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ABSTRACT 

 
This paper presents a new evolutionary approach for adaptive combination of multiple biometrics to 

ensure the optimal performance for the desired level of security. The adaptive combination of multiple 

biometrics is employed to determine the optimal fusion strategy and the corresponding fusion 

parameters. The score level fusion rules are adapted to ensure the desired system performance using a 

hybrid particle swarm optimization model. The rigorous experimental results presented in this paper 

illustrates that the proposed score-level approach can achieve significantly better and stable 

performance over the decision level approach. There has been very little effort in the literature to 

investigate the performance of adaptive multimodal fusion algorithm on real biometric data. This 

paper also presents the performance of the proposed approach from the real biometric samples which 

further validate the contributions from this paper.    

  1. INTRODUCTION 

The biometrics based controlled access to the protected resources has emerged shown to offer higher 

security and convenience to the users. The security of the protected resources and information can be 

further enhanced with the usage of multimodal biometrics. The multimodal biometrics management 

refers to the process which seeks to manage or coordinate the usage of various biometric modalities in 

a manner that improves the process of data fusion and perception, synergistically. The design of 

multimodal biometrics system to ensure the varying requirements of security and traffic flow has 

invited very little attention in the literature. There has been very little work on the theory, architecture, 

implementation, or the performance estimation of multimodal biometrics system that can adaptively 

ensure the varying security requirements. Most of the multi modal biometric systems proposed in the 

literature use a fixed combination rule and a fixed threshold to achieve the desired performance. The 
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Figure 1: The key operational regions for a typical biometrics system 

desired performance is often the minimum Equal Error Rate (EER). These systems offer a fixed level 

of security and often have to contend with high false rejection rate if the security level is at the highest. 

The parameters of the combination rule employed are tuned to provide the desired performance for a 

fixed security level. Therefore the performance of these systems is not adaptive to the varying level of 

security level requirements. However, there are wide ranging applications where a biometric system 

with multiple levels of security is desirable. Figure 1 shows the typical Receiver Operating 

Characteristics (ROC) for a biometric system. The highlighted points on the curve indicate the desired 

operating points for different applications [30]. There are also times when security levels of a 

biometric system should be set depending on the perceived threat. Therefore reliable multomodal 

biometrics management algorithms that are adaptive to the desired level of security and traffic flow 

are desirable. The design and development of such multimodal biometrics systems that can 

automatically select the best set of fusion rules, fusion rule parameters, and decision threshold to 

achieve the best performance (security level) is one of the open problems investigated in this paper. 

The dynamic selection of number of biometric modalities, based on user preferences, user constraints, 

image/biometric quality, to reliably achieve the desired level of performance is another related 

problem open in biometrics research. 
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1.1 Prior Work and Motivation 

The biometric systems that employ single biometric trait (unimodal biometric systems) suffer from 

inherent short comings such as limited discriminability, intra-class variations, vulnerability to spoof 

attacks, etc. The multimodal biometric systems, on the other hand, offer significantly higher security 

and concomitant reduction in the vulnerability to various attacks. Research efforts on multimodal 

biometrics have invited lot of attention and several fusion strategies have been proposed in the 

literature [1]-[4], [12]. Kittler et al. [2] have experimented with several fixed combination strategies 

for performance improvement on real biometrics data. In the context of multi-classifier fusion using 

score level architecture, it has been shown [3]-[4] that the trainable fusion strategies do not necessarily 

perform better than fixed combination rules. Authors in [22] proposed an interesting approach to 

achieve high security using multimodal biometrics. Their approach involves performing continuous 

verification using user’s passively collected fingerprint and face biometric data. However, this 

approach requires continued physical presence of the user and therefore is not suitable for certain kind 

of applications including the popular access control applications. Tronci et al. [28] have recently 

investigated another aspect of multimodal problem that focuses on the dynamic selection of matching 

scores from all the available matching scores. The best matching score from a set of matching scores 

is selected based on the likelihood of input user being genuine or impostor. However the utility of this 

approach is quite limited as the achieved performance is not consistent and very little or negligible. 

BioID system developed by Frischholz et al. [23] offers multiple security levels by employing 

different decision strategies on the biometric modalities (face, lip motion and voice) being fused. 

When the required security level is low, it may well be enough to make a decision based on the 

agreement of two out of three modalities. On the other hand, for high security applications, this system 

demands agreement of all the three modalities. However, BioID system does not provide a systematic 

way to vary the level of security. Instead, a system administrator makes a decision on the decision 
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strategies to be adopted to achieve the desired performance.  

Veeramachaneni et al. [1] have presented a promising approach to the adaptive management of 

multimodal biometrics to adaptively ensure the desired performance. Authors in [1] employed the 

decisions from the individual biometric sensors to adaptively select the decision rule that can meet the 

desired performance constraint. The work detailed in [1], [27] is certainly promising but has several 

limitations. Firstly, the decision level combination approach has higher performance variations and 

therefore generates relatively unstable results which require significantly higher number of iterations 

(average of the results from the hundred runs are employed). In addition, decision level has least 

information content among other fusion levels (feature level and match score level). Therefore the 

performance from the combination of abstract labels at the decision level is expected to be quite 

limited. Matching scores, on the other hand, contain more information than the resulting decisions and 

therefore adaptive combination of matching scores can lead to better performance. Furthermore, the 

distribution of matching scores in [1] is assumed to be Gaussian which may not be true for several 

biometric sensors. The iris is one of the most promising biometric for large scale user identification 

and its imposter match score distribution has been shown [7] to closely follow the binomial 

distribution. The Poisson distribution PP(m, ) of matching score m can be used as convenient 

approximation to binomial distribution PB(m; n, ) when n is large and  is small. Another important 

problem in [1] relates to the usage of only simulated data. There has been no effort to investigate the 

performance of the adaptive multimodal system performance on real biometric data which makes it 

very difficult to ascertain its utility. 

 

 

 



 5Figure 2: The block diagram of the proposed system using adaptive score-level combination 

1.2 Our Work 

This work is focused on the development of multimodal biometric system that can include multiple 

fusion rules in a dynamic architecture to ensure varying security requirements. The main contributions 

from this paper [32] can be summarized as follows. Firstly, a new approach for the management of 

access control to ensure the desired level of security (performance) using the adaptive combination of 

multimodal matching scores is developed. The performance of the proposed approach is ascertained to 

be superior as compared to the decision-level approach. Secondly, we present the experimental results 

from the biometric sensors that can generate non-Gaussian distribution of matching scores. Our 

experimental results show that the proposed score-level approach generates fairly stable performance 

and requires smaller number of iterations as compared to the decision-level approach employed in [1]. 

Lastly, but most importantly, this paper shows the utility of adaptive multimodal biometric fusion on 

the real biometric samples. We also investigate the adaptive combination of iris and palmprint 

biometric, on publicly available database, to ascertain the average error while achieving/ensuring 

varying level of security.  The results from the real biometric scores also suggest the superiority of 

score-level approach over decision-level approach. 
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2. ADAPTIVE MANAGMENT OF SCORES 

This paper presents a new framework for the adaptive combination of multimodal biometric sensors. 

The block-diagram of the proposed approach is shown in figure 2. The multimodal biometric data 

from N sensors is used to extract the corresponding F1, F2, …., FN feature vectors. These feature 

vectors are employed to generate the matching scores s1, s2, …, sn from the corresponding templates 

acquired during the registration.    

The management of the multimodal sensors has to be adaptive to the desired level of security. 

The required level of security is the external parameter that is supplied to the system (figure 2). The 

homeland security advisory [5] system represents a typical example of the qualitative assessment of 

the adaptive security requirement. Depending on the perceived threat or risk of attack, this system 

recommends citizens a set of appropriate actions. In a similar way, the risk of attack on a biometric 

system can be varying and therefore it is critical for it to provide multiple levels of security. The 

security requirement, in Bayesian sense, is quantified with two parameters; the global cost (0 to 1) of 

falsely accepting an imposter CFA and the global cost (0 to 1) of falsely rejecting accepting a genuine 

user CFR from the installed biometrics system. These two costs can be employed to adequately 

quantify the desired performance. The Bayesian cost E to be minimized by the multimodal biometrics 

system is the weighted sum of FAR and FRR: 

E = CFAFAR() + CFR FRR(),   where  CFA + CFR = 2                                                     (1) 

where FAR() is the global or the combined false acceptance rate and FRR() is the combined false 

rejection rate at decision threshold  from the multimodal biometric system. The task of the 

multimodal biometrics management system (figure 1) is to minimize the (global) cost E, equation 1, 

by selecting (i) the appropriate score level combination rule, (ii) its parameters and (iii) the decision 

threshold. The multidimensional search among the various combination rules and their weight 
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parameters, to optimize the global cost E, is achieved by the particle swarm optimization (PSO) 

approach.  

2.1 Particle Swarm Optimization 

Particle swarm optimization is an evolutionary search algorithm developed based on the social 

behavior of a flock of birds trying to fly to a favorable environment. The PSO [24] is employed to find 

the solution for the adaptive selection of combination of individual points which are referred as the 

particles in multidimensional search space. Each particle (representing a bird the flock), characterized 

by its position and velocity, represents the possible solution in search space. Behavior of the particles 

in the PSO imitates the way in which birds communicate with each other, while flying. During this 

communication, each bird reviews its new position in the space with respect to the best position it has 

covered so far. The birds in the flock also identify the bird that has reached the best 

position/environment. Upon knowing this information, others in the flock update their velocity (that 

depends on a bird’s local best position as well as the position of the best bird in the flock) and fly 

towards the best bird. The process of regular communication and updating the velocity repeats until 

the flock finds a favorable position.  In a similar manner, the particle in the PSO moves to a new 

position in multidimensional solution space depending upon the particle’s best position (also referred 

to as local best position) (pak) and global best position (pgk). The pak and pgk are updated after each 

iteration whenever a suitable, i.e. lower cost, solution is located by the particle. The velocity vector of 

each particle represents/determines the forthcoming motion details. The velocity update equation [6] 

of particle a of the PSO, for instance (t +1), can be represented as follows: 

                     )()()()()()1( 2211 txtrctxtrctvtv akgkakakakak                                                 (2)      
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where  is the inertia weight between 0-1 and provide a balance between global and local search 

abilities of the algorithm. The accelerator coefficients c1 and c2 are positive constants, and r1 and r2 are 

two random numbers in 0-1 range. The corresponding position vector is updated by 

      )1()()1(  tvtxtx akakak                                                                                                  (3) 

The equation (2) indicates that the new velocity of a particle in each of its dimensions is dependent on 

the previous velocity and the distances from previously observed best solutions (positions of the 

particle).  

The particle swarm optimization approach detailed above operates on continuous space. 

However, there exists optimization problems where the particles are better represented as discrete 

binary variables.  Such problems require that these binary particles be evolved to obtain an optimal 

solution. A binary version of the particle swarm optimization algorithm is also described in reference 

[24]. The position vector for each particle in binary PSO can have a value of either zero or one on 

each dimension. The formula for calculating the velocity update in binary PSO remains the same as 

real valued version, except that ak , akx and gk  in equation (2) are binary valued. The velocity akv  for 

binary PSO represents the probability of bit akx taking the value 1. A sigmoid function S is employed 

to limit the value of the probability akv  to the range [0, 1]. Therefore the position vector of a particle 

in binary PSO is updated as follows: 


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2.2 Score-Level Combination 

The block diagram in figure 2 shows the framework for combining match scores from multiple 

biometric traits. In this work, we considered four score level combinations from sum or average, 

product, exponential sum and tan-hyperbolic sum. In fact any number of score level combination rules 

can be incorporated by expanding the proposed framework. The combined matching score S from 

each of these combinations is obtained as follows: 
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The PSO is employed to dynamically select the appropriate decision threshold and the weights (wj) to 

minimize the fitness function, i.e., Bayesian cost in equation (1), from each of the possible score-level 

combinations. In our implementation, each particle is characterized by three continuous variables; the 

parameters of score level fusion rule 1w  and 2w , decision threshold thr and a two bit discrete binary 

variable representing four different score level fusion rules. Therefore we employ a hybrid PSO with 

real valued and binary versions of the algorithm to determine the optimal fusion strategy and the 

corresponding fusion parameters.  

3. EXPERIMENTS AND RESULTS 

The effectiveness of the proposed scheme is ascertained from the rigorous experiments on the real 

biometric samples and also from the random samples generated from the real biometric matching 
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score distributions reported in the literature. The biometric literature is full of examples [31] to suggest 

that different biometric modalities/databases generate different performances from non-adaptive 

multi-biometrics system. In order to (i) estimate more reliable estimate on the performance and (ii) 

achieve better generalization of performance from the proposed framework, the experimental results 

from various publicly available biometric databases is reported in this paper. We firstly present the 

experimental results from the real biometric samples which include the combinations from (i) iris and 

palmprint, (ii) face and speech, and (iii) fingerprint and hand geometry in section 3.1, 3.2, and 3.3 

respectively. This is followed by the experimental results from the random samples generated from the 

(i) Beta-Binomial, (ii) Poisson and (iii) Gaussian distributions.  

3.1 Iris and Palmprint 

The iris has emerged as one of the most promising modality for the large scale user identification and 

highly suitable candidate for any multimodal biometric system. The literature on palmprint 

identification [13]-[15] has suggested reliable performance on the large databases. We therefore firstly 

investigated the performance of the proposed scheme on the adaptive combination of iris and 

palmprint biometrics. The database employed for the performance evaluation is publicly available on 

[16] and [18] respectively. The IITD iris database [18] consists of low resolution 320  240 pixel iris 

images from the 224 users. Therefore the first 224 palmprints from the PolyU palmprint database were 

randomly paired and employed for the experiments. The iris image normalization, enhancement, 

feature extraction, were same as detailed in [17]. The figure 3 shows a sample of iris image along with 

the enhanced normalized image from our database.  The combination of log-Gabor and Haar wavelet 

filters, as detailed in [17], was used to extract the features from each of the 48 × 432 pixels normalized 

iris images. The steps of image normalization and feature extraction for the palmprint images were 

similar as detailed in [15].  Figure 4  shows   a   sample   of   palmprint   image and the corresponding 
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Figure 7: Average minimum error from the score level and decision level approach using the adaptive 
combination of iris and palmprint modalities 

(a) 

Figure 9: Adaptive selection of fusion rules using score level combination (a) and decision level 
combination (b) 

(b)

Figure 8: Standard deviation of the minimum error, from each run, using score level and decision level 
approaches 
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normalized region of interest employed for the feature extraction. We employed 35  35 ordinal mask 

with x = 3, y = 10 to extract ordinal features from every 128  128 pixel normalized palmprint image. 

The PSO parameters c1, c2,  were experimentally selected and fixed at 1, 1, 0.8 respectively for all 

the experiments reported in this paper. The initial positions of the particle are randomly selected in the 

search space (uniform distribution assumption). Therefore the PSO generates varying results from 

each run and the experimental results from the average of the results in several runs are employed.  

The receiver operating characteristics from the iris and palmprint are shown in figure 5, while 

the distribution of genuine and imposter matching scores is shown in figure 6. Figure 7 shows the 

average of the minimum weighted error rate, achieved from the proposed score level adaptive 

combination scheme, for varying security requirements. This security level is essentially the sum of 

cost of false acceptance (CFA) and cost of false rejection (CFR). Therefore whenever the security level 

is varied in the x-axis of figure 7, we actually traverse from one end of the receiver operating 

characteristics to other end (figure 1). This figure also illustrates the average of minimum error when 

the decision-level approach is employed. It can be observed from this figure that the average error rate 

is always minimum, for all the selected costs or security level, using proposed score-level scheme as 

compared with the error rate obtained from the decision-level approach in [1] [27]. While 

incorporating the decision-level approach, we report the results from 100 runs as used in [1]. The 

figure 8 shows the standard deviation of the minimum error, from each run, for the decision level 

approach and those from the score-level approach. It can be observed that the results from the 

proposed scheme are significantly stable, i.e., have smaller (near zero) standard deviation, and 

therefore require significantly smaller number of iterations. Our observations have suggested (figure 8) 

that only single run is adequate to achieve the stable results from score-level combination as compared 

to the 100 runs employed for decision-level approach. The figure 9(a) and 9(b) shows the adaptive 
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Figure 10: Receiver operating characteristics for face and speech biometric samples using 
XM2VTS database. 

selection of score level and the decision level rules respectively, with the variation of security level, 

obtained from this set of experiments.  

3.2 Face and Speech 

Another set of experiments was performed on the synchronized face and speech database from 295 

subjects using the publicly available XM2VTS [20] database. This database is divided into set of 200 

gennuine and 70 imposter subjects while the rest of 25 subjects are employed for evaluation imposters 

using Lausane Protocol (LP1) as detailed in [21]. The DCT (Discrete Cosine Transform) coefficients 

from each of the 80  64 pixel face images are used to generate matching scores using GMM 

(Gaussian Mixture Model). The LFCC (Linear Filter-Bank Cepstral Coefficient) obtained from the 

speech data in 20 milliseconds window is used to generate genuine and imposter matching scores 

using GMM. The extraction of features and corresponding matching scores is detailed in reference 

[21]. The ROC from the test samples for face and speech biometric is shown in figure 10 while the 

distribution of genuine and imposter matching scores is shown in figure 11(a)-(b). It can be observed 

from figure 11(c) that the weighted sum, tan-hyperbolic sum, and weighted product combination is 

adaptively selected as the security level in varied in the range 0-2. The summary of experimental 

results presented in figure 11 from XM2VTS database again confirms the advantage of proposed 

adaptive score-level approach. 
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(d) (c) 

(a) (b) 

Figure 11: Distribution of matching scores from face and speech biometric samples in (a) and (b) respectively; 
adaptive selection of fusion rules using score level and decision level in (c) and (d) respectively; the average and 
standard deviation of minimum error from the adaptive score and decision level combination in (e) and (f) 
respectively 

(f) (e) 
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Figure 12: Distribution of matching scores from hand geometry and fingerprint biometric in (a) and (b) 
respectively; adaptive selection of fusion rules using score level and decision level in (c) and (d) respectively; the 
average and standard deviation of minimum error from the adaptive score and decision level combination in (e) 
and (f) respectively 
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3.3 Fingerprint and Hand Geometry 

In order to evaluate the performance on real hand biometrics samples, the fingerprint and hand 

geometry matching scores from the 100 users were employed. The fingerprint images from the 

FVC2004 DB2 database [10] which are composed of 8 images from each of 100 users were employed. 

The hand geometry image samples from 100 users, as acquired in [8], were used for the feature 

extraction. The matching score from these two biometric was generated as detailed in [9], [11]. The 

700 gennuine and 69300 imposter scores from each of the two biometric were generated. The 

fingerprint matching score employed min-max normalization. The distribution of the normalized 

matching scores from the two biometric modalities is shown in figure [9]. The distribution of 

fingerprint matching scores is similar to as in [12] mainly due to the usage of FVC2004 DB2 database. 

The performance from the adaptive combination of hand geometry and fingerprint biometric is shown 

in figure 12(e)-(f) while the adaptive selection of rules is shown in figure 12(c)-(d). It can be observed 

from the figure 11 that the performance from the score level adaptive combination is significantly 

better as compared to the decision level combination. 

3.4 Simulated Score Distributions 

In this set of experiments, the class conditional matching scores were obtained from the random 

samples corresponding to the parametric model of given biometrics. The experimental results from the 

real finger-vein image samples from right index fingers of 506 subjects, as detailed in [25]-[26], are 

employed to generate the parameters for the genuine and imposter score distributions. The genuine 

matching score distributions from these 1012 (506  2) pairs of identical right index fingers follow the 

beta-binomial distribution with n = 400,   = 8.49, and  = 94.19.                             

                                                                       (9) 

where B( , ) is the complete beta function and (, ) are its shape parameters [29].  
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The imposter distributions from 255,530 of matching scores follow normal distribution as detailed in 

[25]. Therefore 1012 randomly sampled genuine scores corresponding to beta-binomial distribution (m 

= 400,   = 8.49, and  = 94.19), and 255,530 randomly sampled imposter scores corresponding to 

normal distributions were employed to ascertain the performance from the adaptive combination of 

finger-vein biometric from two fingers. The figure 13 (a)-(b) illustrates distribution of genuine and 

imposter matching scores from the two fingers.  The adaptive selection of rules with the varying level 

of security is illustrated in figure 13(c)-(d) while the comparative performance from the adaptive 

combination of two finger-vein biometric is illustrated in figure 13(e)-(f). The experimental results in 

this figure again confirm the significant performance improvement from the proposed score-level 

adaptive combination scheme as compared to the decision level combination. 

 The generalization and characterization of genuine and imposter matching scores from the real 

biometric samples using any specific parametric form is very difficult. Therefore another set of 

experiments was performed for the case when the score distribution is Poisson. The randomly sampled 

1000 genuine and 1,000,00 imposter matching scores, with the mean parameter () 30,40 for first and  

38, 48 for the second modality, were employed to ascertain the performance. The experimental results 

from this set of experiments are summarized in figure 14. These results again confirm the advantages 

of proposed approach using adaptive score-level combination over decision-level approach when the 

score distributions are Poisson. It is well-known that the Gaussian distributions does not capture 

information contained in the tails of distribution while matching score distributions generally have 

large tail. Therefore Gaussian distribution may not be appropriate to model genuine and imposter 

score distributions. However, reference [1] presented experimental results from the decision level 

adaptive combination approach using Gaussian score distributions. Therefore another set of 

experiments    were focused     to     investigate  the   performance from unimodal systems whose score  
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(f) (e)

(d) (c)

(b) (a)

Figure 13: Distribution of matching scores from the beta-binomial distribution for two sensors corresponding to 
finger vein matching scores in (a) and (b); adaptive selection of fusion rules using score level and decision level 
in (c) and (d) respectively; the average and standard deviation of minimum error from the adaptive score and 
decision level combination in (e) and (f) respectively 
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(d) (c)

(b) (a)

(f) (e)

Figure 14: Distribution of matching scores from the two modalities using randomly sampled Poisson 
distributions in (a) and (b); adaptive selection of fusion rules using score level and decision level in (c) and (d) 
respectively; the average and standard deviation of minimum error from the adaptive score and decision level 
combination in (e) and (f) respectively 
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(b) (a)

(d) (c)

Figure 15: Distribution of matching scores from the two modalities using randomly sampled Gaussian 
distributions in (a) and (b); the average and standard deviation of minimum error from the adaptive score and 
decision level combination in (e) and (f) respectively 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

distribution resemble Gaussian. The distributions of the gennuine matching scores from the two 

biometric systems, using  () of 36/12 and 45/10 respectively, was used to ascertain the performance 

as shown in figure 15. The genuine and imposter distributions from the two biometric modalities in 

figure 15 consists of 1000 genuine and 1,000,00 imposter scores. The comparative experimental 

results shown in figure 15 again confirm the advantages of proposed approach using adaptive score-

level combination over decision-level approach. 
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3.5 Discussion 

The main objective of our work is to develop a reliable approach for the adaptive combination of 

multiple biometric modalities to ensure desired level of security. One of the key features of our 

proposal is the usage of nonlinear score level combination rules in (5)-(8). Our experimentation with 

the introduction of nonlinearities in equation (6)-(8) has been quite successful. The rigorous 

experimental results shown in figure 9(a), 11(d), 12(c), 14(c) illustrate the dynamic selection of these 

nonlinear score level combinations to ensure the desired level of security. The success of this scheme 

is also attributed to the usage of hybrid PSO, as our goal was not only to ensure appropriate adaptive 

selection of score level combination but also to select parameters for selected combination.  

In multibiometrics, a judiciously designed combination of individual matching scores is 

expected to yield better performance than combining abstract class labels (decision level approach). 

The plausible explanation of this superiority lies in the fact that the matching scores can be better 

exploited to extract higher information content (about the input biometric data and the matching) and 

are able to provide better representation than the class labels. The disagreement by the individual 

classifiers in the output of the matching process often deteriorates the performance of a 

multibiometrics system. However, it is intuitive to think that these conflicting decisions by the 

matchers can have more adverse effect on the performance in decision level combination than that of 

score level combination. The experimental results in this paper have also suggested that our proposed 

framework consistently outperforms the decision level approach, suggested in [1], in terms of standard 

deviation of error as well. The variation of minimum cost (achieved by the PSO) arises due to the fact 

that not all the solutions given by the PSO are truly optimal and instead some are suboptimal solutions 

with a minimum cost very close to the global (true) minimum cost. Since the number of fusion rules in 

the decision level fusion framework [1] are extremely high ( 22
N

 rules for fusion of N modalities), the 
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search space for potential optimal solutions becomes very large. This results in increased possibility of 

PSO converging to sub optimal solutions and thus causing higher standard deviation of minimum cost 

achieved. Unlike the decision level fusion, number of rules in the proposed fusion framework does not 

depend on the number of modalities and is quite limited (four rules considered in this work). This 

explains why the PSO in the proposed framework exhibits significantly less variation in the minimum 

cost achieved 

It is also worth noting that the combination of iris and palmprint biometrics investigated in 

section 3.1 is new and promising to ensure higher level of security in the proposed framework (figure 

2) which has not yet been investigated in the literature. In our experiments, the palmprint features 

achieved better performance than those from iris images (figure ROC). However, this performance 

comparison should be interpreted in the context of low resolution and low quality iris images 

employed from IITD database [18] while palmprint images from PolyU database [16] employed user-

pegs which restrict the scale and orientation changes in the acquired images.  

4. CONCLUSIONS AND FUTURE WORK 
 

In this paper a new approach for the adaptive combination of multiple biometrics to dynamically 

ensure the desired level of security is presented. The proposed method uses a hybrid particle swarm 

optimization to achieve adaptive combination of multiple biometrics from their matching score 

performance. The rigorous experimental results presented in section 3, from the several public 

biometric databases (palmprint, iris, face, speech, fingerprint), consistently suggest significant 

performance improvement from the developed approach. The experimental results also confirms that 

the proposed score-level approach generates fairly stable performance and requires smaller number of 

iterations to generate better performance as compared to the decision level approach. It may be noted 

that the computational complexity of the proposed algorithm for its implementation and deployment 
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for any real world application is not significant. The hybrid PSO employed in the proposed framework 

takes up the major share of computational load. However, parameter tuning by the hybrid PSO can be 

performed offline by computing the optimal parameters (fusion rules, weights and decision threshold) 

for every possible requirement of input security level in the range 0 to 2 (in steps, say, 0.1) and stored 

in a look up table. Whenever there is a new requirement for the security level at input, the optimal 

parameters for that particular security level can be retrieved from the look up table and used for 

performing authentication/verification tasks. Therefore the verification time from the proposed 

methodology is quite equivalent to (or comparable with) any other non adaptive multimodal biometric 

system.  

In summary, rigorous experimental results presented in this paper suggest that the dynamic 

selection of fusion rules and their parameters using the hybrid PSO based approach can offer better 

performance than the decision level scheme using PSO. There are range of other fixed, non-adaptive, 

approaches [28], [31], [33] which can also be explored to ascertain if further performance 

improvement can be achieved than those from the adaptive score level combination approach 

proposed in this paper. The increased complexity resulting from the simultaneous combination of 

multiple score-level matchers may be justified by either (i) its ability to achieve better performance or 

(ii) its ability to adaptively move/select the fusion rules and their parameters for the desired level of 

security. In this work the focus has been on the later, i.e. on (ii). Therefore, further work is required to 

ascertain whether some fixed, non-adaptive, score level combinations for each of the desired/possible 

level of security can be employed to achieve better performance than the adaptive score level scheme 

investigated in this paper. Our current efforts are focused to employ significantly larger multimodal 

database, from the real biometric samples, and generate more reliable estimate on the performance 

improvement. One of the key problems in adaptive multimodal biometrics management pertains to the 
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selection of biometric modalities. Therefore future efforts should also be focused to develop 

algorithms that can adaptively select best set of biometric modalities from the available set to ensure 

the desired level of security.  
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