
EEL 358 1

Computer System Structure

Reading:
Silberschatz
chapter 3

Additional Reading:
Stallings
chapter 2

EEL 358 2

Outline
OS Services
User Interfaces
System Call
OS Design
OS Implementation
System Structure

MSDOS
UNIX
OS/2
Win NT

Virtual Machines
System Installation

EEL 358 3

OS from several vantage points
Services that system provides

Available interfaces to users & programmers

Components and interconnections

Aspects of OS

EEL 358 4

OS Services
Program execution – System capability to load a
program into memory and to run it
I/O operations – User programs cannot execute I/O
operations directly, the OS must provide some means
to perform I/O
File-system manipulation – Program capability to read,
write, create, and delete files
Communications – Exchange of information between
processes running on same or different computers,
shared memory or message passing
Error detection – Ensure correct computing by detecting
errors in the CPU and memory hardware, in I/O
devices, or in user programs

EEL 358 5

Additional OS Services
Additional functions to ensure efficient system operations

• Resource allocation – allocating resources to
multiple users/jobs running at the same time

• Accounting – keep track of and record which users
use how much and what kinds of resources

• Protection – ensuring that all access to system
resources is controlled

EEL 358 6

Two approaches
Command-line interface (command interpreter)
Graphical user interface (GUI)

Command Interpreter
Main function – Get and execute the next command

MSDOS and UNIX shell
Multiple command interpreter in UNIX and Linux

Bourne shell, C shell, Bourne-Again shell, Korn shell, etc.
Two approaches to implement the commend execution

CI itself contains the code to interpret the command
Implement most commands through system program – UNIX
e.g. rm file.txt, new commands by adding new files

User OS Interface

EEL 358 7

GUI
Mouse-based window and menu system
User friendly

UNIX systems – dominated by CLI traditionally
Various GUI interfaces in commercial version of UNIX

Common Desktop Environment (CDE), X-Windows, etc.
Significant GUI developments from open source projects

K Desktop environment (KDE), GNOME desktop
Many are available under open-source license
Linux and various UNIX systems

Command-line or GUI ?
Powerful shell interface (many UNIX users)
Windows user friendly GUI (many window users)

User OS Interface

EEL 358 8

System Calls

Key Points
Difference between procedure call and system call
Generally available as routines written in C and C++
Some low-level tasks may need to be written using assembly language
How system calls are used?

Example → read data from file and write to another

Enter OS and perform a privileged operation
Interface to the services made available by OS

EEL 358 9

System Call Implementation
Application Programming Interface (API)

API → Set of functions available to an application programmer
Most common APIs

Win32 API for Windows system
POSIX API for most versions of UNIX, Linux and Mac OS X
Java API for designing programs for JVM

Behind the scene? Actual system calls are invoked – portability
Most details of OS interface are hidden by API, managed by run-time
support library

EEL 358 10

Parameter Passing

EEL 358 11

System Call Steps
There are 11 steps in making the system call → read (fd, buffer, nbytes)

EEL 358 12

Process Control
fork(), exec(), wait(), abort()

File manipulation
chmod(), link(), stst(), creat()

Device manipulation
open(), close(), ioctl(), select()

Information maintenance
time(), act(), gettimeofday()

Communications
socket(), accept(), send(), recv()

System Call groups
System calls can be grouped into five major categories

EEL 358 13

Design Goals
Type of hardware and type of system
User Goals

Convenient, easy to learn/use, reliable, safe and fast
System Goals

Easy to design, implement/maintain, flexible, reliable, error-free and efficient
(vague requirements! has several interpretations)

Implementation
Traditionally written in assembly language

Now mostly written in high-level languages such as C or C++
Linux and Windows XP - mostly in C, small section of assembly code device
drivers

Advantages of implementing in HLL
Compact, fast and easier to understand/debug
Easier to port to some other hardware

Disadvantages of implementing in HLL
Reduced speed and increased storage requirements

OS design and Implementation

EEL 358 14

System Structure
Possible ways to structure an operating system

Simple, single-user
MSDOS, MacOS, Windows

Monolithic, multi-user
UNIX, Multics, OS/360

Hybrid
Win NT

Virtual Machine
IBM VM/370

Client/Server (microkernel)
Chorus/Mix

EEL 358 15

Structure of MSDOS
MSDOS – written to provide the most
functionality in the least space

Not divided into modules
Interfaces and levels of functionality are not well
separated (e.g. application programs access I/O)
Written for Intel 8088, No dual mode and no
hardware protection

EEL 358 16

Structure of MSDOS

MSDOS Layer Structure

EEL 358 17

Original UNIX OS → Limited structuring

Two separable parts

Systems programs

The kernel

Everything below system-call interface and above physical
hardware

Provides file system, CPU scheduling, memory management, and
other OS functions through system calls

Enormous amount of functionality into one level

UNIX system Structure

EEL 358 18

UNIX System Structure

UNIX System Structure

EEL 358 19

Layered Approach
The modularization of System → Layered Approach

The OS is divided into a number of layers (levels).
Bottom layer (layer 0) → Hardware
Highest (layer N) → User interface

Layers are selected such that each uses functions and
services of only lower-level layers

Problem – more overhead, less efficient

OS/2 descendent of MSDOS – Multitasking and dual
mode operations

Advantage – direct user access to low-level facilities is prohibited

Example – Windows NT
First release highly layered – low performance Vs Windows 95
Windows NT 4.0 – Moved layers from user space to kernel space

EEL 358 20

OS/2 Layer Structure

Layered Approach

EEL 358 21

Microkernel System Structure
Removing all nonessential components from
kernel, implementing as user-level programs
Moves as much from the kernel into user space

Resulting smaller kernel - Microkernel
Minimal process and memory management +
Communication facility using message passing

Benefits
Easier to extend a microkernel
Easier to port OS to new architectures
More reliable and secure

EEL 358 22

Windows NT Client-Server Structure

Hybrid Structure of Windows NT

EEL 358 23

Virtual Machines
A virtual machine is logical conclusion of the layered
approach

Hardware and OS kernel are treated as hardware
The OS creates illusion of multiple process, each executing on its
own processor with its own memory

The resources of physical computer are shared to create
the virtual machines

CPU scheduling can create the appearance that users have their
own processor
Virtual Memory techniques create illusion of processors own
memory
Spooling and a file system can provide virtual card readers and
virtual line printers
A normal user time-sharing terminal serves as the virtual machine
operator’s console

EEL 358 24

Virtual Machines

Non-virtual Machine Virtual Machine

EEL 358 25

Complete protection of system resources - Each
virtual machine is isolated another (but isolation
prevents direct sharing of resources)
System development on virtual machine, instead
of on a physical machine, does not disrupt
normal system operation
The virtual machine concept is difficult to
implement - Efforts required to provide an exact
duplicate to the underlying machine

Virtual Machines

EEL 358 26

Java Virtual Machine
Compiled Java programs are platform-neutral
bytecodes executed by Java Virtual Machine
(JVM)
JVM consists of
- class loader
- class verifier
- runtime interpreter
Just-In-Time (JIT) compilers increase
performance

Just-In-Time Java VM (JIT) and a Hotspot Java VM?

EEL 358 27

System Generation (installation)
OS are designed to run on any of a class of
machines. Information required for configuring
for each specific computer

What CPU type is used? Options?
Number of CPUs?
How much memory is available?
What devices are available?
OS parameters (max # users, buffer size, max #
devices, etc.)
OS features

Networking
Other file systems
Servers

EEL 358 28

System Generation (installation)
How does the hardware know where the kernel
is? or how to load the kernel?

Booting –Starting a computer by loading the kernel
Bootstrap program - Code stored in ROM that is able
to locate the kernel, load it into memory, and start its
execution

