2, …, Rm}, set of all the resource types

Request edge – directed edge Pi → Rj

Assignment edge – directed edge Rj → Pi

V → Set of vertices; E → Set of edges

9EEL 602

Resource-Allocation Graph
Process

Resource type with 4 instances

Pi requests an instance of Rj

Pi is holding an instance of Rj

Pi

Rj

Pi

Rj

10EEL 602

Resource Allocation Graph

No Cycles → No Deadlock
If there is a cycle

Resource type has exactly one instance → Deadlock
Resource type has several instances → may or may
not be a Deadlock

11EEL 602

Resource Allocation Graph

Deadlock?

12EEL 602

Resource Allocation Graph

Deadlock?

13EEL 602

Methods for Handling Deadlocks
Deadlock Prevention

Ensure that at least one of four necessary conditions cannot hold

Deadlock Avoidance
Do not allow a resource request → Potential to lead to a deadlock
Requires advance info of all requests

Deadlock Detection
Always allow resource requests
Periodically check for deadlocks
If a deadlock exists → Recover from it

Ignore
Makes sense if the likelihood is very low, say once per year
Cheaper than prevention, avoidance or detection
Used by most common OS

14EEL 602

Prevention Vs Avoidance
Deadlock Prevention (Traffic Light)
- preventing deadlocks by constraining how requests for
the resources can be made in system and how they are
handled; designing the system.
- The goal is to ensure that at least one of the necessary
conditions cannot hold.

Deadlock Avoidance (Traffic Policeman)
- The system dynamically considers every request at
every point and decides whether it is safe to grant the
request.
- The OS requires advance additional information
concerning which resources a process will request and
use during its lifetime.

15EEL 602

Deadlock Prevention

Mutual Exclusion
Allow everybody to use the resources immediately they require!
Unrealistic in general, printer output interleaved with others?

Hold and Wait
Must guarantee that whenever a process requests a resource, it
does not hold any other resources
Require process to request and be allocated all its resources
before it begins execution, or allow process to request resources
only when the process has none
Low resource utilization, Starvation possible

Restrain the ways request can be made;

16EEL 602

Deadlock Prevention
No Preemption

If a process that is holding some resources requests another
resource that cannot be immediately allocated to it, then all
resources currently being held are released
Not realistic for many types of resources, such as printers

Circular Wait
Impose a total ordering of all resource types
Each process requests resources in an increasing order of
enumeration

Possible side effects of preventing deadlocks by the method?

17EEL 602

Deadlock Avoidance
Requires a priori information - maximum requirements
of each process

Do not start a process if its maximum requirement can
lead to a deadlock

Two algorithms
Only one instance of each resource type – Resource
Allocation Graph Algorithm
If multiple instances of each resource type –
Bankers Algorithm

18EEL 602

Safe State
State is safe if a system can allocate resources to each process (up
to Max) in some order and still avoid deadlock

System is in safe state if there exists a safe sequence
<P1, P2, …, Pn> → The resources that Pi can request be satisfied by
currently available resources + resources held by all the Pj (j<i)

If Pi resource needs are not immediately available, then Pi can wait until
all Pj have finished
When Pj is finished, Pi can obtain needed resources, execute, return
allocated resources, and terminate
When Pi terminates, Pi+1 can obtain its needed resources, and so on

Example: 12 tape drives

Maximum Needs Current Needs
P0 10 5
P1 5 2
P2 9 2

Safe? Sequence?

19EEL 602

Basic Facts
Safe state ⇒ no deadlocks

Unsafe state ⇒ possibility of deadlock

Avoidance ⇒ ensure that a system will never enter an
unsafe state

20EEL 602

Resource-Allocation Graph Algorithm
RAS with only one instance of each resource type
Claim edge Pi → Rj indicates that process Pj may
request resource Rj in future

Representation → dashed line

Claim edge converts to request edge when a process
requests a resource

When a resource is released by a process, assignment
edge reconverts to a claim edge

Resources must be claimed a priori in the system
Request to assignment edge → No cycle in RAG, Safe state
Cycle detection → Unsafe state, Pi waits for its request

21EEL 602

Resource-Allocation Graph Algorithm

Safe? P2 Must Wait! A cycle found.

Complexity – Finding a cycle in the graph per resource request

22EEL 602

Banker’s Algorithm
Multiple instances, Less efficient, Banking system

Each process must declare priori maximum number of
instances per resource type it may need

When a process requests a resource it may have to wait

When a process gets all its resources it must return
them in a finite amount of time

23EEL 602

Available: Vector of length m. If Available [j] = k, there
are k instances of resource type Rj available
Max: n x m matrix. If Max [i,j] = k, then process Pi may
request at most k instances of resource type Rj

Allocation: n x m matrix. If Allocation[i,j] = k then Pi is
currently allocated k instances of Rj

Need: n x m matrix. If Need[i,j] = k, then Pi may need k
more instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types

Banker’s Algorithm – Data Structures

Simulate evolution of system over time under the assumptions of worst case resource demands

24EEL 602

1. Let Work and Finish be vectors of length m and n,
respectively. Initialize:

Work = Available
Finish [i] = false for i - 1,3, …, n.

2. Find process i such that both:
(a) Finish [i] = false
(b) Needi ≤ Work
If no such i exists, go to step 4.

3. Work = Work + Allocationi
Finish [i] = true
go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe
state; otherwise process whose index is false may
potentially be in deadlock in future

Banker’s Algorithm – Safety Procedure

25EEL 602

Requesti → request vector (Pi); e.g. Requesti [j] = k

1. If Requesti ≤ Needi go to step 2; Else raise error
condition → process exceeds its maximum claim

2. If Requesti ≤ Available, go to step 3; Else Pi must
wait, since resources are not available

3. Tentatively allocate requested resources to Pi by
modifying the state as follows:

Available = Available - Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;

Check the safety of state -
• If safe ⇒ the resources are allocated to Pi
• If unsafe ⇒ Pi must wait, and the tentative resource allocation

is cancelled

Banker’s Algorithm – Resource Request

26EEL 602

Banker’s Algorithm

27EEL 602

Banker’s Algorithm

test for safety

28EEL 602

Deadlock Avoidance
Maximum resource requirement must be stated
in advance

Processes under consideration must be
independent; no synchronization requirements

There must be a fixed number of resources to
allocate

No process may exit while holding resources

29EEL 602

Example - Banker’s Algorithm
5 processes P0 through P4; 3 resource types A (10
instances), B (5 instances), and C (7 instances)
Snapshot at time T0:

Allocation Max Available
A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

Is the system in safe state?

30EEL 602

Example - Banker’s Algorithm
5 processes P0 through P4; 3 resource types A (10
instances), B (5 instances), and C (7 instances)
Snapshot at time T0:

Allocation Max Available
A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

Safe sequence → <P1, P3, P4, P2, P0>

Need
A B C

P0 7 4 3
P1 1 2 2
P2 6 0 0
P3 0 1 1
P4 4 3 1

31EEL 602

Check that Request ≤ Available (that is, (1,0,2) ≤
(3,3,2) ⇒ true

Allocation Need Available
A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0
P2 3 0 1 6 0 0
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1

<P1, P3, P4, P0, P2> is also a safe sequence
Further, can request for (3,3,0) by P4 be granted?
What if P0 requests (0,2,0)?

Example - Banker’s Algorithm

32EEL 602

Deadlock Detection
Third Option → Allow system to enter deadlock state

Then system must provide
An algorithm to periodically determine whether deadlock has
occurred in the system
An algorithm to recover from the deadlock

Two algorithms
Single instance of each resource type
Multiple instances of resource type

33EEL 602

Single Instance per Resource Type
Maintain a wait-for graph → Variant of RAG

Nodes are processes
Pi → Pj if Pi is waiting for Pj

Same as RAG but optimizes it for the search by collapsing edges

Periodically invoke an algorithm that searches for a cycle in the
graph

Resource allocation graph Corresponding wait-for graph

34EEL 602

Several Instances per Resource Type
Similar to the Banker’s algorithm safety test with the
following difference in semantics;

Replacing Needi → Requesti; where Requesti is the actual vector
of resources, process i is currently waiting to acquire

May be slightly optimized by initializing Finish [i] to true for every
process i where Allocationi is zero

Optimistic and only care if there is a deadlock now. If process will
need more resources in future → deadlock, discovered in future

Processes in the end remaining with false entry are the ones
involved in deadlock at this time

35EEL 602

1. Let Work and Finish be vectors of length m and n,
respectively. Initialize:

Work = Available
If Allocationi ≠ 0 for i = 1,2, …, n then
Finish [i] = false, else Finish [i] = true

2. Find process i such that both:
(a) Finish [i] = false
(b) Requesti ≤ Work
If no such i exists, go to step 4.

3. Work = Work + Allocationi
Finish [i] = true
go to step 2

4. If Finish [i] == false, for some 1 ≤ i ≤ n, → deadlocked;
If Finish [i] == false then process Pi is deadlocked

Detection Algorithm

36EEL 602

Example – Detection Algorithm
5 Processes P0 through P4; 3 resource types
A (7 instances), B (2 instances), and C (6 instances)
Snapshot at time T0:

Allocation Request Available
A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

Is the system in deadlock state?

37EEL 602

Example – Detection Algorithm
5 Processes P0 through P4; 3 resource types
A (7 instances), B (2 instances), and C (6 instances)
Suppose P2 requests an additional instance of type C

Allocation Request Available
A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 1
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

Is the system in deadlock state?

38EEL 602

Detection Algorithm Usage
When, and how often, to invoke?

In the extreme – every time a request for resource
allocation cannot be granted
Every resource request → invoke deadlock detection

Considerable overhead in computation time, cost/complexity

Reasonable alternative is to invoke the algorithm
periodically

What period? How much can you wait once deadlock is
detected? → e.g. once per hour or CPU utilization < 40%
How many resources we can commit for the detection?

39EEL 602

Deadlock Recovery: Process Termination
Abort all deadlocked processes → Fast but expensive
Abort one process at a time until the deadlock cycle is
eliminated

Considerable overhead
If in the midst of job, e.g. file updating or printing

How to select the order of process to abort?
Priority of the process
How long process has computed, and how much
longer to completion
Resources the process has used
Resources process needs to complete
How many processes will need to be terminated
Is process interactive or batch?

40EEL 602

Selecting a victim – minimize cost

If we preempt resources, what to do with
process? Rollback → return to some safe state,
restart process for that state

Starvation → Same process may always be
picked as victim, include # of rollbacks in cost
factor

Deadlock Recovery: Resource Preemption

41EEL 602

Strengths and Weaknesses of the Strategies

Summary of Detection, Prevention and Avoidance approaches

42EEL 602

Combined Approach to Deadlock Handling
Combine the three basic approaches

Prevention
Avoidance
Detection

allowing the use of the optimal approach for
each of resources in the system

Partition resources into hierarchically ordered
classes

Use most appropriate technique for handling
deadlocks within each class

