

Face Recognition Using Fuzzy Fisherface Classifier

Presenters: Nilesh Padwal Vivek K. Rajat Rastogi

Contents

- Introduction
- Eigenface Based Approach (PCA)
- Disadvantages of Eigenfaces Approach
- Fisherface Approach (FLD)
- Disadvantage of Fisherface Approach
- Fuzzy Fisherface Approach (F-FLD)
- Comparison of PCA, FLD, F-FLD
- Conclusion
- References

Introduction

Growing interest in biometric authentication

- National ID cards, Airport security, Surveillance.
- Fingerprint, iris, hand geometry, gait, voice, vein and face.

Face recognition offers several advantages over other biometrics:

- Covert operation.
- Public acceptance.
- Data required is easily obtained and readily available.

Approaches include:

Feature analysis, Appearance-Based.

PCA Based Approach (Eigenface) Developed in 1991 by M.Turk Relatively simple PCA seeks directions that are efficient for representing the data Reduces the dimension of the data Speeds up the computational time

Original Images (I₁, I₂, ..., I_M)

The mean face can be computed as:

$$\Psi = \frac{1}{M} \begin{pmatrix} a_1 + b_1 + L + h_1 \\ a_2 + b_2 + L + h_2 \\ M & M & M \\ a_{N^2} + b_{N^2} + L + h_{N^2} \end{pmatrix}, \quad where M = 8$$

Mean-Face

Then subtract it from the training faces (Φ_i=I_i-Ψ)

$$\mathbf{r}_{a_{m}} = \begin{pmatrix} a_{1} - m_{1} \\ a_{2} - m_{2} \\ \mathbf{M} & \mathbf{M} \\ a_{N^{2}} - m_{N^{2}} \end{pmatrix}, \quad \mathbf{r}_{b_{m}} = \begin{pmatrix} b_{1} - m_{1} \\ b_{2} - m_{2} \\ \mathbf{M} & \mathbf{M} \\ b_{N^{2}} - m_{N^{2}} \end{pmatrix}, \quad \mathbf{r}_{c_{m}} = \begin{pmatrix} c_{1} - m_{1} \\ c_{2} - m_{2} \\ \mathbf{M} & \mathbf{M} \\ c_{N^{2}} - m_{N^{2}} \end{pmatrix}, \quad \mathbf{r}_{d_{m}} = \begin{pmatrix} d_{1} - m_{1} \\ d_{2} - m_{2} \\ \mathbf{M} & \mathbf{M} \\ d_{N^{2}} - m_{N^{2}} \end{pmatrix}$$

 $\mathbf{r}_{e_{m}} = \begin{pmatrix} e_{1} & - & m_{1} \\ e_{2} & - & m_{2} \\ \mathbf{M} & \mathbf{M} \\ e_{N^{2}} - & m_{N^{2}} \end{pmatrix}, \quad \mathbf{r}_{f_{m}} = \begin{pmatrix} f_{1} & - & m_{1} \\ f_{2} & - & m_{2} \\ \mathbf{M} & \mathbf{M} \\ f_{N^{2}} - & m_{N^{2}} \end{pmatrix}, \quad \mathbf{r}_{g_{m}} = \begin{pmatrix} g_{1} & - & m_{1} \\ g_{2} & - & m_{2} \\ \mathbf{M} & \mathbf{M} \\ g_{N^{2}} - & m_{N^{2}} \end{pmatrix}, \quad \mathbf{r}_{h_{m}} = \begin{pmatrix} h_{1} & - & m_{1} \\ h_{2} & - & m_{2} \\ \mathbf{M} & \mathbf{M} \\ h_{N^{2}} - & m_{N^{2}} \end{pmatrix}$

• Now we build the matrix which is N^2 by M

$$A = \begin{bmatrix} \mathbf{r} & \mathbf$$

• The covariance matrix which is N^2 by N^2

$$C o v = A A^{\mathrm{T}}$$

Compute the Eigenvectors(N²), u_i of AA^T
Matrix AA^T is very large, so computing all Eigenvectors not practical
Compute the Eigenvectors(M), v_i of A^TA
AA^T and A^TA have the same eigenvalues and their eigenvectors are related as follows!! u_i=Av_i

Keep only K eigenvectors (corresponding to K largest values)

Each training image is projected to face space using

 $w_j = u_j^T \Phi_i$

Each Φ, can be represented as a vector Ω_i as follows!!!

$$\Omega_{i} = \begin{bmatrix} w_{1}^{i} \\ w_{2}^{i} \\ \dots \\ w_{K}^{i} \end{bmatrix}, \quad i = 1, 2, \dots, M$$

For each test image Ω is found
e_i=|Ω-Ω_i|
Test image is assigned to nearest training sample in the face space

Disadvantages of Eigenface Approach

Sensitive to large variations in lighting
Facial Expressions

Because it maximizes the total scatter across all classes but it retains the unwanted variations due to lighting and facial expressions

Different Lighting Conditions

Same person appears different and PCA suffers

EE Dept. IIT Delhi

courtesy:Source [4]

Fisherface Approach

It is class specific method

Shapes the scatters in order to make it more reliable for classification

Principle:

 Projects the image set to a lower dimension space using PCA, followed by the FLD phase
 PCA helps us achieve non-singularity of S_W prior to computation of optimal projection W_{FLD}

Comparison of PCA and FLD for **Two Class Data** class 1 0.8 class 2 0 0.6

Fisher Linear Discriminant

Between Class Scatter Matrix S_B

C

$$S_{\rm B} = \sum_{i=1}^{N} N_i (\mathbf{m}_i - \overline{\mathbf{m}}) (\mathbf{m}_i - \overline{\mathbf{m}})^{\rm T}$$

 N_i - Number of samples in class X_i m_i - mean image of class X_i

m -mean of all the images

Within Class Scatter Matrix S_w

$$S_{\mathrm{W}} = \sum_{i=1}^{c} \sum_{x_k \in C_i} (\mathbf{x}_k - \mathbf{m}_i) (\mathbf{x}_k - \mathbf{m}_i)^{\mathrm{T}} = \sum_{i=1}^{c} S_{\mathrm{W}_i}$$

c- number of classes in training samples

Fisher Linear Discriminant

Optimal Projection Matrix

It maximizes the ratio of the determinant of between class scatter matrix of projected patterns to the determinant of within class scatter matrix of projected patterns

$$W_{\text{FLD}} = \arg \max_{W} \frac{|W^{\text{T}} S_{\text{B}} W|}{|W^{\text{T}} S_{\text{W}} W|} = [\mathbf{w}_{1} \quad \mathbf{w}_{2} \quad \cdots \quad \mathbf{w}_{m}]$$

• Where $\{\mathbf{w}_i | i = 1, 2, ..., m\}$ is the set of eigenvectors of S_B and S_W corresponding to m largest eigenvalues $\{\lambda_i | i = 1, 2, ..., m\}$

$$S_{\mathrm{B}}\mathbf{w}_{i} = \lambda_{i}S_{\mathrm{W}}\mathbf{w}_{i}, \quad i = 1, 2, \dots, m.$$

Rank of S_B is c-1 and rank of S_W is at most N-c

Fisherface Approach

In the face recognition problem S_W matrix is always singular (number of images in learning set N is much smaller the number of pixels in each image)

Fisherface avoids this problem by projecting the image set to a lower dimension space using PCA and then applying standard FLD

Fisherface Approach

Optimal projection matrix

$$W_{opt}^{T} = W_{fld}^{T} W_{pca}^{T}$$

where

$$W_{pca} = \arg \max_{W} \left| W^{T} S_{T} W \right|$$
$$W_{fld} = \arg \max_{W} \frac{\left| W^{T} W_{pca}^{T} S_{B} W_{pca} W \right|}{\left| W^{T} W_{pca}^{T} S_{W} W_{pca} W \right|}$$

- Optimization for $\mathbf{W}_{\mathrm{PCA}}$ is performed ove $n \times (N-c)$ matrices with orthonormal columns

- While the optimization for $\mathbf{W}_{\rm FLD}$ is performed $(N-c)\times m$ over matrices with orthonormal columns

Fuzzy Fisherface Approach

More sophisticated usage of class assignment of patterns (faces)

Classification results affect the within-class and between-class scatter matrices

Algorithm

- Given set of feature vectors transformed by the PCA,
- $X = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N\},$ Partition matrix

U=[μ_{ij}] for i = 1, 2, ..., c and j = 1, 2, ..., N

Which satisfies, $\sum_{i=1}^{c} \mu_{ij} = 1$ $0 < \sum_{j=1}^{N} \mu_{ij} < N$

The Computations Of Membership Degrees

- Compute the Euclidean distance matrix between pairs of feature vectors in the training,
- Set diagonal elements of this matrix to infinity,
- Sort the distance matrix in ascending order,
 Collect the class labels of the patterns located in the closest neighborhood of the pattern,

The Computations Of Membership Degrees

Compute the membership grade to class i for jth pattern,

 $\begin{cases} 0.51 + 0.49(n_{ij} / k) & \text{if } i = \text{same as the label of the } jth \text{ pattern} \\ 0.49(n_{ij} / k) & \text{if } i \neq \text{same as the label of the } jth \text{ pattern} \end{cases}$

where n_{ij} is number of the neighbors of the jth data that belong to ith class

FKNN Initialization

Fig. Fuzzy membership degree using FKNN initialization (k=3).

courtesy:Source [1]

Algorithm

- Results of FKNN are used in computations of mean value and scatter covariance matrices,
- Mean vector of each class

$$\tilde{m}_{i} = \frac{\sum_{j=1}^{N} \mu_{ij} X_{j}}{\sum_{j=1}^{N} \mu_{ij}}$$

The between class and within class fuzzy scatter matrices are respectively, $S_{FB} = \sum_{i=1}^{c} N_i (\tilde{m}_i - \tilde{m}) (\tilde{m}_i - \tilde{m})^T$

$$S_{FW} = \sum_{i=1}^{c} \sum_{x_k \in C_i} (x_k - \tilde{m_i})(x_k - \tilde{m_i})^T = \sum_{i=1}^{c} S_{FW}$$

EE Dept. IIT Delhi

Algorithm

The optimal fuzzy projection W_{F-FLD} and feature vector transformed by fuzzy fisherface method are given by

$$W_{F-FLD} = \arg \max_{W} \frac{\left| W^{T} S_{FB} W \right|}{\left| W^{T} S_{FB} W \right|}$$
$$\tilde{v}_{i} = W_{F-FLD}^{T} X_{i} = W_{F-FLD}^{T} E^{T} (z_{i} - \overline{z})$$

Flowchart

Fig.A general flow of computing for the fuzzy fisherface method.

EE Dept. IIT Delhi

courtesy:Source [1] 27

Comparison

Eigenface

Fisherface

Fuzzy Fisherface

Test Image Recognized Image

(b)

(c)

EE Dept. IIT Delhi

courtesy:Source [1] 28

Comparison of Recognition Rates

Conclusion

- Fuzzy fisherface approach outperform the other two methods for the datasets considered.
- Sensitivity variations in illumination and facial expression reduced substantially.
- Fuzzy sets can efficiently manage the vagueness and ambiguity of face images degraded by poor illumination component.

References

- Keun-Chang Kwak, Witold Pedrycz : Face Recognition Using Fuzzy Fisherface Classifier, Science Direct Journal Of Pattern Recognition Society 38(2005),1717-1732
- Turk, M., Pentland, A.: Eignefaces for Recognition. Journal of Cognitive Neuroscience, Vol.3, (1991) 72-86
- Turk, M., Pentland, A.: Face Recognition Using
 Eignefaces. In Proc. IEEE Conf. On Computer Vision and Pattern Recognition. (1991) 586-591
- Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. Fisherfaces: Face Recognition using class specific linear projection. In Proc. ECCV, (1996) 45-58