Efficient Iris Recognition by Characterizing Key Local Variations

by

Li Ma, Tieniu Tan, Fellow, IEEE, Yunhong Wang, Member, IEEE, and Dexin Zhang

Presented By
1. BHARAT SATIJA
2. ROHIT KAINTH
3. ASHU MEHROTRA
ABSTRACT

1) a set of one-dimensional intensity signals is constructed to effectively characterize the most important information of the original two-dimensional image.

2) using a particular class of wavelets, a position sequence of local sharp variation points in such signals is recorded as features.

3) matching scheme based on euclidean distance to compute the similarity between a pair of position sequences.
Diagram of approach

1. Iris image
2. Background removal
3. Iris image normalization
4. Generate a set of 1-D signals
5. Analyze the resulting signals using wavelet transform
6. Record the position of local sharp variation points
7. Feature vector
Preprocessing - Localization

- Project the image in vertical and horizontal directions
 - Pupil generally darker than surroundings
 - Minima of the two projection profiles gives centre of pupil \((X_p, Y_p)\).

- For more accuracy
 - Binarize a 120X120 region around \((X_p, Y_p)\)
 - Centroid of resulting region is new centre
 - Repeat for more accurate result

- Exact parameters of the two circles found using edge detection and Hough transform.
Circle Detection
Preprocessing - Normalization

- Irises may be captured in different sizes.
- Size may also change due to illumination variations.
- Annular Iris is un-wrapped counter clockwise to a rectangular texture block with a fixed size.
- Helps in reducing distortion of iris caused by pupil movement.
- Also simplifies subsequent processing.
Preprocessing - Enhancement

- Normalized image has low contrast and may have non-uniform brightness.
- An estimate of intensity variations is found using bicubic interpolation using 16X16 blocks.
- This estimate is then subtracted from the normalized image.
- More enhancement is done using Histogram Equalization in each 32X32 region.
Pre-processing

Normalized image

Local average intensity

Enhanced
Feature Extraction

- The 2-d normalized image is decomposed into 1-D signals S_i.

$$S_i = \frac{1}{M} \sum_{j=1}^{M} I_{(i-1)M+j} \quad i = 1, 2, \ldots, N$$

I is normalized image ($K \times L$)

I_x denotes gray values of xth row

M is total no. of rows used to form S_i

N is total no. of 1-D signals
Feature Extraction

- A set of such signals contains most of the local features.
- Such representation reduces computational costs.
- Iris regions close to sclera contain few texture characteristics.
- So features are extracted from the top 78% of the image.
- $K \times 78\% = N \times M$
- Recognition rate regulated by changing M.
Feature Vector

- There is an underlying relationship between information at consecutive scales.
- The signals at finer scales are easily contaminated by noise.
- Hence only scales are used.
- For each intensity signal S_i, the position sequences at two scales are concatenated to form the corresponding features.
Feature Vector

\[f_i = \{d_1, d_2, \ldots, d_i, \ldots, d_m; d_{m+1}, d_{m+2}, \ldots, d_{m+n}; p_1, p_2\} \]

• Here,

\[d_i = \text{position of sharp local variation point in } S_i \]
\[m = \text{no. of components from first scale} \]
\[n = \text{no. of components from the second scale} \]
\[p_i = \text{property of first local sharp variation point at two scales: minima (+1) and maxima (-1).} \]

• Features from different 1-D intensity signals are concatenated to constitute an ordered feature vector

\[f = \{f_1, f_2, \ldots, f_i, \ldots, f_N\} \]
Matching

- The similarity between a pair of expanded feature vectors is calculated using the Euclidean distance.
- Distances below a threshold of 50 were found to be of the same person.
Distance = 31.4072
Implying ‘acceptance’
Result

Distance = 123.7437
Implying ‘rejection’
Thank You
Translation, Scale and Rotation

- Translation invariance is inherent because the original image is localized before feature extraction.
- To achieve approximate scale invariance, normalize irises of different size to the same size.
- Rotation in the original image corresponds to translation in the normalized image.
- The binary sequence at each scale can be regarded as a periodic signal, hence we obtain translation invariant matching by circular shift.
- After several circular shifts, the minimum matching score is taken as the final matching score.