

Face Recognition Using Fuzzy Fisherface Classifier

Presenters: Nilesh Padwal Vivek K. Rajat Rastogi

Contents

- Fuzzy Fisherface Appproach
- Algorithm
- Flowchart
- Yale Database
- ORL Database
- Comparison of Recognition Rates
- Conclusion
- References

Fuzzy Fisherface Approach

More sophisticated usage of class assignment of patterns (faces)

Classification results affect the within-class and between-class scatter matrices

The Computations Of Membership Degrees

Compute the membership grade to class i for jth pattern,

 $\begin{cases} 0.51 + 0.49(n_{ij} / k) & \text{if } i = \text{same as the label of the } jth \text{ pattern} \\ 0.49(n_{ij} / k) & \text{if } i \neq \text{same as the label of the } jth \text{ pattern} \end{cases}$

where n_{ij} is number of the neighbors of the jth data that belong to ith class

Algorithm

- Results of FKNN are used in computations of mean value and scatter covariance matrices,
- Mean vector of each class

$$\tilde{m}_{i} = \frac{\sum_{j=1}^{N} \mu_{ij} X_{j}}{\sum_{j=1}^{N} \mu_{ij}}$$

The between class and within class fuzzy scatter matrices are respectively, $S_{FB} = \sum_{i=1}^{c} N_i (\tilde{m}_i - \tilde{m}) (\tilde{m}_i - \tilde{m})^T$

$$S_{FW} = \sum_{i=1}^{c} \sum_{x_k \in C_i} (x_k - \tilde{m_i})(x_k - \tilde{m_i})^T = \sum_{i=1}^{c} S_{FW}$$

EE Dept. IIT Delhi

Algorithm

The optimal fuzzy projection W_{F-FLD} and feature vector transformed by fuzzy fisherface method are given by

$$W_{F-FLD} = \arg \max_{W} \frac{\left| W^{T} S_{FB} W \right|}{\left| W^{T} S_{FB} W \right|}$$
$$\tilde{v}_{i} = W_{F-FLD}^{T} X_{i} = W_{F-FLD}^{T} E^{T} (z_{i} - \overline{z})$$

Flowchart

Fig.A general flow of computing for the fuzzy fisherface method.

EE Dept. IIT Delhi

courtesy:Source [1] 7

Yale Database

- Total Images- 165, total Classes- 15 (11 Images For Each Class)
- One Image for each configuration: Center-light, glasses/no glasses, happy, normal, left/right light, sad, sleepy, surprised, wink.

Yale Database

 Mugshots were acquired using digicam,
Each image was digitized and presented by a 243 X 320 pixel array

ORL Database

- Total Images: 400, total classes: 40 (10 Images) for each class)
- Mugshots were acquired using DigiCam, varying facial details
- Each image was digitized and presented by a 112 X 92 pixel array

10

Comparison of Mean Recognition Rates (Yale)

	Eigenface (PCA) (%)	Fisherface (PCA+LDA)(%)	Fuzzy Fisherface (Fuzzy+PCA+LDA) (%)
Case 1 (6-training, 5-testing)	72.44	93.4	94.2
Case 2 (7-training, 4-testing)	71.66	96.04	96.24
Case 3 - (5-training, 6-testing)	70.85	91.94	93.87

Comparison of Mean For Recognition Rates (ORL)

	Eigenface (PCA) (%)	Fisherface (PCA+LDA)(%)	Fuzzy Fisherface (Fuzzy+PCA+LDA) (%)
Case 1 (6-training, 4-testing)	90.94	95.59	97.12
Case 2 (5-training, 5-testing)	91.13	94.75	95.5
Case 3 (4-training, 6-testing)	86.94 EE Dept	93.38 . IIT Delhi	93.50

Comparison of Recognition Rate For Yale Database

Comparison of Recognition Rate For ORL Database

Confusion Matrix (Yale) Case 2(7/4)

Fisherface

Fuzzy Fisherface

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	3	1													
2		4													
3			4												
4				4											
5					4										
6						4									
7							4								
8								4							
9					1			1	2						
10										4					
11											4				
12												4			
13													4		
14														4	
15															4

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	4														
2		4													
3			4												
4				4											
5					4										
6					1	3									
7							4								
8								4							
9									4						
10										4					
11											4				
12												4			
13							1						3		
14														4	
15															4

Comparison

Input Image

Matched Image

Comparison

Comparison

Eigenface

Fisherface

Input Image

Matched Image

Fuzzy Fisherface

Conclusion

Fuzzy fisherface approach outperforms the other two methods for the datasets considered.

 Sensitive to variations in illumination and facial expression reduced substantially.

References

- Keun-Chang Kwak, Witold Pedrycz : Face Recognition Using Fuzzy Fisherface Classifier, Journal of Pattern Recognition 38(2005),1717-1732
- Turk, M., Pentland, A.: Eignefaces for Recognition. Journal of Cognitive Neuroscience, Vol.3, (1991) 72-86
- Turk, M., Pentland, A.: Face Recognition Using Eignefaces. In Proc. IEEE Conf. On Computer Vision and Pattern Recognition. (1991) 586-591
- Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. Fisherfaces: Face Recognition using class specific linear projection. In Proc. ECCV, (1996) 45-58
- Yale Face Database, <u>http://cvc.yale.edu/projects/yalefaces/yalefaces.html</u>
- ORL Face Database, <u>http://www.uk.researcheattpoom/facedatabase.html</u>

