
1EEL 358

Memory Management

Reading:
Silberschatz
chapter 9

Reading:
Stallings
chapter 7



2EEL 358

Outline
Background
Issues in Memory Management
Logical Vs Physical address, MMU
Dynamic Loading
Memory Partitioning

Placement Algorithms 
Dynamic Partitioning

Buddy System
Paging
Memory Segmentation
Example – Intel Pentium



3EEL 358

Background
Main memory → fast, relatively high cost, volatile

Secondary memory → large capacity, slower, cheaper 
than main memory and is usually non volatile

The CPU fetches instructions/data of a program from 
memory; therefore, the program/data must reside in the 
main (RAM and ROM) memory

Multiprogramming systems → main memory must be 
subdivided to accommodate several processes 

This subdivision is carried out dynamically by OS and 
known as memory management



4EEL 358

Issues in Memory Management
Relocation: Swapping of active process in and out of 
main memory to maximize CPU utilization

Process may not be placed back in same main memory region!
Ability to relocate the process to different area of memory

Protection: Protection against unwanted interference by 
another process
Must be ensured by processor (hardware) rather than OS

Sharing: Flexibility to allow several process to access the 
same portions of the main memory

Efficiency: Memory must be fairly allocated for high 
processor utilization, Systematic flow of information 
between main and secondary memory



5EEL 358

Binding of Instructions and Data to Memory

Compiler → Generates Object Code

Linker → Combines the Object code into 
a single self sufficient executable code

Loading → Copies executable 
code into memory

Execution → dynamic memory allocation



6EEL 358

Binding of Instructions and Data to Memory

Compile time:  If memory location known a priori, 
absolute code can be generated; must recompile code if 
starting location changes

Load time:  Must generate relocatable code if memory 
location is not known at compile time

Execution time:  Binding delayed until run time if the 
process can be moved during its execution from one 
memory segment to another → most general purpose OS

Address binding of instructions and data to memory addresses can
happen at three different stages



7EEL 358

Logical Vs Physical Address Space
Each logical address is bound to physical 
address space;

Logical address – generated by the CPU; also 
referred to as virtual address
Physical address – address seen by the memory unit

Logical and physical addresses ;
Same in compile-time and load-time address-binding 
schemes
Differ in execution-time address-binding scheme
Logical address ↔ Virtual address



8EEL 358

Memory-Management Unit (MMU)
The runtime mapping from virtual → physical address 

Relocation register is added to every address →
generated by user process

The user program → logical addresses, it never sees 
the real physical addresses



9EEL 358

Dynamic Loading
Routine is not loaded until it is called

Better memory-space utilization → unused 
routine is never loaded

Useful to handle infrequently occurring cases, 
e.g. error handling routines

No special support from the OS required 
implemented through user program design



10EEL 358

Memory Partitioning

Fixed Partitioning: OS occupies fixed portion of main memory, rest available for 
multiple processes. Two alternatives;

Equal size fixed partitions → any process ≤ partition size can be loaded 
Unequal size partitions → several unequal size partitions, process of matching sizes

Problems with equal size fixed partitions:
If program is bigger than a partition size, use of overlays
Main memory utilization is extremely inefficient; Internal Fragmentation – waste of space 
internal to partition due to the fact that block of data loaded is smaller than partition

Two schemes – used in several variations of now-obsolete OS



11EEL 358

Unequal-Size Partitions

Advantages:
Process are always assigned in such a way as to minimize 
wasted memory within a partition → internal fragmentation
Relatively simple and require minimal OS software and 
overhead

Disadvantages:
Limitations on the active number of processes, number of 
partitions specified at system generation time
Small jobs cannot utilize partition space efficiently; In most 
cases it is an inefficient technique

Assign each processes the smallest partition to which it will fit



12EEL 358

Placement Algorithm with Partitions
Equal-size partitions

Because all partitions are of equal size, it does not 
matter which partition is used

Unequal-size partitions
Can assign each process to the smallest partition 
within which it will fit
Queue for each partition size
Processes are assigned in such a way as to minimize 
wasted memory within a partition



13EEL 358

Placement Algorithm with Partitions



14EEL 358

Dynamic Partitioning

Partitions of variable length and number; Process in bought into main 
memory, it is allocated exactly as much memory as it requires

Leaves Holes
First at the end → eventually lot of small holes
Memory becomes more fragmented with time, memory utilization ↓

External Fragmentation
Memory that is external to all partitions becomes increasingly fragmented

Compaction
Used to overcome external fragmentation
OS shifts processes so that free memory is together in one block
Compaction requires use of dynamic relocation capability
Time consuming procedure and wasteful of processor time

Developed to address the drawbacks of fixed partitioning



15EEL 358

Dynamic Partitioning



16EEL 358

Placement Algorithms

Three placement algorithms → Selecting among free 
blocks of main memory

Best-Fit: Closest in size to the request

First-Fit: Scans the main memory from the beginning
and first available block that is large enough

Next-Fit: Scans the memory from the location of last 
placement and chooses next available block that is large 
enough

Compaction is time consuming → OS must be clever in plugging holes 
while assigning processes to memory



17EEL 358

Placement Algorithms - Example
Allocation of 16 MB block using three placement algorithms



18EEL 358

Placement Algorithms

Which of the above approaches is the best? 
Process Size/Sequence, General Comments

First-Fit → Simplest, usually the best and fastest 

Next-Fit → Slightly worst results with next fit 
Compaction may be more frequently required

Best-Fit→ Usually the worst performer; main memory 
is quickly littered by blocks too small to satisfy 
memory allocation requests
Compaction - more frequently than other algorithms



19EEL 358

Buddy System
Drawbacks

Fixed partitioning: Limits number of active process, inefficient 
if poor match between partition and process sizes
Dynamic Partitioning: Complex to maintain, includes the 
overhead of compaction 

Compromise may be the Buddy System - Entire space 
available is treated as a single block of 2U

If a request of size s such that 2U-1 < s ≤ 2U, entire block 
is allocated

Otherwise block is split into two equal buddies
Process continues until smallest block greater than or equal to s
is generated



20EEL 358

Initial block size 1 MB; First request A is for 100 KB

Buddy System - Example



21EEL 358

Binary tree representation immediately after Release B request.

Buddy System - Example



22EEL 358

Relocation
A process may occupy different partitions which means different 
absolute memory locations during execution (from swapping)

Compaction will also cause a program to occupy a different partition 
which means different absolute memory locations



23EEL 358

Paging
Partitioning main memory → small equal fixed-size chunks

Each process is divided into the same size chunks → pages    
Chunks of memory → frames or page frames

Advantages
No external fragmentation
Internal fragmentation → only a fraction of last page of a process

OS maintains a page table for each process
Contains frame location for each page in the process
Memory address → a page number, a offset within the page
Processor hardware → logical-to-physical address translation



24EEL 358

Paging - Example
Assignment of process pages to free frames



25EEL 358

Paging - Example
Assignment of process pages to free frames.



26EEL 358

Paging - Example
Data structures for page tables at time epoch (f)



27EEL 358

Paging - Example
Convenience in Paging scheme

Frame size → power of 2
Relative address (wrt origin of program) and the logical address 
(page # and offset) are same
Example - 16 bit address, page size → 1K or 1024 bytes

Maximum 64 (26) pages of 1K bytes each

Advantages
Logical addressing → transparent to programmer, assembler, linker 
Relatively easy to implement a function to perform dynamic 
address translation at run time



28EEL 358

Paging - Example



29EEL 358

Paging - Example
Logical-to-physical address translation in Paging



30EEL 358

Paging - Example
Logical-to-physical address translation in Paging



31EEL 358

Implementation of Page Table
Different methods of storing page tables, OS dependent
Pointer to page table → PCB
Hardware implementation of page tables

Page table → Set of dedicated high speed registers, Simplest
Suitable for small page table sizes, Usually very large 
requirements

Page table is kept in main memory
Page-table base register (PTBR) points to the page table
Two memory access, page table and other for data/instruction 
Memory access slowed by a factor of two

Solution to the two memory access problem
Usage of a special fast-lookup hardware cache called 
associative memory or translation look-aside buffers (TLBs)
TLB contains Page # → Frame #, Small # of TLB entries (64-
1024)



32EEL 358

Paging Hardware With TLB



33EEL 358

Shared Pages
Shared code

One copy of read-only (reentrant) code shared 
among processes, e.g. text editors, compilers
Shared code must appear in same location in the 
logical address space of all processes

Private code and data
Each process keeps a separate copy of the code and 
data
The pages for the private code and data can appear 
anywhere in the logical address space



34EEL 358

Shared Pages Example

Sharing of code in paging environment



35EEL 358

Segmentation
Memory-management scheme that supports user view of 
memory 
Program → Collection of segments (name and length)
Complier automatically constructs segments reflecting 
input program 
Example – A C complier might create separate 
segments for the following

main program,
procedure, 
function,
object,
local variables, global variables,
common block,
stack,
symbol table, arrays



36EEL 358

Segmentation
The program/process and its associated data is divided 
into a number of segments

All segments of all programs do not have to be of the 
same length

There is a maximum segment length

Addressing consist of two parts - a segment number and 
an offset

Since segments are not equal, segmentation is similar to 
dynamic partitioning



37EEL 358

Address Translation Architecture 



38EEL 358

User’s View of a Program



39EEL 358

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space



40EEL 358

Example of Segmentation



41EEL 358

Sharing of Segments



42EEL 358

Segmentation
Compared to dynamic partition, segmentation program may occupy 
more than one partition and these partitions need not be contiguous

Segmentation eliminates the need for internal fragmentation but like 
dynamic partitioning it suffers from external fragmentation

Process is broken in small pieces, the external fragmentation is less 
with segmentation than dynamic partition

Paging is invisible to the programmer, segmentation is usually visible



43EEL 358

EXAMPLE: Logical Addresses.

Segmentation



44EEL 358

Segmentation
EXAMPLE:

Logical-to-physical address translation in Segmentation



45EEL 358

Hierarchical Page Tables
Most systems support a large logical address space

232 – 264 , page table itself becomes excessively large
Break up the logical address space into multiple page 
tables

A simple technique is a two-level page table



46EEL 358

Two-Level Paging Example
A logical address (32-bit machine with 4K page size) is divided into:

a page number consisting of 20 bits
a page offset consisting of 12 bits

Since the page table is paged, page number is further divided into:
a 10-bit page number 
a 10-bit page offset

Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the 
displacement within the page of the outer page table

page number page offset

pi p2 d

10 10 12



47EEL 358

Two-Level Page-Table Scheme



48EEL 358

Address-Translation Scheme

Address-translation scheme for a two-level 32-bit 
paging architecture


