## Personal Authentication using Hand Geometry

Project Evaluation Phase I Biometrics – EEL851

<sup>ву</sup> Ch.Ravikanth Pooja Agrawal K.Venkata Pratyusha

### **Biometrics**

#### Definition

 Automatic recognition of individuals based on their physiological and/or behavioral characteristics

Based on "who she (he) is" rather than "what she (he) possess" or "what she (he) remembers".

Many Many Biometric Technologies!!!

 Face, Iris, Fingerprint, Hand-Geometry, Palmprint, Signature, Gait, Voice, Retina, DNA, Ear, Hand Vein etc...

## Y Hand Goemetry?

- Lack of clear fingerprints because of physical work.
- Iris and retina suffer from high cost.
- Face and voice systems has low performance.

#### Advantages

- Simple, easy to use .
- Medium cost
- Low computational cost.
- Low template size.
- Null user-rejection.



## Coverage

- Applications and State-of-the-art.
  Image Acquisition Systems.
  Feature Selection .
- Feature Measurements.
- Matching Algorithms.
- Comparison.

## Applications

- In Airport to permit frequent travelers to bypass waiting lines (INSPASS project).
- Employers time/attendance procedures, recording staff movement.
- Verification at entrances of nuclear power plants
   RSI's integration with Olympic Village security system in 1996 Olympic Games.
- Revenues 2.5% of biometric market about 97.4m by 1997.

## Hand Geometry Based Web-Access



## State-of-the-art

| Approaches                    | Database | FAR   | FRR   |
|-------------------------------|----------|-------|-------|
| Hand silhouette contour as    | 53       | 2%    | 1.5%  |
| feature                       |          |       |       |
| Feature based                 | 70       | 1%    | 3%    |
| Employing hierarchical        | 22       | 2.22% | 12%   |
| authentication scheme         |          |       |       |
| Implicit polynomials          | 45       | 1%    | 1%    |
| Grating pattern and quad-tree | 100      | 0.48% | 0.48% |
| representation                |          |       |       |
| Touch-free technique          | 15       | 0     | 2.8   |

## **Acquisition Systems**

•Platform designed to guide the hand to fixed location.

•Six tops placed in determined positions

•Each of them equipped with pressure sensors

•When all are activated trigger the camera.







## **Commercial Systems**



#### Handpunch50E





HP2000

## Hand reader with MIFARE



|            | HP1000  | HP2000  | HP3000    | HP4000   |
|------------|---------|---------|-----------|----------|
| Transactio | 5120    | 5120    | 5120      | 7680     |
| n memory   | trans.  |         |           |          |
| User       | 50 -512 | 512     | 512-32512 | 530-3498 |
| Capacity   |         |         |           |          |
| PRICE      | \$1595  | \$1800  | \$2295    | \$3320   |
|            |         |         |           |          |
| Communi    | RS-232, | RS-232, | RS-485,   | RS-485,  |
| cations    | 50 foot | 50 foot | RS-232/   | RS-232/  |
|            | cable   | cable   | network   | network  |

Size: 22.3cm wide, 29.6cm high, 21.7cm deep Weight: 2.7kg Template size: 9bytes Memory Retention: 5yrs.

## Preprocessing

- Databases of images collected under various subjects – age, sexes, profession etc. over periodic intervals of time.
- Images are transformed into binary images using the following formula

$$I_{BW} = \langle \langle I_R + I_G \rangle - I_B \rangle$$

where < > is a contrast stretching function.





## Preprocessing

- Increased contrast allows better segmentation of the hand from the background.
- Spurious pixels can be removed using thresholding.
- Image resized and rotated to address small deviations of hand position.
- Edge detection algorithms (e.g. Sobel) applied to extract contour of the hand.







- ✤ Measurements
- Minimize the variation
- Feature selection and feature vector size

by POOJA AGRAWAL

 After preprocessing, the resulting image is a contour.

This simplifies the measurement algorithm.



Original Image and the desired contour

#### Five categories:

- Width
- Angle
- Height
- Length
- Deviation

- Widths :-- of the four fingers, palm and the distance among the three interfinger points
- Angles : between the interfinger points and the horizontal



Location of measurement points for feature extraction

Lengths:-- Li,
 where,
 i=1, 2, 3, 4, 5.



features: finger length Li (i=1,...,5)

• **Heights :--** the middle finger, the little finger and the palm



Location of measurement points for feature extraction

• Deviation :--

$$p_{12}^{X} - \left(\frac{p_{14}^{X} - p_{1}^{X}}{p_{14}^{Y} - p_{1}^{Y}}\right) \left(p_{12}^{Y} - p_{1}^{Y}\right),$$

where,

 $p_{12}^X, p_{12}^Y = X$  and Y coordinates of the middle point of the finger.  $p_{14}^X, p_{14}^Y = X$  and Y coordinates of the last height.  $p_1^X, p_1^Y = X$  and Y coordinates of the interfinger point.



#### **Deviation measurement**

#### Minimize the variation

All distances are taken relative to a determine measure.

 The vertical coordinates, are determined by the interfinger points and the tops.

# Feature selection and feature vector size

✤ 31 features have been extracted.

- \* A statistical analysis has been performed.
- \* This is analyzed by a ratio F.
- \* The higher this ratio.

# Feature selection and feature vector size



#### where,

 $F_{i}$  is the ratio for the j<sup>th</sup> features.

- V is the standard deviation function.
- N is the number of classes.
- $\overline{f}_{j}^{i}$  is the mean of the j<sup>th</sup> features of the i<sup>th</sup> class.  $f_{j}^{i}$  is the j<sup>th</sup> feature of the i<sup>th</sup> class.

Finally...

# Matching Algorithms and their comparison

ву K.Venkata Pratyusha

## Matching

Matching Algorithms

Euclidean Distance.
Hamming Distance.
Gaussian Mixture Models.

## Euclidean Distance

> Template Feature vector  $(T_1, T_2, \dots, T_{25})$ > Input Feature vector  $(X_1, X_2, \dots, X_{25})$ > Matching Score : Euclidean Distance  $D = \sqrt{\sum_{i=1}^{L} (X_i - T_i)^2}$ 

T<sub>i</sub>- i<sup>th</sup> Component of Template feature Vector. X<sub>i</sub>- i<sup>th</sup> Component of Input feature Vector. L - Dimension of Feature vector.

- Compare this Matching Score with predefined Threshold value.
- > Template vector dimension must same as Input vector.
- Set of Images of same user are taken and mean of these feature vectors is the Template.

## Euclidean Distance



Euclidean Distance

- Advantages
  - □ Easy to calculate.
  - □ Fast.
- Disadvantages
  - □ no invariance against any transformation.
  - □ sensitive to lighting changes.

## Hamming Distance

- Number of Components differ in value rather than difference between components of the feature vectors.
- From set of Input Images of same user, measure mean and standard deviation and store these as template.
- Number of components of feature vector outside these values is Hamming Distance.

## Hamming Distance

Matching Score: Hamming Distance

 $d(X_{i}, T_{i}^{m}) = \#\{i \in \{1, \dots, L\} / | X_{i} - T_{i}^{m} | > T_{i}^{v}\}$ 

d – Hamming Distance.
 L – Dimension of the feature vectors.
 Xi - ith Component of the sample vector.
 T<sub>i</sub><sup>m</sup>- Mean of ith Component.
 T<sub>i</sub><sup>v</sup> – Standard Deviation of ith Component.
 Advantages: Easy to calculate.

Disadvantages: Template Size becomes high.

Based on modeling the patterns with a determined number of Gaussian Distributions.



**GMM** Architecture

 $b_i\left(\overrightarrow{X}\right) = \frac{1}{\left(2\pi\right)^{L_2} \left|\sum_{i}\right|^{L_2}} \exp\left\{-\frac{1}{2}\left(\overrightarrow{X} - \overrightarrow{\mu_i}\right)^T \sum_{i}\left(\overrightarrow{X} - \overrightarrow{\mu_i}\right)\right\}$ 

 $C_i$ -Weight of each of the Gaussian models.  $\mu_i$ -Mean value of each model.

S<sub>i</sub>-Covariance matrix of each model.

M–Number of models.

L–Dimension of feature vector. Probability density:  $p\left(\overline{X} / \lambda\right) = \sum_{i=1}^{M} c_i b_i (\overline{X}_i)$ 

- > GMMs should is initialized and trained to become operative.
- >  $c_i$  initialized to 1/M.
- > s<sub>i</sub> unit matrix.
- >  $\mu_i$  random sample vector of that user.
- > Expectation:

$$p\left(\underbrace{i}_{X_{i}},\lambda\right) = \frac{c_{i}b_{i}\left(\overline{X}_{l}\right)}{\sum_{k=1}^{M}c_{k}b_{k}\left(\overline{X}_{l}\right)}, 1 \le i \le M, 1 \le l \le L$$
$$\hat{c}_{i} = \frac{1}{L}\sum_{i=1}^{L}p\left(\underbrace{i}_{X_{i}},\lambda\right)$$

Maximization:

$$\widehat{u}_{i} = \frac{\sum_{l=1}^{L} p\left(\underbrace{i}_{X_{l}}, \lambda\right) \cdot \overline{X}_{l}}{\sum_{i=1}^{L} p\left(\underbrace{i}_{X_{l}}, \lambda\right)}$$

$$\hat{s}_{i}^{2} = \frac{\sum_{l=1}^{L} p\left( \underbrace{i \atop X_{l}}^{i}, \lambda \right) \cdot \left( \overline{X}_{l}^{i} - \widehat{u}_{i}^{i} \right) \cdot \left( \overline{X}_{l}^{i} - \widehat{u}_{i}^{i} \right)^{T}}{\sum_{l=1}^{L} p\left( \underbrace{i \atop X_{l}^{i}}^{i}, \lambda \right)}$$

> Template of the user is final value of c<sub>i</sub>, μ<sub>i</sub>, s<sub>i</sub> and M.
> Advantages:

High recognition rate, false Acceptance rate (FAR) and false Rejection rate (FRR).
Efficient for larger Database.

> Disadvantages:

□ Large Template size.

## Comparison

- > Data base is composed of 10 Images each from 20 people.
- Great acceptance of the System.
- Enrollment:
  - □ Final Images gives best results.
  - □ No variation problem in Euclidean distance Method.
- > Preprocessing Algorithms were robust to allow colored skin.
- > In Classification and Verification:
  - Two main Analyses
    - □ Classification with changes in feature vector Dimension.
    - □ Classification with changes in enrollment set size.

## Classification

#### Comparison in Classification

| No.enrollment                                           |    | Euclidean | Hamming | GMM |
|---------------------------------------------------------|----|-----------|---------|-----|
| vectors(25                                              |    |           |         | S   |
| features)                                               | 3  | 86%       | 75%     | 88% |
|                                                         | 4  | 85%       | 82%     | 93% |
|                                                         | 5  | 86%       | 87%     | 96% |
| Feature vector<br>dimension(5<br>enrollment<br>vectors) | 25 | 86%       | 87%     | 96% |
|                                                         | 21 | 84%       | 86%     | 97% |
|                                                         | 15 | 86%       | 88%     | 96% |
|                                                         | 9  | 77%       | 75%     | 91% |

## Verification

- Three Main Results:
  - > GMM give best results.
  - Same Equal Error rate for different feature vector sizes.
  - Variation in FAR and FRR
     more acute with 9 features.
     smoother with 21 or 25 features.

## Bibliography

- 1) "Biometric Identification through Hand Geometry Measurements.", *PAMI oct 2000 by* R.S.Reillo, C.S. Avila, Ana Gonzalez
- 2) "Personal Identification using 3-D finger Geometry.", IEEE trans., information forensics and security, 2006 by S.Malassiotis, Niki A., Michael G.Strintzis.
- *3) 'Hand Geometry pattern recognition through GMM'' by R.Sacnchez-Reillo, IEEE 2000.*
- 4) "Exploiting finger surface as a biometric identifier." *A dissertation by Damon L. Woodard, Dec 2004.*
- 5) <u>http://biometrics.cse.msu.edu/hand\_geometry.html</u>
- 6) <u>http://www.handreader.com/</u>