
EEL 358 1

Scheduling

Reading:
Silberschatz
chapter 6

Additional Reading:
Stallings
chapter 9



EEL 358 2

Outline
Introduction
Types of Scheduling
Scheduling Criteria
FCFS Scheduling
Shortest-Job-First Scheduling
Priority Scheduling
Round Robin Scheduling
Multilevel Queue Scheduling
Multiprocessor Scheduling

Load Balancing
Symmetric Multithreading

Algorithm Evaluation
Real Time Scheduling
Scheduling Examples

Windows XP, 2000
Linux



EEL 358 3

Basic Points
Process Scheduling, Thread Scheduling

Max CPU Utilization → Multiprogramming 

CPU Burst ↔ I/O Burst

CPU Burst Distribution

Introduction



EEL 358 4

Histogram – CPU Burst Duration



EEL 358 5

CPU Scheduling Decisions
Running → Waiting state

e.g. I/O Request, wait by Parent
Running → Ready state

e.g. Interrupt
Waiting → Ready state

e.g. Completion of I/O
Process Termination

Nonpreemptive Scheduling
Preemptive Scheduling

Associated Cost
Design of OS Kernel

Process → Kernel, wait for sys call or I/O completion before
context switch 

Scheduling Types



EEL 358 6

Scheduling Criteria
CPU Utilization – How busy is the CPU?

Throughput – Number of processes that are completed 
per unit time

Turnaround Time – How long to execute a process? 
Submission ↔ Completion

Waiting Time – Sum of periods spent in ready queue

Response Time – Process Request → First response



EEL 358 7

Optimization Criteria
Max CPU utilization

Max throughput

Min turnaround time 

Min waiting time 

Min response time

Conflicting goals! Requires careful balance
Average, Min/Max, Variance



EEL 358 8

Process Burst Time
P1 24
P2 3
P3 3

Arrivals in the order: P1 , P2 , P3  
The Gantt Chart for the schedule:

Waiting time → P1 = 0; P2 = 24; P3 = 27
Average waiting time → (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

FCFS Scheduling



EEL 358 9

FCFS Scheduling
Say, if the processes arrive in the order

P2 , P3 , P1

The Gantt chart for the schedule:

Waiting time → P1 = 6; P2 = 0; P3 = 3
Average waiting time → (6 + 0 + 3)/3 = 3, Previously 17 ↑
Convoy effect → Short process behind long process
Nonpreemptive → Problem for time sharing systems

P1P3P2

63 300



EEL 358 10

SJF Scheduling
CPU assigned to process with smallest next CPU 
burst, Tie → FCFS

Shortest-next-CPU-burst algorithm

Major difficulty
Estimating the processing time of each job, Predicting the 
Next!
Long running jobs may starve, steady supply of short jobs to 
CPU

SJF is optimal – minimum average waiting time



EEL 358 11

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

SJF (non-preemptive)

Average waiting time → (0 + 6 + 3 + 7)/4 = 4

SJF Scheduling

P1 P3 P2

73 160

P4

8 12



EEL 358 12

SJF Scheduling
Process Arrival Time Burst Time

P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

SJF (preemptive)

Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16



EEL 358 13

Priority Scheduling
A priority number (integer) associated with each process 

SJF – A Priority scheduling
Equal Priority - FCFS

CPU → Process with the highest priority, High ↔ Low
Preemptive
Nonpreemptive

Defining Priorities
Internally, Measurable Quantities

Memory required, time limits, # open files, ratio of avg I/O to CPU 
burst, etc.

Externally, Outside OS
Importance of Process, type/amount of funds, etc.

Starvation
Low priority processes may never execute

Solution?
Aging



EEL 358 14

Round Robin (RR)
Each process gets a small unit of CPU time

Time Quantum (time-slice)
usually 10-100 milliseconds

Time elapsed → Preempted
If not completed → end of the ready queue

RR reduces penalty for short jobs in FCFS

Critical Issue → Length of quantum, q
q large → FIFO or FCFS
q small → Context switch overhead



EEL 358 15

Process Burst Time
P1 53
P2 17
P3 68
P4 24

The Gantt chart is: 

Typically, higher average turnaround than SJF, but 
better response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

Round Robin (RR)



EEL 358 16

Round Robin (RR)



EEL 358 17

Round Robin (RR)



EEL 358 18

Multilevel Queue
Ready queue → separate queues

foreground (interactive)
background (batch)

Each queue → own scheduling algorithm, e.g.
foreground – RR
background – FCFS

Scheduling must be done between the queues
Fixed priority scheduling; (i.e., serve all from foreground then from 
background), Starvation
Time slice – each queue gets a certain amount of CPU time which it can 
schedule amongst its processes; i.e., 80% to foreground in RR
20% to background in FCFS 



EEL 358 19

Multilevel Queue Scheduling



EEL 358 20

Multilevel Feedback Queue
Separate processes → CPU burst characteristics
Process moves up ↔ down in queues

Too much time ↓
Aging ↑

Key points
number of queues
scheduling algorithms for each queue
method used to determine when to upgrade a process
method used to determine when to demote a process
method used to determine which queue a process will 
enter when that process needs service



EEL 358 21

Example of Multilevel Feedback Queue

CPU
Primary CPU
Scheduling



EEL 358 22

Multiple-Processor Scheduling
Multiple CPUs → High scheduling complexity
Homogeneous Processors

Asymmetric Multiprocessing
No data sharing, System data structures → one processor

Symmetric Multiprocessing
Self Scheduling, Ready queue

Processor Affinity
Soft Vs Hard affinity

Load Balancing
Push Migration
Pull Migration



EEL 358 23

Algorithm Evaluation
Deterministic modeling

Takes a particular predetermined workload and defines 
the performance of each algorithm  for that workload

Queueing models
Queue of network servers
Little’s formula, l = λ × w 

λ - Avg arrival rate, w - Avg waiting time, l - Avg queue length

Simulation
Model, clock
Simulation → modifies system  with clock ↑
Distribution driven simulation
Only # instances of an event, order?



EEL 358 24

Evaluation of CPU Schedulers by Simulation



EEL 358 25

Real-Time Scheduling
Hard real-time systems

Complete a critical task within a guaranteed time
Admit or Reject
Impossible with SS, VM
Resource Reservation

Soft real-time computing
Critical processes receive priority over less fortunate 
ones
General-purpose systems → Multimedia, Graphics
Priority Inversion
Priority-inheritance protocol



EEL 358 26

Scheduling
Priority-based, preemptive scheduling
Thread runs → preempted by higher priority thread, terminates, Qu
Does not guarantee execution of a real-time thread within time-limit

Thread Priorities
32 level priority scheme
Real time class → 16-32
Variable class → 1-15
Memory Management → Thread at 0 priority

Six Classes (Win32 API) – 1 + 5
Within each 6 classes – 7 relative priorities
Currently selected foreground process → Scheduling Quantum ↑ 3

Example: Windows XP, 2000 



EEL 358 27

Windows XP, 2000 Priorities

Relative Priority ↓

Priority Classes →

← Base Priority



EEL 358 28

Example: Linux
Scheduling

Increased support for SMP, Scaling with # tasks
Processor affinity, load balancing
High priority tasks → longer quanta, vice-versa
Real time tasks – static priorities
Rest dynamic → nice values ± 5 (interactivity)

Numeric Priorities
0-140 level priority scheme
Real time → 0-99
Nice values → 100-140


