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Introduction

m Growing interest in biometric authentication
National ID cards, Airport security, Surveillance.
Fingerprint, iris, hand geometry, gait, voice, vein and face.

m Face recognition offers several advantages over

other biometrics:
Covert operation.
Public acceptance.
Data required is easily obtained and readily available.

m Approaches include:
Feature analysis, Appearance-Based.
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" S
PCA Based Approach (Eigenface)

m Developed in 1991 by M. Turk
m Relatively simple

m PCA seeks directions that are efficient for
representing the data

m Reduces the dimension of the data
m Speeds up the computational time
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Eigenfaces, the algorithm

m Original Images (l4,l5,.........., I\)
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Eigenfaces, the algorithm

m The mean face can Mean-Face
be computed as:

a +b +L +h
+b, +L +
LP=ia2 " k . WhereM =8
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b+Lm
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Eigenfaces, The Algorithm

m Then subtract it from the training faces
(P=l-Y)
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Eigenfaces, The Algorithm

m Now we build the matrix which is N2 by M

B 3 Jg R e |

m The covariance matrix which is N2 by N?

Cov =AA"
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Eigenfaces, The Algorithm

m Compute the Eigenvectors(N?), u. of AAT

m Matrix AAT is very large, so computing all
Eigenvectors not practical

m Compute the Eigenvectors(M), v. of ATA

m.AAT and ATA have the same eigenvalues and
their eigenvectors are related as follows!!

u=Av,
m Keep only K eigenvectors (corresponding to K
largest values)
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Eigenfaces, The Algorithm

m Each training image is projected to face

space using
wi=u,"®,
m Each @, can be represented as a vector
(). as follows!!!
Wi

_ W
Q=" i=12... .M

i
| Wk
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Eigenfaces, The Algorithm

m For each test image Q is found

me=|0-Q]

m [est image Is assigned to nearest training
sample in the face space
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Disadvantages of Eigenface
Approach

m Sensitive to large variations in lighting
m Facial Expressions

@Because it maximizes the total scatter
across all classes but it retains the
unwanted variations due to lighting and
facial expressions
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Different Lighting Conditions

m Same person appears different and PCA
suffers

courtesy:Source [4] o
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Fisherface Approach

m |t is class specific method

Shapes the scatters in order to make it more reliable
for classification

Principle:
m-Projects the image set to a lower dimension
space using PCA , followed by the FLD phase

m PCA helps us achieve non-singularity of S, prior
to computation of optimal projection W
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Comparison of PCA and FLD for
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Fisher Linear Discriminant

m Between Class Scatter Matrix Sg

.
SB = Z N; (m; —m)(m; —m)!
i=1
N.- Number of samples in class X
m.- mean image of class X

ﬁ -mean of all the images
m  Within Class Scatter Matrix S,

.
Sw=) > (X —m)(xp— m; )’

i=1 x;eC;
c- number of classes in training samples

EE Dept. IIT Delhi

(*
— Z S\V,-
i=1

16



Fisher Linear Discriminant

m  Optimal Projection Matrix
It maximizes the ratio of the determinant of between class
scatter matrix of projected patterns to the determinant of
within class scatter matrix of projected patterns

" Wlsgw
FI.D = arg max T =
S WTsww|

(lwp w0 Wy |

m Where {W;|i=1,2,...,m} is the set of eigenvectors of S; and S,
corresponding to m largest eigenvalues /.|, =1, 2, ..., m)

Spw; = /4; Sww;, =1,2,...,m.

m  Rank of S is ¢-1 and rank of S, is at most N-c
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Fisherface Approach

m In the face recognition problem S,,, matrix
Is always singular (number of images in
learning set N is much smaller the number
of pixels in each image)

m‘Eisherface avoids this problem by
projecting the image set to a lower
dimension space using PCA and then
applying standard FLD
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Fisherface Approach

» Optimal projection matrix

T
Wo pt

= W, W,

pca

where
W == atgmaX|W S W|

pca

pca 1 pc a

v, W\
Wy, = arg 215D i
J('ISH pm

» Optimization for W, is performed ovein x (N - ¢
matrices with orthonormal columns

« While the optimization for W is performed (N — ¢) x m
over matrices with orthonormal columns
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Fuzzy Fisherface Approach

m More sophisticated usage of class
assignment of patterns (faces)

m Classification results affect the within-class
and between-class scatter matrices
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Algorithm

m Given set of feature vectors transformed by the
PCA,

X X5, e, Xh
m Partition matrix

U=[ ;] fori=12,.,candj=12,..,N

Which satisfies, Z Ty

N
0< > p <N
=1
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The Computations Of Membership

Degrees

m Compute the Euclidean distance matrix
between pairs of feature vectors in the
training,

m Set diagonal elements of this matrix to
Infinity,

m Sort the distance matrix in ascending order,

m Collect the class labels of the patterns
located in the closest neighborhood of the
pattern,
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Hij <

The Computations Of Membership
Degrees

= Compute the membership grade to classli for jth
pattern ,

(0.51+ 0.49(n; /k) 1f I =same as the label of the jth pattern
0.49(n; /K) If I #same as the label of the jth pattern

where n; Is number of the neighbors of the
jth data that belong to ith class
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FKNN Initialization
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Algorithm

m Results of FKNN are used in computations of
mean value and scatter covariance matrices,

m Mean vector of each class
N
J Z Moy X
: Pl
N
Z H i
j=1

m [he between class and within class fuzzy scatter
matrices are respectlvely,

Sea ZN(ml m)(m. m)

Sew :Z Z (X _mi)(xk _mi)T :ZC:SFWi
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Algorithm

m The optimal fuzzy projection W, and
feature vector transformed by fuzzy fisherface
method are given by

WS, W
W TS, W

We _pp = arg mv\?x

\;i :WFT—FLDXi :WFT—FLDET (z, _E)
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Flowchart .«
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Compar_lg,?_lrquBe_cogmtlon Rates
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Conclusion
m Fuzzy fisherface approach outperform the other
two methods for the datasets considered.

m Sensitivity variations in illumination and facial
expression reduced substantially.

m Fuzzy sets can efficiently manage the
vagueness and ambiguity of face images
degraded by poor illumination component.
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