
EEL 358 1

Processes

Reading:
Silberschatz
chapter 4

Additional Reading:
Stallings
chapter 3

EEL 358 2

Outline
Process Concept
Programming Types
Process States

Process Creation
Process Termination

Process State Diagram
Process Control Block
CPU Switching
Queuing diagram
Schedulers
Context Switch

EEL 358 3

Definitions
A process is a program in execution
An instance of a program running on a computer
The entity that can be assigned to and executed on a processor
A unit of activity characterized by the execution of a sequence of
instructions, a current state, and an associated set of system instructions

Key Points
A program by itself is NOT a process

A program is a passive entity (file stored on disc)
A process is a active entity with associated resources and PC specifying the
next instruction to execute

Two process may be associated with the same program
Considered to be separate sequence; e.g. copies of same program

Processes are separated; no process can directly affect the state of
another process

WWW browser, the shell program, compiled running program, etc.

Process Concept

EEL 358 4

Uniprogramming Vs multiprogramming
Uniprogramming - Only one process at a time
Multiprogramming
1. Multiple process at a time
2. Which process gets physical resources of machine?

Preemptive multitasking
Fairness – all process must get fair share of the CPU

Programming Types

EEL 358 5

Execution model
OS components → Organized into number of sequential processes

Each process → Block of code with a pointer showing next
instruction to be executed

How can several processes run on one CPU?
OS makes this happen by ensuring

Fair scheduling → each process gets fair chance to run
Protection → processes do not modify each others state

Processes

EEL 358 6

New
The process is being created, resource acquisition

Ready
The processes that are prepared to execute at next opportunity

Running
The process that is currently being executed by CPU

Waiting
The process is waiting for some event to occur

Terminated
The process has completed execution

Process State
As process executes it changes its state

EEL 358 7

Diagram of Process State

Above state names are arbitrary and OS dependent
The state they represents is found in all systems
Only ONE process can be running but several process may be
ready and waiting

EEL 358 8

Process Control Block (PCB)
Each process is represented in OS by PCB. The PCB contains
pieces of information associated with each process, including;

Process state
Program counter
CPU registers
CPU scheduling information
Memory-management information
Accounting information
I/O status information

EEL 358 9

Process Control Block (PCB)

EEL 358 10

CPU Switching

EEL 358 11

Process Scheduling Queues
Job queue

An instance set of all processes in the system
Ready queue

Set of all processes residing in main memory, ready
and waiting to execute

Device queues
Set of processes waiting for an I/O device

Process migration between the various queues

EEL 358 12

Ready And Various I/O Device Queues

EEL 358 13

Queuing Diagram

EEL 358 14

Multiple Blocked Queues

EEL 358 15

Schedulers
Long-term (job) scheduler

Selects a process from pool
Loads them into memory for execution
Controls the degree of multiprogramming

process in memory, stable – invoke during departure
Can afford to take more time in decision – long execution time
I/O bound process, CPU bound process, best combination

Short-term (CPU) scheduler
Selects from the processes that are ready to execute
Allocates CPU to one of them

Some time-sharing OS no long-term scheduler, simply put new
process in memory for short-term scheduler

e.g. UNIX, MS Windows

EEL 358 16

Medium Term Scheduling
Additional intermediate level of scheduling

temporarily remove processes from memory, active contention of CPU

EEL 358 17

Context (Process) Switch
CPU switches to another process

Save the current context/state of the old process
Load/restore the saved context/state for new process
The context is represented in PCB of process

Context-switch time is overhead; the system
does no useful work while switching
Time dependent on hardware support

Sun UltraSPARC provides multiple set of registers
Context switch here simply requires changing the pointer to
current register set (if processes > registers, save to memory)

OS should masks/disables all interrupts while
saving the process state, Implementation?

EEL 358 18

CPU Control
Most Computers has ONE CPU

When a process is running, scheduler/dispatcher cannot
run, OS May loose control

How does the OS regain the control of CPU?

EEL 358 19

Process Memory Components

EEL 358 20

Process Creation
Parent process → children processes → other
processes; tree of processes
Resource sharing

Parent and children share all resources
Children share subset of parent’s resources
Parent and child share no resources

Execution
Parent and children execute concurrently
Parent waits until children terminate

Process Identifier
Most OS (UNIX, Windows), process → unique pid
Unique Integer

EEL 358 21

Process Creation

Process Tree: Typical example from Solaris system

EEL 358 22

Process Creation
Address space

Child duplicate of parent
Child has a program loaded into it

UNIX examples
fork system call creates new process
exec system call used after a fork to replace the
process’ memory space with a new program

EEL 358 23

Process Creation

Forking a separate process in UNIX

#include <unistd.h> /* Symbolic Constants */
#include <sys/types.h> /* Primitive System Data Types */
#include <stdio.h> /* Input/Output */

Init main()
{
pid_t pid; /* variable to store the child's pid */

/* create a new process* /
pid = fork();

If (pid < 0) {/* error occurred, fork returns -1 on failure */

fprintf (stderr, “Fork Failed”);
exit(-1);

}

else if {pid == 0) {/* child process, fork() returns 0 to the child process */

execlp(“/bin/ls”, “ls”, NULL);
}
else {/* parent process */

/* parent will wait for the child to complete */
wait (NULL);
printf(“Child Complete”);
exit(0);
}

}

EEL 358 24

Process Creation

Creating separate process using Win32 API

EEL 358 25

Process Termination
Process terminates when it executes last
statement and asks the OS to delete it (exit)

Output data from child to parent (via wait)
Process’ resources are deallocated by operating
system

Parent may terminate execution of children
processes (abort)

Child has exceeded allocated resources
Task assigned to child is no longer required
Parent is exiting

Operating system does not allow child to continue if its
parent terminates
Cascading termination

