

Outline

- Introduction
- Types of Scheduling
- Scheduling Criteria
- FCFS Scheduling
- Shortest-Job-First Scheduling
- Priority Scheduling
- Round Robin Scheduling
- Multilevel Queue Scheduling
- Multiprocessor Scheduling
 - Load Balancing
 - Symmetric Multithreading

2

- Algorithm Evaluation
- Real Time Scheduling
- Scheduling Examples
 - General Windows XP, 2000
 - Linux

SJF Scheduling

> CPU assigned to process with smallest next CPU burst, Tie \rightarrow FCFS

Shortest-next-CPU-burst algorithm

- Estimating the processing time of each job, Predicting the Next!
- Long running jobs may starve, steady supply of short jobs to CPU

Priority Scheduling

- A priority number (integer) associated with each process
 - SJF A Priority scheduling
 - Equal Priority FCFS

ightarrow CPU \rightarrow Process with the highest priority, High \leftrightarrow Low

- Preemptive
- Nonpreemptive
- Defining Priorities
 - Internally, Measurable Quantities
 - Memory required, time limits, # open files, ratio of avg I/O to CPU burst, etc.

13

- Externally, Outside OS
 - Importance of Process, type/amount of funds, etc.
- Starvation
 - Low priority processes may never execute
- Solution?
- Aging
 EEL 358

Round Robin (RR)

- Each process gets a small unit of CPU time
 - Time Quantum (*time-slice*)
 - usually 10-100 milliseconds
 - Time elapsed → Preempted
 - If not completed \rightarrow end of the ready queue

RR reduces penalty for short jobs in FCFS

Critical Issue → Length of quantum, *q q* large → FIFO or FCFS
 q small → Context switch overhead

Multilevel Queue

- ightarrow Ready queue \rightarrow separate queues
 - foreground (interactive)
 - background (batch)
- \succ Each queue \rightarrow own scheduling algorithm, *e.g.*
 - foreground RR
 - background FCFS
- Scheduling must be done between the queues
 - Fixed priority scheduling; (i.e., serve all from foreground then from background), Starvation
 - □ Time slice each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR
 - □ 20% to background in FCFS

Multiple-Processor Scheduling

- ightarrow Multiple CPUs \rightarrow High scheduling complexity
- Homogeneous Processors
 - Asymmetric Multiprocessing
 - No data sharing, System data structures \rightarrow one processor
 - Symmetric Multiprocessing
 - Self Scheduling, Ready queue
- Processor Affinity
 - Soft Vs Hard affinity
- Load Balancing
 Push Migration
 - Pull Migration

Algorithm Evaluation

- Deterministic modeling
 - Takes a particular predetermined workload and defines the performance of each algorithm for that workload
- Queueing models
 - Queue of network servers
 - Little's formula, $I = \lambda \times W$
 - λ Avg arrival rate, w Avg waiting time, I Avg queue length

Simulation

- Model, clock
- Simulation \rightarrow modifies system with clock \uparrow
- Distribution driven simulation
- Only # instances of an event, order?

Real-Time Scheduling

- Hard real-time systems
 - Complete a critical task within a guaranteed time
 - Admit or Reject
 - Impossible with SS, VM
 - Resource Reservation

Soft real-time computing

- Critical processes receive priority over less fortunate ones
- General-purpose systems \rightarrow Multimedia, Graphics
- Priority Inversion
- Priority-inheritance protocol

Example: Windows XP, 2000

Scheduling

- Priority-based, preemptive scheduling
- Thread runs \rightarrow preempted by higher priority thread, terminates, Qu
- Does <u>not</u> guarantee execution of a real-time thread within time-limit

Thread Priorities

- 32 level priority scheme
- Real time class \rightarrow 16-32
- Variable class \rightarrow 1-15
- Memory Management → Thread at 0 priority
- Six Classes (Win32 API) 1 + 5
- Within each 6 classes 7 relative priorities
- Currently selected foreground process \rightarrow Scheduling Quantum \uparrow 3

Windows XP, 2000 Priorities

Priority Classes \rightarrow

Relative Priority \downarrow	real- time	high	above normal	normal	below normal	idle priority	
time-critical	31	15	15	15	15	15	
highest	26	15	12	10	8	6	
above normal	25	14	11	9	7	5	
normal	24	13	10	8	6	4 ←	Base Priority
below normal	23	12	9	7	5	3	
lowest	22	11	8	6	4	2	
idle	16	1	1	1	1	1	
L 358							27

Example: Linux

Scheduling

- Increased support for SMP, Scaling with # tasks
- Processor affinity, load balancing
- High priority tasks \rightarrow longer quanta, vice-versa
- Real time tasks static priorities
- Rest dynamic \rightarrow nice values \pm 5 (*interactivity*)

> Numeric Priorities

- 0-140 level priority scheme
- Real time \rightarrow 0-99
- Nice values \rightarrow 100-140