

Introduction

What is a Pattern?

- Object process of event consisting of both deterministic/stochastic components
- Record of dynamic occurrences influenced by both deterministic and stochastic factors
- Examples voice, image, characters
- Kind of Patterns
 - Visual patterns
 - Temporal patterns
 - Logical patterns

> What is Pattern Class?

Set of patterns sharing set of common attributes (or features)

3

Usually originating from the same source

Introduction

Feature

- Relevant characteristics that make patterns apart from each other
- Data extractable through measurements or processing
- > Examples
 - Patterns
 - Speech waveforms, crystals, textures, weather patterns
 - Features
 - Age, color, height, width
- Classifications
 - Assigning patterns into classes based on features

Noise

 Distortions associated with pattern processing and/or training samples that effect the classification performance of system

4

Problem Analysis

Setup camera

- Take some sample images
- Features?

Suggested features

- Length
- Lightness
- Width
- Number and shape of fins
- Position of mouth, etc..

6

Preprocessing

Segmentation

- Isolate fishes from background
- Isolate fishes from one another

Feature extraction

Reduce the data by measuring certain features

Classifier

• Evaluates the evidence presented \rightarrow Makes final decision

Classification

- Length is a poor feature!
- Select brightness as a possible feature

- Cost
 - Consequences of our decision
 - Equal?
- Task of decision theory
 - Move the decision boundary towards smaller values of lightness, Cost ↓
 - Reduce number of sea brass classified as salmon

Classification

Types of Learning

- Supervised Learning
 - Teacher \rightarrow Category label or cost for each label in training set
 - Desired input → Desired output
 - Goals \rightarrow Produce a correct output given a <u>new</u> input

Goals of Supervised Learning

- Classification
 - Desired output → Discrete class labels

Regression

- Desired output \rightarrow Continuous valued
- Unsupervised Learning
 - The system forms *clusters* or natural *groupings* of input pattern
 - Goals \rightarrow Build a model or find useful representations of data
 - Usage → Reasoning, finding clusters, dimensionality reduction, decision making, prediction, etc.
 - Data compression, Outlier detection, Help classification

Bayesian Decision Theory

- Assumptions
 - Problem → Probabilistic terms
 - Knowledge of relevant probabilities

- State of nature
 - Random Variable
 - $\omega \rightarrow \omega_1$ (sea bass)
 - $\omega \rightarrow \omega_1$ (salmon)

Priori probability

- $P(\omega_1) \rightarrow sea bass; P(\omega_2) \rightarrow salmon$
- $P(\omega_1) + P(\omega_2) = 1$ (exclusivity and exhaustivity)

Bayesian Decision Theory

- Decision Rule
 - Only prior information, Cannot see!
 - Decide ω_1 if $P(\omega_1) > P(\omega_2)$ otherwise decide ω_2
 - More info in most cases

Class Conditional Info

- Class-conditional pdf $\rightarrow p(x|\omega)$
- $p(x|\omega_1)$ and $p(x|\omega_2)$
 - Difference in lightness between populations of sea and salmon

Bayes Decision Rule

- Decision given posterior probabilities
 - Observation $\rightarrow x$
 - if $P(\omega_1 | x) > P(\omega_2 | x) \rightarrow True$ state of nature = ω_1
 - if $P(\omega_1 | x) < P(\omega_2 | x) \rightarrow True$ state of nature = ω_2

Probability of error

- $P(error | x) = P(\omega_1 | x)$ if we decide ω_2
- $P(error | x) = P(\omega_2 | x)$ if we decide ω_1

Bayesian Classifier

- Generalization of Preceding Ideas
 - More than one feature
 - More than two state of nature
 - Actions not only deciding state of nature
 - Loss function \rightarrow More general than probability of error

Bayes Decision Rule

- Input pattern C is classified into class ω_k, for a given feature vector x, maximizes the <u>posterior</u> probability;
 - $\mathsf{P}(\omega_k | \mathbf{x}) \ge \mathsf{P}(\omega_j | \mathbf{x}) \text{ for } \forall j \neq k$
 - Likelihood conditions $p(\mathbf{x} | \omega_k) \rightarrow \text{Training data measurements}$
 - Prior probabilities $P(\omega_k) \rightarrow$ Supposed to known within given population of sample patterns
 - $p(\mathbf{x})$ is same for all class alternatives \rightarrow Ignored, normalization factor

Loss Function

Certain classification errors may be costly than others

- False Negative may be much more costly than False Positive
- Examples \rightarrow Fire alarm, Medical diagnosis
- $\Omega = \{\omega_1, \omega_1, \dots, \omega_n\} \rightarrow \text{Possible set of nature/classes}$
- $\Delta = \{\alpha_1, \alpha_2, \dots, \alpha_n\} \rightarrow \text{Possible decisions/actions}$

Loss Function

- $\lambda(\alpha_i | \omega_j)$
- Loss incurred by taking action α_i when true state of nature is ω_i

Conditional Risk

- $R(\alpha_i | \mathbf{x})$
- Loss expected by taking action α_i when observed evidence is **x**

Minimum Error Rate Classification

- > Action α_i is associated with class ω_i
- All errors are equally likely
- Zero-One Loss
 - Classification decision α_i is correct <u>only</u> if state of nature is ω_i
 - Symmetrical function

$$\lambda(\alpha_i \mid \omega_j) = \begin{cases} 0 & \text{for } i = j \\ 1 & \text{for } i \neq j \end{cases}$$

- Conditional Risk
 - $\mathsf{R}(\alpha_i | \mathbf{x}) = \sum \lambda(\alpha_i | \omega_j) \mathsf{P}(\omega_j | \mathbf{x}) = 1 \mathsf{P}(\omega_i | \mathbf{x})$

Minimize Risk

- Select the class <u>maximizing</u> the posterior probability
- Suggested by Bayes Decision Rule, Minimum error rate classification

Neyman-Pearson Criterion

- Minimize overall risk subject to constraints
 - $\int R(\alpha_i | \mathbf{x}) d\mathbf{x} < constant$

EEL 851

- Misclassification limited to a frequency
- Fish example → Do not misclassify more than 1% of salmon as bass
- Minimize the chance of classifying sea bass as salmon

30

Discriminant Functions

- Classifier Representation
 - Function employed for discriminating among classes

$$-g_i(\mathbf{x}), i=1,\ldots,k$$

- Classifier \rightarrow Assign **x** to class ω_i *if*
 - $g_j(\mathbf{x}) \geq g_j(\mathbf{x})$ for $\forall j \neq i$

31

Decision Region

- Effect of Decision Rule
 - Feature space \rightarrow Decision regions
 - Decision Boundaries
 - Surface in feature space \rightarrow Ties occur among largest discriminant functions

Normal Density

- Univariate Density
 - Analytically tractable, Maximum entropy
 - Continuous-valued density
 - A lot of processes are asymptotically Gaussian
 - Central Limit Theorem
 - Aggregate effect of independent random disturbances \rightarrow Gaussian
 - Many patterns \rightarrow Prototype corrupted by large number of RP

Normal Density

- Multivariate density
 - Multivariate normal density in d dimensions is:

$$\mathbf{P}(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \mu)^{t} \Sigma^{-1} (\mathbf{x} - \mu)\right]$$

Discriminant Functions

\succ Case $\rightarrow \Sigma_i = \Sigma$

■ Covariance matrices of all classes → Identical but arbitrary

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \mu_i)^{\mathsf{t}} \Sigma^{-1} (\mathbf{x} - \mu_i) + \ln P(\omega_i)$$

Hyperplane separating R_i and R_i

$$x_{0} = \frac{1}{2}(\mu_{i} + \mu_{j}) - \frac{\ln[P(\omega_{i})/P(\omega_{j})]}{(\mu_{i} - \mu_{j})^{t}\Sigma^{-1}(\mu_{i} - \mu_{j})} \cdot (\mu_{i} - \mu_{j})$$

■ Hyperplane separating R_i and R_j → Not orthogonal to the line between the means

Discriminant Functions

EEL 851

40

Supervised Learning

Parametric Approaches

- Bayesian parameter estimation
- Maximum likelihood estimation

Estimation Problem

- Estimate P(ω_i)
- Estimate $p(\omega_j | x) \rightarrow \text{Tough}$
 - High dimensional feature spaces, small number of training samples

Simplifying Assumptions

- Feature Independence
- Independently drawn samples \rightarrow I. I. D. model
- Assume that $p(\omega_j | x)$ is Gaussian
 - Estimation problem \rightarrow Parameters of normality

Estimation Methods

- Bayesian Estimation (MAP)
 - Distribution parameters are random values that follow a known (*i.e.* Gaussian) distribution
 - Behavior of training data helps in revising parameter values
 - Large training samples → Better chances of refining posterior probabilities (parameter peaking)

- Parameters of probabilistic distributions are fixed but unknown values
- Parameters \rightarrow Unknown constants, Identify using training data
- Best estimates of parameter values
 - Class-conditional probabilities are maximized over the available samples

46

Parametric Approaches

- Curse of dimensionality
- Estimate the parameters known distribution
 - Smaller number of samples
 - Some priori information

Non-parametric Approaches

Parzen window pdf estimation (KDE)

• Estimate $p(\omega_i | x)$ directly from sample patterns

➤ K_n nearest-neighbor

Directly construct the decision boundary based on training data

Nearest-Neighbor Methods

Statistical, nearest-neighbor or memory-based methods

k-nearest-neighbor

- New pattern category \rightarrow Plurality of its *k* closest neighbor
- Large k → Decreases the chance of undue influence by noisy training pattern
- Small $k \rightarrow$ Reduces acuity of method
- Distance metric usually Euclidean

$$\sqrt{\sum_{j=1}^{n} (x_{1j} - x_{2j})^2}$$

• In practice features are scaled $\rightarrow a_i$

$$\sqrt{\sum_{j=1}^{n} a_j^2 (x_{1j} - x_{2j})}$$

■ Advantage → Does not require training

References

- Richard O. Duda, Peter E. Hart, and David G.Stork, Pattern Classification, 2nd edition, John Wiley & Sons, 2001 (most contents)
 - Nils J. Nilsson, Introduction to Machine Learning, http://ai.stanford.edu/people/nilsson/mlbook.html
- http://www.rii.ricoh.com/%7Estork/DHS.html
- A. K. Jain, R. P. W. Duin, and J. Mao, "Statistical Pattern Recognition: A Review," IEEE Trans PAMI, pp. 4-37, Jan. 2000

Other Useful References

- Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press, New York, NY, 1972.
- Therrien, *Decision Estimation and Classification*, John-Wiley & sons, New York, NY, 1989.
- Hertz, Krogh, and Palmer, Introduction to the Theory of Neural Computation, Addison-Wesley, Reading, MA, 1991.
- Bose and Liang, Neural Network Fundamentals with Graphs, Algorithms, and Applications, McGrawll-Hill, New York, NY, 1996

