File System Implementation

Kishan Swaroop 2003EE10329

OVERVIEW

- ☐ File-System Structure
- ☐ File-System Implementation
- Allocation Methods
 - Contiguous allocation
 - Linked allocation
 - Indexed allocation

File-System Structure

- ☐ File structure
 - Logical storage unit
 - Collection of related information
- ☐ File system resides on secondary storage (disks)
- □ File system organized into layers
- □ File control block storage structure consisting of information about a file

A Typical File Control Block

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

Layered File System

Basic File System

Issue generic commands to read and write PB

☐ PB is identified by its numeric disk address

Layered File System

File-organization Module

- knows about files and their logical and PB
- Translate LBA to PB addresses for the basic file system to transfer.
- Includes the free-space manager
 - which tracks unallocated blocks

Layered File System

Logical File System (LFS)

- LFS manage
 - metadata information.
 - directory structure to provide the file organization module
 - file structure via file-control blocks (FCB).
- Responsible for protection and security

In-Memory File System Structures

- □ in-memory mount table Contains
 - information about each mounted volume.
- □ in-memory directory-structure cache holds
 - directory information of recently accessed directories.
- system-wide open-file table contains
 - copy of the FCB of each open file, as well as other information.
- per-process open-file table contains
 - pointer to the appropriate entry in the system-wide open-file table

In-Memory File System Structures

Virtual File Systems (VFS)

- VFS provide an object-oriented way of implementing file systems.
- VFS allows the same system call interface to be used for different types of FS.
- The API is to the VFS interface, rather than any specific type of FS

Schematic View of Virtual File System

Allocation Methods

- An allocation method refers to how disk blocks are allocated for files:
 - Contiguous allocation
 - Linked allocation
 - Indexed allocation

Contiguous Allocation

- □ Each file occupies a set of contiguous blocks on the disk
- Its Simple
 - starting location (block #)
 - length (number of blocks) are required
- Random access

Contiguous Allocation of Disk Space

directory		
file	start	length
count	0	2
tr	14	3
mail	19	6
list	28	4
f	6	2

directory

Contiguous Allocation (Cont.)

PROBLEMS?

- ☐ Finding space for a new file.
- Wasteful of space
- How much space is needed for a file
- ☐ Files cannot grow

Extent-Based Systems

- Many newer file systems use a modified contiguous allocation scheme
- Extent-based file systems allocate disk blocks in extents
- An extent is a contiguous block of disks
 - Extents are allocated for file allocation
 - A file consists of one or more extents.

Linked Allocation

- ☐ Each file is a linked list of disk blocks
- Blocks may be scattered any where on the disk.

Linked Allocation (Cont.)

- □ Simple need only starting address
- □ Free-space management system no waste of space
- No random access
- Mapping
- ☐ File-allocation table (FAT) -
 - disk-space allocation used by MS-DOS and OS/2.

Linked Allocation (Cont.)

Linked Allocation (Cont.)

PROBLEMS?

- ☐ It can be used effectively only for sequential-access files
- Space required for the pointer
- Reliability

File-Allocation Table

Indexed Allocation

- ☐ Brings all pointers together into the *index block*.
- Logical view.

Example of Indexed Allocation

- Need index table
- Random access
- Dynamic access without external fragmentation

Linked scheme

- Index block is normally one disk block.
 - it can be read and written directly by itself
- □ To allow for large files
- we can link together several index blocks (no limit on size).

Multilevel index

- □ Use a first-level index block
 - a set of second-level index blocks,
 - → file blocks
- To access a block
 - OS uses the first-level index
 - to find a second-level index block
 - then use block to find the desired data block

Combined Scheme

- used in the UFS
- Keep 15 pointers of the index block in the file's mode.
 - First 12 pointers point to direct blocks contain addresses of blocks that contain data of the file.
 - Next 3 pointers point to indirect blocks.
 -first points to a single indirect block,
 which is an index block containing no data
 but the addresses of blocks that do contain data.

-second points to a double indirect block
which contains the address of a block that
contains the addresses of blocks that
contain pointers to the actual data blocks.
-last pointer contains the address of a triple indirect block.

Combined Scheme: UNIX(4K bytes per block)

Chapter 11
Operation System Principles
A.Silberschatz
7th edition

Thank YOU