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What is a Pattern?
Object process of event consisting of both deterministic/stochastic 
components
Record of dynamic occurrences influenced by both deterministic 
and stochastic factors
Examples – voice, image, characters

Kind of Patterns
Visual patterns
Temporal patterns
Logical patterns

What is Pattern Class?
Set of patterns sharing set of common attributes (or features)
Usually originating from the same source

Introduction
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Feature
Relevant characteristics that make patterns apart from each other
Data extractable through measurements or processing

Examples
Patterns

Speech waveforms, crystals, textures, weather patterns
Features

Age, color, height, width

Classifications
Assigning patterns into classes based on features

Noise
Distortions associated with pattern processing and/or training 
samples that effect the classification performance of system

Introduction
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Example
Automation in fish packing plant

Sort incoming fish on a conveyor according to species 
using optical sensing

Sorting species
Sea bass
Salmon
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Setup camera
Take some sample images
Features?

Suggested features
Length
Lightness
Width
Number and shape of fins
Position of mouth, etc..

Explore above suggested features!

Problem Analysis
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Segmentation
Isolate fishes from background
Isolate fishes from one another

Feature extraction
Reduce the data by measuring certain features

Classifier
Evaluates the evidence presented → Makes final decision

Preprocessing
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Preprocessing
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Selecting length of fish → Possible feature for classification

Classification
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Length is a poor feature!
Select brightness as a possible feature

Classification
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Cost
Consequences of our decision
Equal? 

Task of decision theory
Move the decision boundary towards smaller values 
of lightness, Cost ↓
Reduce number of sea brass classified as salmon

Threshold Decision Boundary
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Adopt lightness and the width of fish

Fish x = [x1, x2]

Classification

Lightness Width
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Classification



EEL 851 14

Classification

Our satisfaction → Premature
Central aim → Correctly classify a novel input
Issue of Generalization!
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Classification

Syntactic Pattern Recognition
Recursive description using method of formal languages

Structural Pattern Recognition
Derivation of descriptions using formal rules
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Pattern Recognition Systems

Invariant Features
• Translation
• Rotation
• Scale
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Data Collection

Feature Choice

Model Choice

Training

Evaluation

Computational Complexity

Design Cycle
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Design Cycle
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Supervised Learning
Teacher → Category label or cost for each label in training set
Desired input → Desired output

Goals → Produce a correct output given a new input 

Goals of Supervised Learning
Classification

Desired output → Discrete class labels

Regression
Desired output → Continuous valued

Unsupervised Learning
The system forms clusters or natural groupings of input pattern
Goals → Build a model or find useful representations of data
Usage → Reasoning, finding clusters, dimensionality reduction, decision 
making, prediction, etc.

Data compression, Outlier detection, Help classification

Types of Learning
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Assumptions
Problem → Probabilistic terms
Knowledge of relevant probabilities

Sea Bass/Salmon example
State of nature

Random Variable
ω → ω1 (sea bass)
ω → ω1 (salmon)

Priori probability
P(ω1) → sea bass; P(ω2) → salmon
P(ω1) + P( ω2) = 1 (exclusivity and exhaustivity)

Bayesian Decision Theory
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Decision Rule
Only prior information, Cannot see!
Decide ω1 if P(ω1) > P(ω2) otherwise decide ω2
More info in most cases

Class Conditional Info
Class-conditional pdf → p(x|ω)
p(x|ω1) and p(x|ω2)

Difference in lightness between populations of sea and 
salmon 

Bayesian Decision Theory
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Bayesian Decision Theory

Class-conditional pdf
x → Lightness of fish
Normalized
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Bayes Formula
Lightness of fish → x, Class?

P(ωj | x) = p(x | ωj) . P (ωj) / p(x)

where in case of two categories 

Posterior = (Likelihood × Prior) / Evidence
p(ωj | x) → Likelihood
p(x) → Evidence (scale factor)
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Posterior Probabilities

Prior probabilities
P(ω1) = 2/3
P(ω2) = 1/3
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Decision given posterior probabilities
Observation → x
if P(ω1 | x) > P(ω2 | x)  → True state of nature = ω1

if P(ω1 | x) < P(ω2 | x)  → True state of nature = ω2

Probability of error
P(error | x) = P(ω1 | x) if we decide ω2

P(error | x) = P(ω2 | x) if we decide ω1

Bayes Decision Rule
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Minimize probability of error
Decide ω1 if P(ω1 | x) > P(ω2 | x); otherwise decide ω2

Bayes decision
P(error | x) = min [P(ω1 | x), P(ω2 | x)]

Bayes Decision Rule
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Generalization of Preceding Ideas
More than one feature
More than two state of nature
Actions not only deciding state of nature
Loss function → More general than probability of error

Bayes Decision Rule
Input pattern C is classified into class ωk , for a given 
feature vector x, maximizes the posterior probability; 

P(ωk| x)  ≥ P(ωj| x)   for ∀ j ≠ k
Likelihood conditions p(x |ωk) → Training data measurements
Prior probabilities P(ωk) → Supposed to known within given 
population of sample patterns
p(x) is same for all class alternatives → Ignored, normalization factor 

Bayesian Classifier
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Certain classification errors may be costly than others
False Negative may be much more costly than False Positive
Examples → Fire alarm, Medical diagnosis
Ω = {ω1,ω1, … ωn} → Possible set of nature/classes
∆ = {α1,α2, … αn} → Possible decisions/actions

Loss Function
λ(αi|ωj)
Loss incurred by taking action αi when true state of nature is ωj

Conditional Risk
R(αi|x)
Loss expected by taking action αi when observed evidence is x

Loss Function
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Minimum Error Rate Classification
Action αi is associated with class ωj
All errors are equally likely
Zero-One Loss

Classification decision αi is correct only if state of nature is ωj
Symmetrical function

Conditional Risk
R(αi|x) = ∑ λ(αi|ωj) P(ωj|x) = 1 – P(ωi|x)

Minimize Risk
Select the class maximizing the posterior probability
Suggested by Bayes Decision Rule, Minimum error rate classification
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Minimize overall risk subject to constraints
∫ R(αi|x) dx < constant
Misclassification limited to a frequency
Fish example → Do not misclassify more than 1% of 
salmon as bass
Minimize the chance of classifying sea bass as salmon

Neyman-Pearson Criterion
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Classifier Representation
Function employed for discriminating among classes
gi(x), i = 1, …,k
Classifier → Assign x to class ωi if

gi(x)  ≥ gj(x)   for ∀ j ≠ i

Possible Choices
gi(x) = P(ωj|x)
gi(x) = p(x|ωj)P(ωj)
gi(x) = ln {p(x|ωj)} + ln {P(ωj)}

Discriminant Functions
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Decision Region
Effect of Decision Rule

Feature space → Decision regions
Decision Boundaries

Surface in feature space →Ties occur among largest discriminant functions
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Normal Density
Univariate Density

Analytically tractable, Maximum entropy
Continuous-valued density
A lot of processes are asymptotically Gaussian
Central Limit Theorem

Aggregate effect of independent random disturbances → Gaussian
Many patterns → Prototype corrupted by large number of RP

µ = mean (or expected value) of x
σ2 = expected squared deviation or variance
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Multivariate density

Multivariate normal density in d dimensions is:

where:
x = (x1, x2, …, xd)t feature vector
µ = (µ1, µ2, …, µd)t mean vector
Σ = d*d covariance matrix
|Σ| and Σ-1 are determinant and inverse respectively

Σ → Shape of Gaussian curve
(x - µ)t Σ-1(x - µ) → Mahalanobis distance
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Discriminant Functions
Minimum Error Rate Classification

gi(x) = ln p(x | ωi) + ln P(ωi)

Case → Σi = σ2.I
Features are statistically independent, same variance σ2

Diagonal covariance matrix

Linear machines
Decision surface → Pieces of hyperplanes
gi(x) = gj(x)
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Discriminant Functions
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Discriminant Functions
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Case → Σi = Σ
Covariance matrices of all classes → Identical but arbitrary

Hyperplane separating Ri and Rj

Hyperplane separating Ri and Rj → Not orthogonal to the line 
between the means

Discriminant Functions
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Discriminant Functions



EEL 851 41

Discriminant Functions
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Case → Σi = arbitrary

The covariance matrices are different for each category

Hyperquadrics
Hyperplanes, pairs of hyperplanes, hyperspheres, hyperellipsoids, 
hyperparaboloids, hyperhyperboloids
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Discriminant Functions
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Decision Boundary - Example
Compute Bayes decision boundary

Gaussian Distributions

Means and Covariance's → Discrete versions
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Supervised Learning
Parametric Approaches

Bayesian parameter estimation
Maximum likelihood estimation

Estimation Problem
Estimate P(ωj) 
Estimate p(ωj | x) → Tough

High dimensional feature spaces, small number of training samples

Simplifying Assumptions
Feature Independence
Independently drawn samples → I. I. D. model
Assume that p(ωj | x) is Gaussian

Estimation problem → Parameters of normality
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Estimation Methods
Bayesian Estimation (MAP)

Distribution parameters are random values that follow a known 
(i.e. Gaussian) distribution
Behavior of training data helps in revising parameter values
Large training samples → Better chances of refining posterior 
probabilities (parameter peaking)

Maximum-Likelihood (ML) Estimation 
Parameters of probabilistic distributions are fixed but unknown 
values 
Parameters → Unknown constants, Identify using training data
Best estimates of parameter values

Class-conditional probabilities are maximized over the available 
samples
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Parametric Approaches
Curse of dimensionality

Estimate the parameters known distribution
Smaller number of samples
Some priori information
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Non-parametric Approaches
Parzen window pdf estimation (KDE)

Estimate p(ωj | x) directly from sample patterns

Kn nearest-neighbor
Directly construct the decision boundary based on training data 
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Statistical Approaches
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Nearest-Neighbor Methods
Statistical, nearest-neighbor or memory-based methods
k-nearest-neighbor

New pattern category → Plurality of its k closest neighbor
Large k → Decreases the chance of undue influence by noisy 
training pattern
Small k → Reduces acuity of method
Distance metric usually Euclidean

In practice features are scaled → aj

Advantage → Does not require training
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Nearest-Neighbor Decision
Example

Class of training patterns → 4
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