
1EEL 358

Virtual Memory

Reading:
Silberschatz
chapter 10

Reading:
Stallings
chapter 8

2EEL 358

Outline
Introduction
Advantages
Thrashing
Principal of Locality
VM based on Paging/Segmentation
Combined Paging and Segmentation
Working Set, Paging Behavior
VM Policies
Load Control
OS Examples

3EEL 358

Introduction
All memory references within Process

Logical addresses
Dynamically translated into physical addresses at run time
Process may be swapped in ↔ out of main memory at any time

A process may be broken up into pieces
Page or Segments
These pieces need not be contiguously located in main memory

Thus it is not necessary → All the pages or segments of
process be in memory during execution

If the piece that holds next instruction to be fetched and next
data location to be accessed are in main memory
Proceed for time being

How can this be achieved? Lets see in general terms ->

4EEL 358

Sample Program Execution

Portion of process in main memory at any time →
Resident set, smooth execution

Process → Logical address that is not in main memory,
generates an interrupt indicating memory access fault

Blocking state → OS puts the interrupted process in
blocking state and takes control

Piece of process that contains the logical address that
caused access fault is brought into main memory

OS begins by bringing in one of few pieces, contains start of program

5EEL 358

Advantages
More processes can be maintained in main memory → Efficient
utilization of processor!

A process may be larger than all of main memory → Restrictions
in programming are lifted, huge size associated with disk storage

With virtual memory based on paging or segmentation, OS and
hardware determines the maximum memory available

Memory Types

Real Memory → Main Memory

Virtual Memory → Memory which is allocated on disk, allows
effective multiprogramming and relieves the user of unnecessarily
tight constraints of main memory

6EEL 358

Thrashing
Swapping → OS brings one pieces of process in, it must
through another out

If it throws a piece out just it is about to be used? Gets
back again almost immediately!

Thrashing → Above condition when processor spends
most of its time in swapping pieces rather than executing
instructions

Variety of complex but effective algorithms
Based on recent history, the OS tries to guess ->
Which pieces are least likely to be used in near future

7EEL 358

Principle of Locality

Locality
Set of pages that are actively used together
As process executes, it moves from locality to locality
Program → several different localities, may overlap, example

Localities are defined by program structure and its data structure
All programs will exhibit this basic memory reference structure
If data accesses were random rather than patterned, caching → Useless

Thus it is possible to make intelligent guesses about which pieces
will be needed over a short period of time, which avoids thrashing

This suggests that a virtual scheme may work efficiently

90/10 rule comes from empirical observation
A program spends 90% of its time in 10% of its code

8EEL 358

Locality in Memory Reference Pattern
During lifetime of a process, references are confined to a subset of pages

9EEL 358

Thrashing
Process → not have “enough” pages, page-fault
rate is very high. This leads to:

low CPU utilization
OS thinks that it needs to increase the degree of
multiprogramming
another process added to the system

Thrashing
a process is busy swapping pages in and out
Σ size of locality > total memory size

10EEL 358

Thrashing

11EEL 358

Effective Access Time (EAT)
Page Fault Rate 0 ≤ p ≤ 1.0

if p = 0 no page faults
if p = 1, every reference is a fault

Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p (page fault overhead
+ [swap page out]
+ swap page in
+ restart overhead)

12EEL 358

Effective Access Time - Example
For most computer systems, the memory access time
(ma) → 10 ~ 200 nanoseconds

If no page fault occurs, reads page from disk and then
access desired word

Example
If average page-fault service time of 8 milliseconds and
memory access time of 200 nanoseconds, EAT?

EAT = (1 - p) × 200 + p × 8,000,000 milliseconds
= 200 + 7,999,800 × p

EAT is directly proportional to fault rate, which should be kept low in paging

13EEL 358

Support
Support needed for the Virtual Memory

Hardware → Support paging and segmentation

OS → Manage the movement of pages and/or
segments between secondary and main memory

14EEL 358

Virtual Memory based on Paging
In most systems, there is one page table per process

Each page table contains the page number of the
corresponding page in the main memory

Only some pages of process are in main memory
A bit is needed in PTE → page present (P) in main memory or not

Another control bit in PTE is modify (M) bit
Indicates if this page has been altered since the page was last
loaded into memory
Why needed?

15EEL 358

Other Control Bits
Used Bit

- Indicates whether the page has been accessed recently

- Used by the page replacement algorithm

Access permissions bit
- Indicates whether the page is read-only or read-write

Unix copy-on-write bit
- Set whether more than one process shares a page
- If one of the processes writes into the page, a separate copy must
first be made for all other process sharing the page

- Useful for optimizing fork()

16EEL 358

Address Translation in Paging System

17EEL 358

Page Tables

Main memory for page tables could be unacceptably high

Therefore most virtual memory schemes also store page
tables in virtual memory (instead of real memory)

When a process is running a part of its PTE must be in
main memory, including PTE of currently executing page

Some processors make use of two-level schemes to
organize large page tables, e.g. Pentium processor

18EEL 358

Example
Two-level scheme for 32 bit address

32 bit addresses, If 4K (212) page size, 232/212 = 220

entries, If each PTE is 4 bytes, 4 MB (210x 210x4) is
required for page table

The table with 210 pages → VM, mapped by a root page
table with 210 PTEs → 4 KB (4x210) of main memory

19EEL 358

Translation Lookaside Buffer
TLB → Special high-speed cache for PTEs

20EEL 358

Translation Lookaside Buffer
Operation of Paging and TLB

21EEL 358

Cache and TLB Operation

22EEL 358

Combined Paging and Segmentation
Advantages of Paging

Any page → Placed in any frame in physical memory
Fast to allocate and free

Alloc → No searching for suitable free space
Free → Doesn’t have to coallesce with adjacent free space
Just use bitmap to show free/allocated page frames

Simple to swap-out portions of memory to disk
Page size matches disk block size
Can run process when some pages are on disk
Add present bit to PTE

Enables sharing of portions of address space
To share a page, have PTE point to same frame

23EEL 358

Combined Paging and Segmentation
Disadvantages of Paging

Internal fragmentation
Wasted memory grows with larger pages

Additional memory reference to look up in page table →
Very inefficient
Storage for page tables may be substantial
Requires PTE for all pages in address space

Entry needed even if page not allocated
Problematic with dynamic stack and heap within
address space

24EEL 358

Combined Paging and Segmentation

Goal → More efficient support for address spaces
Divide address space into segments (code, heap, stack)

Segments can be variable length

Divide each segment into fixed-sized pages
Solves the problems of external fragmentation and
lengthy search times by paging the segments

MULTlCS approach

25EEL 358

Combined Segmentation and Paging

26EEL 358

Combined Segmentation and Paging

27EEL 358

Protection and Sharing

28EEL 358

Working Sets

Appox of program locality → Working Set WS(t,∆)
Set of pages in last ∆ memory references at time t

Accuracy of working set → ∆
if ∆ too small will not encompass entire locality
if ∆ too large will encompass several localities
if ∆ = ∞ ⇒ will encompass entire program

D = Σ WSSi → total demand frames
if D > m ⇒ Thrashing, if D > m, then suspend one of the proces

29EEL 358

Working Sets
Denning’s working set principle

A program should run if its working set is in memory
A page may not be victimized if it is a member of the
current working set of any runable (not blocked) program

Keeping track of working set - Approx
Example ∆ = 10,000

Timer interrupts after every 5000 time units
Keep in memory 2 bits for each page
Whenever a timer interrupts copy and sets the values of all
reference bits to 0
If one of the bits in memory = 1 ⇒ page in working set

Accurate?

30EEL 358

Working Sets
Software scheme

use referenced bit
periodically shift the reference bit
If OR(bits) = 1, the page is in the W(t, ∆)

Scheduling
Schedule checker process together with user
processes. As a result, checker will periodically

kick out pages not in W(t, ∆) by using the software scheme
above
decrease W(t, ∆) by the number of pages kicked out

Page fault handler will increase W(t, ∆) by one after
bringing a page into the memory

31EEL 358

Page-Fault Frequency
Details of working set → High overhead
Page-Fault Frequency (PFF) → Monitor Threshing

PFF → 1/T, T→ Average inter-page fault time

PFF > TU → Increase # pages allocated to the process by 1
PFF < TL → Decrease # pages allocated to the process by 1
TL < PFF < TU → Replace a page in memory by some other
reasonable policy; e.g., LRU

32EEL 358

Page Size
Smaller page size

Less amount of internal fragmentation
Greater is the number of pages required per process
More pages per process → Larger page tables, double page fault

Larger page size
Rotational devices → More efficient block transfer of data

33EEL 358

Paging Behavior

34EEL 358

Policies for VM

Whether or not use VM techniques?

Use Paging or Segmentation or both?

Algorithms for memory management techniques?
Key Issue – Performance
Minimize the page faults rate → Considerable software overhead
Which page to replace, I/O
No policy works the best!
Performance of policies → main memory size, relative speed, size and
number of processes competing for resources, execution behavior
No final answers, smaller OS → policies that are good for wide range of
conditions, larger systems → monitoring and control tools that allow
tuning at site

The hardware only provides some basic capabilities for virtual memory. The
OS must make decisions on the various aspects of memory management.

35EEL 358

Policies for VM
Allocation: How much real memory should be allocated
to each (ready) program?

Fetching: When a page should be bought into main
memory?

Placement: Where in real memory the fetched page
should be loaded?

Replacement: Which page in memory should be
replaced when a new page must be bought in?

36EEL 358

Allocation Policy

If fewer frames are allocated for a program
Page fault rate ↑
More programs can reside in memory, decreasing the need for swapping

Allocating additional frames to a program beyond a certain number
Results in little or only moderate increase in performance

The number of allocated pages (resident set size) can be fixed or variable
during the execution of program

Conflicting Requirements

37EEL 358

Fetch Policy

Demand Paging
Bring into main memory only when a reference is made
Principle of locality → most future references will be pages that
have recently been bought in
Most common approach used in paging systems

Prepaging
Pages other than the one demanded by a page fault are bought in
Exploits the seek time and rotational latency of disks, but its utility
has not been established

When pages should be bought into main memory?

38EEL 358

Cleaning Policy

Demand Cleaning → CPU utilization
Pre Cleaning → Modified again
Better approach → Page buffering

Replaced pages are placed in two lists
Modified and Unmodified

Modified list → Periodically written out in batches
Unmodified list → Pages are either reclaimed if referenced again
or lost when its frame is assigned to another page

When a modified page should be written out to secondary memory?

39EEL 358

Placement Policy

In pure segmentation system, policies such as best-fit,
first-fit, etc., discussed earlier are possible alternatives

In systems with pure paging or paging combined with
segmentation, placement is straightforward using
address translation and memory access hardware

Where in real memory a process piece should reside?

This policy usually follows the rules about paging/segmentation discussed earlier

40EEL 358

Replacement Policy

Frame Locking → If a frame is locked it may not be replaced, frame locking bit
Examples: Kernel of OS, I/O buffers, etc.

OPT
The page for which the time to NEXT reference is longest is replaced
Impossible to implement → OS cannot have perfect knowledge of future events
Used as standard to judge others

FIFO
Pages are treated a circular list, longest resident (oldest) page is replaced
Simplicity, Replaces the page that has been longest, Reasoning?

LRU
Page in the memory that has NOT been referenced for longest time is replaced
Nearly as OPT, Problem → Implementation

Selection of page in main memory to be replaced when a new page must be
bought in. Most policies try to predict future behavior based on past behavior.

41EEL 358

Example - Page Replacement Algorithms

42EEL 358

Clock Policy
LRU → Nearly as well as optimal policy

Difficult to implement → Significant overhead

FIFO → Simple to implement but performs poorly

No of other algorithms → Appox LRU performance with little overhead
Variants of scheme referred to as Clock Policy

43EEL 358

Clock Policy

When a page is first loaded into frame in memory → use bit is set to 1

When a page is subsequently referenced → use bit is set to 1

When a frame is needed, the pointer is advanced to first frame with a
zero use bit

As the pointer advances, it clears the use bit (1 is changed to 0)

This algorithm is also known as 2nd chance algorithm

Requires the association of an additional bit with each frame → use bit

All the frames, along with use bit are kept in a circular queue

44EEL 358

Clock Policy

45EEL 358

Example - Page Replacement Algorithms

46EEL 358

Comparison of Placement Algorithms

47EEL 358

Load Control

If too few process are resident at any time, many occasions when all
process are blocked and much time will be spent in swapping.

Too many process will result in Thrashing.

Determines the number of process that will be resident in the main memory,
which is referred to as multiprogramming level.

48EEL 358

Load Control

Lowest priority process
Faulting process
Newest process
Process with smallest resident set
Process with largest resident set

The only way to eliminate thrashing is to reduce the multiprogramming level by
suspending one or more process(es). The Victim process(es) can be:

49EEL 358

Operating System Examples
Windows XP

Solaris

50EEL 358

Windows XP
Demand paging with clustering

Clustering → brings in pages surrounding the faulting page
Processes are assigned working set minimum and
working set maximum (50-345)
Amount of free memory in the system ↓

Threshold → automatic working set trimming
How?

Single Processor → variation of clock algorithm
Multiprocessor → variation of FIFO algorithm

51EEL 358

Solaris
Page fault → Kernel assigns a page to faulting thread

Keeps sufficient amount of memory

Parameters
Lotsfree → Threshold parameter, (amount of free memory) to
begin paging
Desfree → Threshold parameter to increasing paging
Minfree → Threshold parameter to being swapping

Paging is performed by pageout process
Pageout → scans pages using modified clock algorithm
Scanrate is the rate at which pages are scanned
Ranges from slowscan ↔ fastscan

Pageout is called more frequently depending upon the
amount of free memory available

52EEL 358

Solaris 2 Page Scanner

53EEL 358

Other Issues – TLB Reach
TLB Reach - The amount of memory accessible from
the TLB

TLB Reach = (TLB Size) × (Page Size)

Ideally, the working set of each process → TLB;
Otherwise there is a high degree of page faults
Increase the Page Size. This may lead to an increase in
fragmentation as not all applications require a large
page size
Provide Multiple Page Sizes. This allows applications
that require larger page sizes the opportunity to use
them without an increase in fragmentation.

54EEL 358

Other Issues – Program Structure
Program structure

Int[128,128] data;
Each row is stored in one page
Program 1

for (j = 0; j <128; j++)
for (i = 0; i < 128; i++)

data[i,j] = 0;

128 x 128 = 16,384 page faults

Program 2
for (i = 0; i < 128; i++)

for (j = 0; j < 128; j++)
data[i,j] = 0;

128 page faults

