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Abstract: This paper presents a new approach for the adaptive management of multimodal biometrics 

to meet a wide range of application dependent adaptive security requirements. In this work, ant 

colony optimization (ACO) is employed for the selection of key parameters like decision threshold 

and fusion rule, to ensure the optimal performance in meeting varying security requirements during 

the deployment of multimodal biometrics systems. Particle swarm optimization (PSO) has been 

widely utilized for the optimal selection of these parameters in the earlier attempts in the literature 

[3]-[4]. However, in PSO these parameters are computed in continuous domain while they are 

assumed to be better represented as discrete variables [4]. This paper therefore proposes the use of 

ACO, in which discrete biometric verification parameters are computed to ensure the optimal 

performance from the multimodal biometrics system. The proposed ACO based framework is also 

extended to the pattern classification approach where fuzzy binary decision tree (FBDT) is utilized 

for two-class biometrics verification. The experimental results are presented on true multimodal 

systems from various publicly available databases; IITD databases of palmprint and iris, XM2VTS 

database of from speech and faces, and the NIST BSSR1 databases of faces and fingerprint images. 

Our experimental results presented in this paper suggest that (i) ACO based approach is capable of 

operating on significantly small error rates in comparison to the widely employed PSO for automated 

selection of biometrics fusion rules/parameters, (ii) the score-level fusion yields better performance 

with lower error rate in comparison to the decision level fusion, and finally (iii) the FBDT based 

classification approach delivers considerably superior performance for the adaptive biometrics 

verification. 

Index Terms: Adaptive biometric verification, ACO, PSO, FBDT, Score-level fusion.       
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I. INTRODUCTION 
 

Automated biometrics systems are increasingly replacing conventional methods of human 

identification especially those based on the use of passwords or the smart cards. The biometrics 

systems can not only ensure higher level of security for online and commercial applications but 

also offer higher user convenience during the personal authentication for restricted or secured 

access [1]. The security offered by these biometrics systems can be further enhanced by 

simultaneously incorporating multiple biometric modalities during the user authentication. Such 

multimodal biometrics systems can also enhance integrity of biometrics systems as it’s extremely 

difficult for an impostor to simultaneously authenticate using multiple fraudulent biometrics 

samples. A general multibiometrics system [2] can operate on different modes of fusion like 

fusing multiple traits, multiple samples, multiple classifiers, and multiple features for the 

improvement of the performance. However, the effectiveness of a multimodal system is largely 

depends on the selection of the fusion parameters, like weights for the individual biometric 

matchers, decision thresholds or the score-level fusion rules, which can ensure desirable or the 

optimal performance under varying security requirements [3]. Inappropriate selection of any of 

these parameters can degrade the performance or actually reduce the advantages from respective 

multimodal system.  

A. Which Module of the System can be Adaptive?          

A biometric verification requires 1:1 match as its intended to verify the claimed user identity by 

matching the presented biometric pattern with the enrolled biometric patterns. Such verification 

problem can be formulated as follows: let Q be a feature vector extracted from the query 

biometric image and E be the enrolled biometric feature vector stored for the claimed identity C. 

The task is to determine if the pair (C, Q) belongs to class G which is to accept (genuine) the 

user or class I which is to reject (imposter) the user. Let S(E, Q) denote the distance matching 
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score computed by matching E and Q and T denotes the decision threshold determined at 

learning stage [1]. Then the verification is defined as: 

                                          
 ,   S ,

,
,  
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C Q

I Otherwise
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                                                    (1) 

It can be observed from above equation that one of the important parameters of the accurate 

biometric verification is the decision threshold T. Prior work in the literature has presented 

promising attempts on such adaptive multimodal systems [3]-[4] with decision-level fusion in [3] 

and score-level fusion in [4]. However, as also argued in [4], dynamic score-level fusion is 

expected to offer superior accuracy as compared to the decision-level fusion approach. 

Therefore we have also preferred to focus our investigation on the score level fusion in this 

work.  Let Q1, Q2, …, Qb be the b number of query biometric features extracted from the input 

user. Let E1, E2, …, Eb be the biometric features of the claimed identity c from the enrolled users. 

Let S1(E1,Q1), S2(E2,Q2), …, and Sb(Eb,Qb) be the matching score computed from b biometric 

matchers by comparing the query biometric features with the enrolled biometric features [1] [2]. 

In the score-level fusion, the matching scores are combined using a score-level fusion rule to 

generate the final match score S as in the following equation:  

                S(E,Q)= w1×S1(C1,Q1) + w2×S2(C2,Q2) + ……wb ×Sb(Cb,Qb)                                          (2) 

Here, w1, w2, …, wb are the weights corresponding to the b biometric matchers and S1, S2, …. Sb 

are respective score-level fusion rules employed to compute the consolidated match score.  

 It can be observed from Equations (1) and (2) that a typical multimodal system requires 

the verification parameters such as: the weights to the biometric matchers, a fusion rule for the 

integration of matching scores, and the decision threshold T for the final accept and reject 

decision. The selection of these verification parameters depends upon the expected security 

requirements which can be expressed in terms of the two error rates: False Acceptance Rate 
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(FAR) and False Rejection Rate (FRR) [1]-[2]. The FAR represents the rate at which imposters 

are accepted as the genuine users while FRR represents the rate at which the genuine users are 

rejected or considered as the imposters by the system. Both of these error rates are 

complementary to each other and in the real life scenario it is not possible to achieve very low 

values simultaneously for both of them [1]-[2]. Whenever the decision threshold is adjusted to 

achieve a lower value of one of the error rates; the other increases correspondingly. The choice 

of acceptable error rates is essentially application dependent. For example, the high security 

applications like access to secured buildings or to the bank accounts require the lowest possible 

FAR (close to zero) but a permissible value of FRR to prevent false authentication (imposter) 

whereas the low security applications (like public transport or classroom access) can be managed 

with somewhat high FAR but FRR must be stringent, i.e. as low as possible.  

The homeland security department has made a detailed description of such a multi-level 

security requirement concerning the forensic, civilian and high security applications within their 

color-coded terrorism threats. However, most of the multimodal systems detailed in the literature 

[5]-[7], [8]-[9] offer the fixed security with a fixed number of verification parameters for the 

desired level of accuracy. Therefore, a multimodal system should be designed by considering the 

conflicting requirements of the varying levels of security [10]. Since different level of security 

may be expected from the same multimodal system, the necessity is to develop an adaptive 

multimodal system which can adaptively tune the fusion parameters according to the security 

requirement. This paper therefore investigates an adaptive multimodal biometric system using 

evolutionary computational technique (ACO) to select the fusion rules/parameters for varying 

security levels. The advantage of the evolutionary computations lies in their flexibility, easy-to-

follow, and their robustness in responding to changing circumstances. Furthermore, majority of 

the evolutionary techniques provide a global solution which may not be the case with the 
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optimization techniques which often generates the local optima. Evolutionary techniques can be 

applied to those real world problems for which the heuristic algorithms can lead to unsatisfactory 

results. Therefore the use of the evolutionary techniques is gaining immense popularity, 

particularly for the real life problems. This paper proposes ACO for selecting the fusion 

parameters in a system to meet varying security levels. 

The rest of the paper is organized as follows: The prior works on the adaptive 

management of multimodal biometrics with our proposed work are summarized in Section II. 

The framework for the adaptive multimodal fusion is discussed in Section III, where the ACO 

algorithm is also presented. The results of application the proposed multimodal fusion find place 

in Section IV. Finally, the discussion and conclusions are given in Section VI.                 

II. PRIOR WORK AND MOTIVATION 

The multimodal fusion approach has received a great deal of attention in the recent years and as 

a consequence different fusion strategies have been evolved [5-7], [8]-[9]. However, most of 

these techniques operate with the fixed decision threshold and do not provide a systematic way 

to vary the level of security. The study of the adaptive management with varying security levels 

in which the fusion parameters are selected using some evolutionary techniques is relatively new 

and of particular interest to the present work.   

A. Related Prior Work 

Kittler et al. [5] are probably among the first to explore the significance of multimodal 

biometrics fusion by employing several fixed fusion rules. Frischholz et al. [6] present their 

multimodal system, referred to as BioID, by using different decision strategies which offer 

multiple levels of security. However, their system can’t vary the levels of security and requires 

an administrator for manually selecting the fusion parameters for the desired level of accuracy. 

Likelihood of the matching match scores is used in [7] for the dynamic selection of biometric 
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matchers. Their work on multimodal system is very interesting and it provides high accuracy. 

But, their experimental results show the performance of only two cases out of the four cases 

considered. Another very promising work on combining the verification decisions in a multi-

vendor environment is by Beattie et al. [11]. By employing the decision level fusion rule, they 

have resolved the building access problem by providing the access based on the different zones. 

In another interesting study, a dynamic management scheme for the selection of fusion rules is 

proposed by Vatsa et al. [12]. They have designed a sequential fusion technique using the 

likelihood ratio test statistics in combination with the support vector machine (SVM) to compute 

the errors in the classification system. Their approach has been quite successful in dynamically 

unifying the classifiers and the fusion schemes to optimize both verification accuracy and 

computational cost. In a very recent attempt, adaptive representations of random patches are 

utilized by Mery and Bowyer [21] for the recognition of facial attributes. They build an adaptive 

dictionary of random patches extracted from representative face images of each class. This 

dictionary is further used for classification of test patches using sparse representation and 

classification methodology.   

 The use of evolutionary computation in biometrics verification has also been investigated 

in literature. Rabab et al. proposed a novel feature selection algorithm based on PSO for face 

recognition [14]. Konrad et al. utilized genetic algorithm for computing JPEG quantization tables 

for compressing iris polar images in iris recognition [15]. Their system has shown to outperform 

JPEG's standard quantization matrix. Reference [16] described a genetic type II feature 

extraction (referred as Genetic & Evolutionary Feature Extraction) approach for optimizing the 

feature sets returned by local binary pattern features for the periocular biometric identification. 

Kanan and Faez [17] utilize ACO to propose an improved feature selection method for the face 
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recognition applications. Nemati and Basiri [18] investigated dimensionality optimization by 

selecting relevant features using ACO for test-independent speaker verification.        

An adaptive multimodal biometric management system using the decision level multi-

sensor fusion is proposed in [3]. Their framework was probably the first effort to successfully 

demonstrate the selection of optimal decision parameters to meet the desired level of accuracy. 

Authors have considered all the possible combinations of binary decision rules on the 

participating sensors to adaptively select the optimal one using PSO. Their algorithm achieves a 

tradeoff between the two error rates by varying the cost of errors and selecting the appropriate 

fusion rules to combine the biometric modalities in the multi biometric system. However, their 

experimental evaluation is largely based on the simulated data. Further, this approach gives rise 

to a large number of fusion rules, 22
N

 for N sensors and the computation complexity gets 

unwieldy with the increase in the number of sensors, i.e. for three sensors, 256 fusion rules. The 

above approach in [4] is yet another advancement of adaptive fusion techniques to meet dynamic 

security requirements and is probably the first work that successfully demonstrates the feasibility 

of such deployments using real biometric data. Specifically, this work offers score-level 

combination by adaptive (or automated) selection from four rules, i.e. sum, product (linear), 

exponential-sum, and Tanh (non-linear) which are shown to be adequate for the desired accuracy 

in a typical multimodal system. Here, the fusion parameters are found using PSO. The 

performance using these rules demonstrated to be better than that reported in [3]. Authors 

performed a variety of experiments to reveal that the score-level fusion is more consistent and 

stable than the decision level fusion.  

B. Key Motivation 

The prior work on the adaptive multimodal fusion either uses decision level fusion [3] or the 

score fusion [4]. The superiority of score level fusion over the decision level fusion in reducing 
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the overall error rates (FAR/FRR) in the multimodal system has been demonstrated in [4]. The 

work in this paper is motivated from the following insights: 

1. Both the approaches in [3]-[4] use PSO for the selection of fusion parameters. The PSO 

algorithm has its own limitations like ending up in the local minimum that often leads to 

the premature convergence [19]. In addition, as argued in [4], there exist optimization 

problems where particles are better represented by the discrete variables. PSO is defined 

for the continuous domain and the use of Sigmoid function for the binary PSO in [3]-[4] 

is a discrete variant of PSO which approximate the information on the velocity and the 

position updates.  Here, the use of a discrete domain evolutionary technique is certainly 

advantageous in place of discrete variants of PSO for the approximation of the 

continuous domain representation which undoubtedly causes a loss of information. 

Hence, there is strong motivation or desire to investigate discrete evolutionary technique 

in the adaptive multimodal approach provided in [3] and [4].  

2. Biometrics verification can also be implemented using pattern classification approaches 

and existing work in the literature has shown interesting attempts for the biometrics 

verification using pattern classification approaches [20]-[27]. Information fusion using 

DT and involving fingerprint, hand geometry, and face biometrics is explored in [20]. 

The significant feature selection and fusion of palmprint and hand shape biometrics 

employed DT in [21] where Naïve Bayes, k-NN (k-nearest neighbor), SVM, FNN (feed 

forward neural network), and DT are compared. Another interesting effort on multi-

biometrics is presented on [22] which compares k-NN, DT, and logistic regression during 

the fusion of face and voice modalities. A fuzzy binary decision tree based approach is 

presented in [23]-[25] for biometric verification. An ensemble of decision tree based 

classifiers is presented in [26]-[27] for statistical classification. It is shown that, an 
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ensemble of decision results in higher accuracy over support vector machine [27]. 

However, most of the available works [20]-[25] do not provide any mechanism to adapt 

varying security applications and they operate on the fixed classification strategies.         

C. Our Work 

The contributions from this paper are listed below: 

1. The main contribution of this paper is to investigate ACO for the optimal selection of the 

verification parameters required for the adaptive multimodal biometrics fusion. ACO is 

well defined for the discrete domain requirements, the probabilistic approach of ACO is 

easy to implement, and is least likely to suffer from the problem of the local minimum as 

compared to PSO. The movement of an ant depends on the amount of pheromone 

deposited on the path and the higher concentration of pheromone on a path drives the ants 

to seek that path [28]. However, the ACO algorithm does not provide the status of a path 

in terms of its local or global positions as PSO. Hence there is a need to introduce the 

update mechanisms, so that the local and global solutions can be identified together and 

the resulting ACO will have the provisions of local and global updates. In this work the 

idea of global and local updates is borrowed from PSO and utilized for updating the 

probabilities for selecting each path. The probabilities of each path are constrained to lie 

between the lower and the upper values.  

2. Another important contribution of this paper is the implementation of the ACO-

framework based adaptive biometric verification using predictive model of pattern 

classification approach in the fuzzy domain. As detailed in Section II-B, the predictive 

model in [20]-[22] may not be able to learn different decision threshold as per variations 

in security level requirements. These models can only train to learn the fixed parameters 

to achieve fixed security requirement. In this work, we propose ACO-framework for 



10 

 

adaptive biometric verification using fuzzy binary decision tree (FBDT) which can adapt 

to various security applications by computing the verification parameters using ACO 

(detailed in Section III-C). The implementation of FBDT is the same as in [25]-[27]. 

3. Thirdly, this paper presents following noteworthy comparative analysis relevant to the 

adaptive biometric verification literature: 

a. In order to judge its reliability in the selection of the verification parameters, a 

comparison is made between the proposed ACO framework for adaptive 

multimodal biometrics verification and the PSO based approach in [4].  

b. A comparison is presented between ACO based adaptive biometric frameworks 

using decision threshold (as discussed in the first point above) and predictive 

classification model using FBDT (discussed in the second point above).  

c. A comparison is also presented between ACO based adaptive decision-level 

fusion scheme (as proposed in [3] using PSO) and ACO based adaptive score-

level fusion (presented in this work).  

4. Finally, in this paper, we provide rigorous experimentation on various publicly available 

multimodal biometric databases. The experiments are carried out on two different sets of 

multimodal databases: multimodal database of the matching scores computed from 

palmprint [29] and iris [30] from IITD databases, matching scores of fingerprint and face 

images from true multimodal database made publicly available from NIST BSSR1 [31], 

and also the publicly available XM2VTS databases [32].   

The block diagram of the proposed ACO based multimodal biometric verification system is 

shown in Fig. 1. The inputs to the ACO are: the security level (See Section II-A), matching 

scores from the individual biometric modalities, and the fusion rules (Section II-A). The output is 

the verification parameters of the multimodal system: weights for the biometric matchers, one 
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score-level fusion rule for integration of the matching scores, decision threshold for final 

accept/reject decision.  

 

Fig. 1: Adaptive multimodal biometrics verification system capable of automatically    

operating at different security levels to ensure adaptive security level requirements. 

 

III. THE ADAPTIVE MULTIMODAL BIOMETRIC VERIFICATION 

As detailed in Section I-A, the performance and reliability of any multimodal biometric 

verification system can be well enumerated in terms of its two error rates, i.e.,  FAR and FRR. In 

addition to FAR and FRR, Equal Error Rate (EER) is another performance measure for a typical 

multibiometrics system [1]. However, as discussed in Section I-A, the varying requirements of a 

security system necessitate the choice of FAR and FRR as per the application while the ERR is 

the operating point where FAR is equal to FRR. Hence, an adaptive multimodal biometrics 

verification system can be judged based on FAR and FRR as the performance indices   

A. Representation of Security Levels 

One way of creating different security levels is to assign different costs to these error rates 

(FAR/FRR) and study the effect of the verification parameters on each security level. If high 

security is required, the cost of FAR can be chosen higher than that of FRR. Since, in this case an 
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imposter acceptance must be avoided as much as possible. However, in the case of low security 

requirement, it is thoughtful to choose the cost of FRR to be higher in comparison to FAR. Since, 

in this case the convenience to the genuine rejection is the prime motive than the possibility of 

accepting unknown users. Therefore, different security levels in a multimodal system can be 

enumerated with the help of the cost of false acceptance (CFA) and cost of false rejection (CFR). 

Both of these costs lie in the [0, 2] range and we can choose the step size of 0.1 to denote 

intermediate security requirements which can lead to 20 discrete points representing the different 

security levels [3]-[4]. These security levels can therefore represent operational security bands 

which can be expected from a multimodal biometrics system during their real deployment. 

Hence, the optimal verification parameters need to be selected for each of them by minimizing 

the overall error associated with the multimodal biometrics verification system. Considering the 

costs (CFA/CFR) as the weights for the FAR and FRR, the overall error can be computed as 

follows: 

G = CFA ×  FAR (T) + CFR ×  FRR (T)                               (3)   

          CFA + CFR = 2                              (4) 

where T represents the decision threshold employed to compute corresponding FAR and FRR. 

Here the optimal verification parameters for the system are to be selected, for each of the 

expected security levels, to minimize the overall error (G) associated with the multimodal 

biometrics system.  

B. Representation of Population in ACO 

The role of ACO is to choose an optimal solution from a population of probable solutions 

(verification parameters). Each component solution of the population can be represented in the 

D-dimensional space as Xmd = (xm1, xm2… xmd), where the first subscript m represents the 

component number, and d is the dimension which is different for each fusion strategy. In this 
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work we have implemented three approaches for the multimodal biometrics verification using 

ACO: (1) the score-level fusion approach as in [4], (2) decision-level fusion as in [3], and finally 

(3) FBDT based pattern classification approach as for finger knuckle verification [25].  

 In the score level fusion, each component solution has "n+2" dimensions, i.e. d = n+2, 

where n is the number of modalities. The first n dimensions are meant for the weights (w) 

assigned to each modality for the generation of the fused matching scores [4], the (n+1)
th

 

dimension is kept for the decision threshold, and (n+2)
th

 dimension represents a fusion rule. The 

representation of a population in ACO for score-level fusion strategy is of the form: 

                Xmd = (w1, w2… wn, T)                                                 (5) 

For the matching score j

Scorem and wj be the corresponding weight with j = 1 to n; n being the 

number of modalities. The four score-level fusion rules considered in this work are: 

    
1

n
j

j Score

j

Sum w m


                                                             (6) 

                                      
1

Product
j

n
w

j

Score

j

m


                                                           (7) 

                                               
1

exp exp( )
n

j

j Score

j

w m


                                                            (8) 

                                                
1

tanh( )
n

j

j Score

j

tanh w m


                                                         (9) 

In the decision level fusion, each component has "n+1" dimensions. The first n dimensions 

indicate the decision thresholds (T) corresponding to each biometric matchers and the (n+ 1)
th

 

dimension is solely for the binary fusion rule . So the representation of a population in this 

strategy is denoted by: 

                               Xmd = (T1, T2… Tn)                                                       (10) 

The decision-level fusion rules are the same as in [3]. For the FBDT based strategy, each 

component has "n+1" dimensions, where n is the number of modalities. Therefore out of three 



14 

 

dimensions, the first two dimensions are meant for the weights (w) assigned to each modality, 

and the third dimension is used for the fusion rule. An ant is therefore initialized as: 

                                   Xmd = {w1, w2....wn }.                                                       (11) 

C. Ant Colony Optimization 

ACO, as firstly introduced by Marco Dorigo, represents a class of optimization algorithms which 

is applicable to the problems seeking optimal paths [28], [33]-[34]. As acknowledged by many 

users of ACO, its salient features include the positive feedback, distributed computation, and 

greedy heuristic [28], [33]-[34]. The positive response ensures quick search for optimal 

solutions, the distributed computation withstands the premature convergence while the greedy 

heuristic assists in identifying the desirable solutions at the early stages of the algorithm [28] 

[34]. The ACO algorithm relies on pheromone based probabilities to search for the optimal paths 

[34]. As part of searching, the moving ants (probable solutions) deposit some pheromone which 

evaporates over a trail time on the chosen paths. Any ant encountering a previous trail decides to 

follow a path having a high concentration of pheromone suggesting thereby that many ants had 

already tread that path. As a result, the collective behavior that emerges over several trails is a 

form of a positive feedback for the selection of an optimal path [34]. The pheromone evaporation 

prevents the premature convergence as no single ant can ever dictate a path; and the selected 

path is an indicator of the collective judgment [28]. 

The ants (fusion parameters) are initialized with the population of probable solutions and 

each ant chooses its optimal solution from the population by minimizing G (Eqn 3). The 

constituents of population are defined in Section II A. For each ant, G is computed and 

pheromone levels of all the selected paths (solutions) are updated. The pheromone level of each 

path is updated only after the completion of iteration. The update on pheromone level
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As the pheromone levels are updated, probability of the selecting the m
th

 ant can be calculated 

for the next iteration as: 
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Here m is the number of the ants. If any of the ants (newly computed solutions) participates in 

the minimization of the objective function (G), the value of pheromone level increases by Q/G in 

(12). Consequently, the probability (Eqn. 13) of selecting such paths in the next iteration gets 

better than others (as the pheromone levels on these paths are negligible). One important 

parameter of ACO is the evaporation factor () that enters the probability computation (Eqn 12). 

The ACO suffers from the problem of saturation of pheromone level for small values of   (close 

to 0) getting the algorithm stuck up on a particular path (solution). On the other hand if  is close 

to 1, every path will have equal probability with no optimization being accomplished. To 

overcome this,  is set to 1 initially and subsequently decreased in the steps of 0.005. This 

strategy not only prevents the ants from being dragged on any non-optimal path but also allows 

them to navigate to an optimal path.  

In ACO, after updating the pheromone levels, the new paths for the next iteration are 

selected from the available candidate paths. Instead of trying out all candidate paths, the ones 

with low probability should be discarded. This will narrow down the search space and improve 

the quality of paths chosen by ants. For the improvisation of ACO, the idea of global and local 

updates is borrowed from PSO and utilized for updating the probabilities of selecting each path. 

Here, the probabilities of each path are constrained to lie between the lower and the upper values, 
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i.e. L and U based on their local best, the global best positions and the current position, denoted 

by Alb, Agb and Acp respectively. The Alb is calculated using ant’s own probability and Agb is 

obtained by comparing the probabilities of the all ants. After getting the values of Alb, Agb and 

Acp, the values of L and U are determined from Table 1. At the first iteration, an equal amount of 

pheromone is assigned to all paths and the probabilities are calculated accordingly. Over several 

iterations, the limits are determined. In the view of the limits L and U, the probabilities are 

modified as: 

                                                        

( )

( ){ }

t

i
i U t

kk L

p






                                                              (14)                  

 

Table1: Limiting Conditions for the Acp, Alb and Agb 

Condition L U 

 Acp< Alb < Agb Acp 1 

Alb < Acp< Agb Alb 1 

Alb < Agb < Acp Alb Acp 

Acp< Agb < Alb Acp Alb 

Agb < Acp< Alb 0.001 Alb 

Agb < Alb < Acp 0.001 Acp 

D. The  ACO Algorithm 

This algorithm consists of the following steps: 

I. Initialize the population of the ants randomly in the search space (as discussed in Section 

III-B). Ants are initialized according to the score-level, decision-level, and FBDT based 

adaptive biometrics verification. 

II. Specify the pheromone level of each ant as the discrete array (τw1 , τw2 , ……, τwn) for 

the score level fusion but as (τT1, τT2, , τTn) for the decision level fusion. In the first 

iteration they are fixed randomly at the same pheromone value and the probabilities are 

calculated using (13). 
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III. Update the local and global best positions of the ants as detailed in Section III B and 

evaluate the probabilities using (14). 

IV.  Iterate step III until the completion of the specified number of iterations. 

IV. EXPERIMENTAL RESULTS 

The earlier authentication systems in the literature exhibit diverse performance depending on the 

modalities employed. In the light of this observation the performance of ACO is judged on a 

variety of true multimodal databases, i.e. palmprint [29] and iris database [30] of IITD, two 

multimodal systems of NIST BSSR1 [31], and the XM2VTS database [32]. The methodology for 

performance evaluation, performance metric, and details of the parameters are summarized in the 

following: 

I. The parameters of ACO are empirically selected. These parameters are:   which is 

chosen as 1 initially and decreased in the steps of 0.005 in each iterations of the algorithm 

until the global optimum is attained [28]; Q which is experimentally chosen in the range 

of [0.005 0.01] (it was found that Q=0.01 is acceptable); and the number of ants which 

was selected as 15 for the convergence of the algorithm. 

II. The performance evaluation of the proposed approach is made on various multimodal 

biometrics systems constructed from the publicly available databases and matching 

scores such as: Palmprint and iris multimodal system from IITD databases, and two 

multimodal systems developed from the matching scores of fingerprint and face of NIST 

BSSR1 [31]. The multimodal systems developed from these databases are evaluated to 

ensure adaptive security requirements.  

III. Since the ACO based selection of the verification parameters in these algorithms can 

differ in each run, the ACO is executed 100 times, as in [3]-[4],  for each of the CFA in 
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equation (3). The average and the standard deviation of the minimum weighted error over 

100 runs are computed as the performance metric for the proposed algorithms. The 

average error for each CFA not only gives the generalized performance of the dynamic 

security algorithm but also depicts the complete tradeoffs in the error rates. The standard 

deviation (SD) indicates the stability of the algorithm during the 100 runs of ACO. In 

order to compare the performance of the four fusion rules, their frequencies of selection 

in the 100 runs are computed for each of the security levels. The rule which is selected 

most of the times can be considered as the optimal rank-level fusion rule. A detail 

discussion on each of the multimodal systems is as follows:      

A. The Palmprint and Iris Multimodal System 

The first set of experiments on the ACO based for the multimodal fusion is carried out on a 

bimodal database of palmprints and iris. The combination of palmprint and iris makes a potential 

bimodal system. In order to judge the performance of the proposed approach using ACO on a 

true bimodal system, the IITD database of palmprint and iris is utilized. The IITD multimodal 

palmprint and iris databases have 235 users each. The ROI extraction and normalization method 

employed are the same as in [35]. The palmprint images are of size 384×384 whereas ROIs are 

of size 128×128, shown in Fig. 2 (a) and 2 (b) respectively. The feature extraction method and 

matching using Hamming distance to compute matching scores are the same as detailed in [36]. 

A sample iris image of size 340 × 240 is shown in Fig. 3 (a). The image normalization, 

enhancement, and feature extraction employed are the same as in [37]. A normalized iris strip of 

size 48 × 432 is shown in Fig. 3(b). The log Gabor based feature extraction and Hamming 

distance based matching are the same as in [37].      
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                                                           (a)                                   (b) 

Fig.2: (a) Sample Image from IITD database (b) Corresponding ROI image.  

   
       (a)                                                       (b) 

Fig. 3: Iris Images (a) sample image (b) Iris normalized strip.  

The multimodal database of palmprint and iris is divided into two sets of users. The first set, 

consists of 110 users, is called as the learning set which is used to compute the verification 

parameters as detailed in Section I-A and Section III-A. The second set, consists of 125 users, is 

called as the evaluation set which used to assess the verification parameters learnt from the 

training set. The matching scores from 110 users are computed for the learning set {220 (110×2) 

genuine score and 23980 (110×109×2) impostor scores} while matching scores from 

independent 125 users are computed for the second set {250 (152×2) genuine scores and 31000 

(125×124×2) impostor scores}.  
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                              (a)                                                                (b) 

   

                                 (c)                                                                (d) 

    

                                 (e)                                                                  (f) 

Fig. 4: (a) Histogram of matching score distribution: (a) learning set of palmprint (b) evaluation 

set of palmprint (c) learning set of iris (d) evaluation set of iris. 
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The histogram distribution of matching scores from the first set and the second set for palmprint 

database is shown in Fig. 4 (a) and Fig. 4 (b) respectively. It can be observed that, the learning 

and the evaluation sets of the matching scores from palmprint show similar distribution of 

matching scores. The matching scores distributions for iris from the two sets is shown in Fig. 4 

(c) and Fig. 4 (d) respectively. The ROC curve for the learning and evolution datasets of 

palmprint and iris modalities are shown in Fig. 4 (e) and 4 (f) respectively.  

The learning sets of the multimodal palmprint and iris are used to learn the verification 

parameters by incorporating ACO. The average error of the weighted sum (Equation (3)) over 

the 100 runs of ACO algorithm corresponding to each CFA is computed for this multimodal 

system.  The ACO Vs PSO plot for the average error from the score level fusion is shown in Fig. 

5 (a) while the standard deviation is shown in Fig. 5 (b). It can be observed that, the ACO based 

approach proposed in this paper outperforms PSO based approach in terms of the average error 

of the multimodal system. The standard deviation plot from Fig. 5 (b) shows that The ACO 

based approach is more stable than PSO while computing the verification parameters in the 100 

runs of the algorithm. The plot for the frequency of rule selection from 100 runs of the algorithm 

corresponding to each CFA is shown in Fig. 5 (c). It can be observed that, for first two values of 

CFA product rule is selected with high frequency while for others sum rule is selected with high 

frequency.    
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                (a)                                                                      (b) 

     

                (c)                                                                      (d) 

   
(e)                                                                      (f) 

Fig.5 Results from palmprint and iris (a) Average error (b) standard deviation (c) the frequency 

of rule selection (d) comparison between learning and evaluation data (e) average error for 

score and decision level fusion (f) standard deviation error for score and decision level 

fusion. 
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The verification parameters selected with the evaluation set corresponding to each CFA are 

shown in Table 2. The verification parameters computed from learning set is applied on 

evaluation data of the multimodal system. The error rate (equation 3) computed from learning 

and evaluation for each CFA is shown in Fig. 5 (d). It can be observed from Fig. 5 (d) that, the 

evaluation set yields slightly high error rate in comparison to the learning set for higher values of 

CFA (>=0.3). Here it is also important to observe from the Fig. 4 (c)-(d) that learning set is 

operating on slightly better performance than evaluation set. However, it is also important to 

remark here that, the earlier approaches on adaptive multimodal verification [3]-[4] utilize all the 

available training data to compute verification parameters. This condition also seems judicious as 

biometrics verification is always required to take decision from the target/known set of the users 

enrolled in the database.  

Table 2: Verification parameters computed from learning set of the palmprint and Iris 

CFA Weight1 (Palm) Weight2 (Iris) Average Error Fusion Rule 

0.1 0.757 0.89 0.004 Product 

0.2 0.765 0.842 0.007 Product 

0.3 0.284 0.869 0.0086 Sum 

0.4 0.532 0.862 0.0086 Sum 

0.5 0.194 0.369 0.0085 Sum 

0.6 0.222 0.836 0.0081 Sum 

0.7 0.891 0.603 0.0076 Sum 

0.8 0.302 0.362 0.0071 Sum 

0.9 0.806 0.633 0.0065 Sum 

1.0 0.653 0.475 0.0060 Sum 

1.1 0.756 0.599 0.0054 Sum 

1.2 0.332 0.437 0.0049 Sum 

1.3 0.878 0.479 0.0044 Sum 

1.4 0.998 0.626 0.0038 Sum 

1.5 0.875 0.529 0.0033 Sum 

1.6 0.295 0.322 0.0027 Sum 

1.7 0.905 0.632 0.0022 Sum 

1.8 0.583 0.848 0.0017 Sum 

1.9 0.545 0.665 0.0011 Sum 
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Further, if the verification parameters can be learnt from the complete set of the target users, the 

likelihood of accurate learning is very high. The presented results therefore are the best even in 

the worst possible scenario of learning and evaluation from different set of matching scores. 

Finally, decision-level fusion approach is implemented using ACO and compared with score-

level fusion as in [4]. The average error and the standard deviation error plots of this comparison 

are shown in Fig. 5 (e) and 5 (f). It can be seen that in both the plots, score-level fusion approach 

dominates over the decision-level fusion.             

B. The BSSR1 Database 

The NIST BSSR1 multimodal database contains the matching scores of fingerprint and face 

biometrics. The NIST BSSR1 multimodal database contains scores from 517 users. There are 

517 genuine scores and 266,772 (516×517) imposter scores for each user. One fingerprint 

matchers (Ri) and one face matcher (C) are considered in this work. The learning set consists of 

200 users, which is used to compute the verification parameters. The evaluation set consists of 

317 users, which is used to assess the verification parameters learnt from the training set. The 

matching scores from 200 users of the learning set are computed as: {Genuine = 200 (200×1) 

and Imposter = 23800 (200×119)} while second set of 317 users indicates: {Genuine = 317 

(317×1) and Imposter = 100172 (317×316)}. The histogram distribution of matching scores from 

the two sets of BSSR1 databases is shown in Fig. 6 (a) and Fig. 6 (b) for face C and in Fig. 6 (c) 

and Fig. 6 (d) for fingerprint Ri. The ROC curve for the learning and evolution datasets of 

palmprint and iris modalities are shown in Fig. 6 (e) and 6 (f) respectively. It can be observed 

that both the sets of the databases have the similar ROC curves.  
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 (a)                                                                    (b) 

   
 (c)                                                                    (d) 

   
 (e)                                                                 (f) 
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(g)                                                                      (h) 

 
(i)                                                                 (j) 

Fig.6: Histogram of matching score distribution: (a) learning set of face C (b) evaluation set of 

face C (c) learning set of RI (d) evaluation set of iris (e) comparison between learning 

and evaluation data for C (f) comparison between learning and evaluation data for Ri (g) 

comparison of average error for c and RI (h) standard deviation for C and Ri (i) the 

frequency of rule selection for C and Ri (j) comparison between learning and evaluation 

data for C and Ri.  

 

The learning sets of the multimodal C and Ri are used to learn the verification parameters by 

incorporating ACO.  The plot of ACO vs. PSO of the average error for the score-level fusion is 

depicted in Fig. 6 (g) and that for the standard deviation of the errors in Fig. 6 (h). It can be 

examined from both the plots that ACO base approach yields significantly low error rates in 

comparison to PSO based approach.  The plot for the frequency of rule selection from 100 runs 
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of the algorithm corresponding to each CFA is shown in Fig. 6 (i). It can be observed that, both 

the sum rule and the product rule are selected with similar frequencies. However, for most of the 

CFAs product rule is selected with slightly better (higher) frequency. The error rate (Equation 3) 

computed from the learning and evaluation for each CFA is shown in Fig. 6 (j). It can be 

observed that, both of the evaluation and learning data sets provide almost similar performance.   

C. The XM2VTS Database 

Another set of experiments are reported using the XM2VTS database from face and speech [32]. 

It contains the synchronized databases of frontal face and speech from 295 users. The database is 

divided into three sets: 200 genuine and 25 evaluation impostors while the rest 70 are the test 

impostors. In [38], the training and evaluation approaches called as Lausanne Protocol I and II 

are reported on different combinations of baseline systems. There are 8 samples per user out of 

which 3 are used for the training the baseline experts, the remaining 3 are used for evaluation 

[38] and the rest 2 are for testing.  

In this work we employed the baseline system with Lausanne Protocol I. The Discrete 

Cosine Transform (DCTb) features extracted from bigger size face images (80×64 pixels) are 

used to the generate genuine and imposter scores using the Gaussian mixture model (GMM). The 

Linear Filter-bank Cepstral Coefficients (LFCC) speech features are computed using 24 linearly-

spaced filters on each frame over a window length of 20 milliseconds. The genuine and imposter 

scores are generated using GMM. We utilized fusion development set of genuine and imposter 

scores containing 600 (200×3) genuine and 40,000 (25×8×200) imposter scores. The histograms 

of both the matching scores corresponding to face and speech matching scores are shown in Fig 

7 (a) and 7 (b) respectively. The combined ROC of both the scores appears in Fig. 7 (c). The 

improvised ACO vs. PSO plot of the average of the minimum errors for the score level fusion is 



28 

 

given in Fig. 7 (d) and SD of the errors in Fig. 7 (e). The probability of each rule being selected 

out of 4 score level fusion rules using ACO is portrayed in Fig. 7 (f). 

 

(a)                                                                 (b) 

 
(c)                                                                 (d) 

 
(e)                                                                 (f) 
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Fig.7: The histogram of the matching scores from the face and speech databases are given in (a) 

and (b) respectively; ROCs corresponding to both modalities are given in (c); PSO verses ACO 

plot for the score level fusion corresponding to the average and SD of error are given in (d) and 

(e) respectively; and the plot of probabilities of selection of score level rules corresponding to 

each CFA is given in (f).  

 

D. The Experiments on FBDT 

The experimental results for the biometrics verification are presented in this section using FBDT 

and ACO. The construction and classification of FBDT in this work are the same as in [23]-[25].  

The experimental results in the earlier works show that, the learning of FBDT is done from four 

membership functions: Same: (Gaussian, Gaussian), (Trapezoidal, Trapezoidal) and Different: 

(Gaussian, Trapezoidal), (Trapezoidal, Gaussian) and two tree-nodes computation criteria: fuzzy 

information gain, fuzzy Gini index. It can be observed that, the change in membership function 

and the tree-node computation criteria provide a tradeoff in the error rates (FAR/FRR). However, 

as the FBDT is trained as per the different values of security level (varying FAR and FRR) only 

(Gaussian, Gaussian) membership function and fuzzy Gini index are sufficient for providing the 

optimal results and hence used for FBDT. The ACO framework using FBDT has also been 

proposed in the earlier work for multimodal knuckle verification [25]. However, this work 

entirely focuses on ACO-FBDT framework (for knuckle verification) while the work in this 

paper investigates decision threshold based biometrics verification (DTBV) using ACO and 

evaluates performance on variety of multimodal biometrics systems. In this paper we provide a 

comparison of the ACO-FBDT [25] with ACO-DTBV to illustrate that ACO based biometrics 

verification framework can be utilized in majority of the pattern classification problems.  
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The matching scores and the experimental protocol for the FBDT based approach in this section 

is the same as detailed in Section IV-A, Section IV-B, and Section IV-C for palmprint and Iris, 

BSSR1 (C and Ri) and XM2VTS multimodal biometrics databases respectively. The approach 

detailed in earlier sections of this paper is referred to as the decision threshold based biometrics 

verification (DTBV) as the biometrics verification in that approach is dependent on decision 

threshold for the final decision. We show the comparison between the FBDT (detailed in this 

section) and the DTBV approaches. The average error corresponding to each CFA for the two 

approaches in the BSSR1 multimodal system (C and Ri) is shown in Fig. 8 (a) while for the 

XM2VTS is shown in Fig. 8 (b). A comparison of the standard deviation on these two 

multimodal databases is shown in Fig. 8 (c) and Fig. 8 (d) respectively. The average error plots 

from Fig. 8 (a)-(b) show that, the approach using FBDT yields considerably less error rates while 

the standard deviation plot show that the FBDT approach is more stable than DTBV approach 

and requires very few run of the algorithm for computation of the reliable/stable results. The 

plots of the frequency of the four score-level rule selection using FBDT approach corresponding 

to each CFA are shown in Fig. 8 (e) for BSSR1 (C and Ri) while for XM2VTS in Fig. 8 (f).  

 

     
                                 (a)                                                                        (b) 
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(c)                                                                     (d) 

 
                                       (e)                                                                     (f) 

           
    (g)                                                                      (h) 
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(i) 

Fig. 8: (a) Comparison of the FBDT and DTBV approach for adaptive biometrics verification: 

(a) average error for palmprint and iris (b) average error rate for C and Ri (c) average 

error for XM2VTS (d) standard deviation error for palmprint and iris (e) standard 

deviation error for C and Ri (f) standard deviation error for XM2VTS (g) frequency of 

rule selection for Palmprint and iris (h) frequency of rule selection for C and Ri (i) 

frequency of rule selection for XM2VTS. 

IV. DISCUSSION AND CONCLUSIONS 

There has been very little attention on the adaptive selection of the verification parameters 

required to ensure varying security requirements during the deployment of a typical multimodal 

biometrics system. Most of the work in available references does not provide any mechanism to 

automatically select the optimal verification parameters according to the different security 

requirements set by the system administrator. This paper has focused on such problem and 

investigated the adaptive biometrics verification using ACO. The main contributions of this 

paper are: (1) proposition of a discrete domain evolutionary technique using ACO for the 

computation of the verification parameters in a multimodal biometrics system to meet the 

changing security requirements. The experimental results presented using on various multimodal 



33 

 

databases (Sections IV-A and Section IV-B) have shown that the verification parameters selected 

using ACO incur significantly smaller average and standard deviation of the error (Equation 3) 

than those from the popularly used PSO; (2) The proposed framework is generalized using 

FBDT based supervised classification for the biometrics verification. The FBDT is learned 

during the training phase from the available/generated matching scores. The trained FBDT is 

then utilized for making a two-class classification of the claimed identity to accept (genuine) or 

the reject (imposter) an unknown user. The experimental results reported in Section IV-C show 

that, the FBDT based framework illustrates smaller average error rate in comparison to DTBV 

based approach, and (3) comparative evaluation of the score-level and the decision-level fusion 

approaches for the adaptive biometrics verification using ACO. It is observed that the score-level 

fusion offers superior performance in comparison to the decision-level fusion (See Fig. 5 (e) and 

Fig. 5 (f)) which is also supported by earlier work in [4] but using PSO.  

In this work, we have systematically evaluated ACO for the adaptive management of 

multimodal biometrics modalities to meet varying security requirements during the deployment. 

The requirement of discrete domain evolutionary approach in [4] motivated us to explore ACO 

over PSO. It may be noted that the other evolutionary techniques like GA [20] use crossover and 

mutation operations which are quite random in comparison to the ACO where ants follow the 

best path favored by the majority. The GA might offer better exploration of the solution space 

but it is constrained by the limitations like expensive fitness function, convergence to local 

minimum, and divergent solutions on dynamic data set [39]. Similarly, bacterial foraging 

optimization (BFO) [40] can also be subjected to so much of exploration by the way of 

swimming and tumbling in the four stages: chemotaxis, swarming, reproduction, and elimination 

and dispersal steps. Therefore the use of GA and BFO is constrained by the lack of adequate 

exploration; the only exploitation is through the optimization function.      
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 The proposed framework using ACO can also be generalized for various pattern 

classification approaches whereas the pattern classification problems need to address two-class 

classification. The implementation of FBDT in this work is an important attempt to illustrate that 

the proposed framework using ACO can be generalized for any classification technique. 

However, in this paper, the ACO based framework is used for biometrics verification. Its usage 

in the computation of parameters biometrics identification (close/open) is part of our future 

work. It may be noted that the ACO as a discrete evolutionary technique may be more relevant to 

the biometrics identification using the rank-level fusion which is only option when scores from 

multiple classifiers are not available. This is mainly because of the fact that, unlike decision 

thresholds (which are the normalized values between 0 and 1), ranks are the natural numbers 

representing the best match in the decreasing order of confidence.                
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