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Abstract: Remote human identification using iris biometrics has high civilian and surveillance 

applications and its success requires the development of robust segmentation algorithm to 

automatically extract the iris region. This paper presents a new iris segmentation framework 

which can robustly segment the iris images acquired using near infrared or visible illumination. 

The proposed approach exploits multiple higher order local pixel dependencies to robustly 

classify the eye region pixels into iris or non-iris regions. Face and eye detection modules have 

been incorporated in the unified framework to automatically provide the localized eye region 

from facial image for iris segmentation. We develop robust post processing operations algorithm 

to effectively mitigate the noisy pixels caused by the misclassification. Experimental results 

presented in this paper suggest significant improvement in the average segmentation errors over 

previously proposed approaches, i.e., 47.5%, 34.1% and 32.6% respectively on UBIRIS.v2, 

FRGC and CASIA.v4 at-a-distance databases. The usefulness of the proposed approach is also 

ascertained from recognition experiments on three different publicly available databases. 

1. Introduction 

Iris recognition has been emerging as one of the most preferred biometric modalities for 

automated personal identification. Conventional near infrared (NIR) based iris recognition 

systems are designed to work in strictly constrained environments in order to mitigate the 

influence of the noises from various sources such as illumination changes, occlusions from 

eyeglasses, eyelashes, hair and reflections, just to name a few. The operating wavelength of the 

NIR used in such conventional systems is usually between 700-900nm, which has been used to 

reveal iris texture and provide sufficient contrast
*
 even for the darkly pigmented irises. NIR 

illumination must be used with precaution and complied with the safety regulations. Excessive 

level of the NIR illumination can cause permanent damage to human eyes as the nature` of our 

                                                            

* The spectral radiance of human iris peaks at visible wavelength illumination. However the darkly pigmented iris 

often requires high level of intensity in visible illumination which can cause discomfort to the subjects. 
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human eyes is not instinctively responsive to the NIR illumination. Therefore, the iris images are 

usually acquired within a short distance between 1-3feet as the longer distances requires stronger 

NIR illumination, which may pose harmfulness to our eyes [1], [2], [4], [5]. 

 
Fig. 1. Sample iris images acquired in unconstrained environments. 

There have been some promising efforts to acquire iris images using visible illumination 

to overcome the limitations of current iris recognition systems using NIR-based acquisition and 

develop less cooperative iris recognition systems for higher security and surveillance 

applications. The use of visible wavelength (VW) imaging can address the shortcomings of 

acquisition using NIR-based imaging, especially when distant acquisition for iris images is 

required. The advanced imaging technologies, for example, high resolution CMOS/CCD 

cameras, are now available to conveniently acquire high resolution images at distances beyond 3 

meters using visible illumination and locate iris images suitable for recognition. Conventional 

iris recognition systems operate in stop-and-stare mode which requires significant cooperation 

from the users. The usage of visible imaging can relax such requirement and enable iris 

recognition in less cooperative environment using images acquired at further distance. Such iris 

recognition system can be a good candidate for high security surveillance such as identifying 

suspected criminals from the crowd [4]. References [3], [6] are two typical examples of the iris 

databases acquired using visible imaging which are now available in the public domain to 

promote further research efforts in this area. 

Iris images acquired using unconstrained visible imaging is significantly noisier than 

those acquired by the conventional
†
 iris recognition systems in the controlled environment. There 

can be multiple sources of commonly observed noise in such images and common ones may 

result from blurring artifacts caused by motion/defocus, occlusions from eyelashes, hair and 

eyeglasses, specular reflections, off-angles and partial images. Table 1 attempts to comparatively 

                                                            

† We refer to the iris imaging in controlled/constrained environments using NIR illumination. 
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summarize the iris recognition at-a-distance using VW and NIR imaging
‡
.  Fig. 1 presents some 

noisy iris images which were acquired using visible imaging in unconstrained environments.  

Table 1. Comparative summary of iris recognition ‘at-a-distance’ with different imaging conditions. 

  

Visible wavelength 

 

NIR wavelength 

Performance Low High 

Applications Forensics, surveillance Commercial, high security 

Imaging cost
§
 Low High 

Image quality Degraded due to noise Good 

Medical/health concern Low High 

User cooperation Low High 

Key challenges Robust iris segmentation, 

iris feature extraction 

Segmentation and recognition 

are quite matured 

 

 

 

 

 

 

 

 

 

Fig. 2. Samples segmentation results from the conventional iris segmentation approach applied on (a) 

NIR acquired and (b) VW acquired iris images.  

Integro-differential operator [2] is perhaps the most widely used iris segmentation 

approach deployed in most of the commercial iris recognition systems. The operator and its 

variants have shown effectiveness to segmenting the iris images for NIR acquired iris images in 

                                                            

‡ The imaging cost not only includes the cost of the camera but also includes the cost of acquisition setup (for 

example, NIR illumination panels, bandpass filter, etc. [45]). 

§  
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controlled environments [2], [7]-[10]. The operator works effectively when there is a significant 

contrast at the boundary of interest.  There is typically more contrast at the pupillary boundary in 

NIR images than in visible light images.  The conventional segmentation approaches often fail in 

segmenting the iris images acquired using visible imaging as the contrast level is degraded in 

those images. This failure can also be observed from the sample segmentation results in Figure 

2(b) obtained by applying the conventional iris segmentation approach [2] on the iris images 

acquired under visible illumination. In addition, significant variations in pose, expressions
**

 and 

illuminations, which are more common in unconstrained imaging environment, pose other 

significant challenges for the conventional iris segmentation approaches in effectively localizing 

the pupil and iris boundaries. Therefore, there is pressing needs for developing new image 

segmentation strategies, which are reliable and robust for automatically segmenting non-ideal iris 

images acquired using under visible illumination in the unconstrained or less constrained 

imaging environments.  

The algorithm reported in [12] has been ranked the best in NICE.I (Noisy Iris Challenge 

Evaluation – Part I), which was the competition for the segmentation of noisy iris images 

acquired using visible imaging [13]. The algorithm first clusters the image pixels into two 

regions: skin and iris regions. The two clusters are initialized by using the top M% of the 

brightest pixels and top N% of the darkest pixels as the initial regions. The unassigned pixels are 

then clustered into corresponding region by calculating the point-to-region distance and by 

checking the 8-connecitivity to the region. The coarse iris location can be estimated based on the 

clustering result. The pupillary and iris boundaries are localized based on a integro-differential 

constellation model, which is a sub-optimal approach to the [2], [7] to speed up the algorithm. 

The effectiveness of the integro-differential constellation model investigated in this work is 

limited by several factors. Firstly, the parameters M and N must be carefully selected to avoid the 

over represented of the initial iris and skin clusters. The confusion will affect the segmentation 

performance at the later stage. Secondly, the segmentation approach is operating based on the 

conventional segmentation approach, which the effectiveness is relying on the radial gradient 

                                                            

** The iris region may not be visible or only partially visible (covered by eyelid) due to some facial expressions. 
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information. Lastly, the stop-at-once strategy adopted in the integro-differential constellation 

may lead to the convergence at non-center point for iris/pupillary region.   

Another promising approach was reported in [4] by using neural network to classify the 

image pixels. The presented approach consists of two sequential stages: 1) sclera and 2) iris 

training/classification stages. Both stages exploit the local color features from HSV and YCbCr 

color spaces of the image. In addition to the color features, the iris stage also depends on the 

intermediate output from the sclera stage known as proportion of sclera. The proportion of sclera 

serves as the features with respect to four directions (east, west, north, and south) to delimit the 

iris region. As such, there exists a dependency between iris and sclera stages, in which the 

performance of the iris stage is directly affected by the sclera stage. Fig. 3 shows two samples of 

the sclera features extracted from two different iris images based on the algorithm in [4]. The 

defined color spaces are claimed to be capable to maximize the contrast between sclera and the 

other surrounding eye regions. However, our observations show that the discriminating features 

may not be stable for some images, as illustrated in Fig. 3(b). As compared to Fig. 3(a), much of 

the information contained in the hue component is not available. Also, the contrast between the 

sclera and iris regions in Cb (blue chroma) and Cr (red chroma) components are not contributing 

discriminative features as well. The deficiency of the discriminative sclera features will have the 

direct impact to the performance of the iris stage.  

 Input image Hue Cb Cr 

(a) 

    

(b) 

    

Fig. 3. Extracted sclera features with (a) high and (b) poor discrimination with iris region. 

1.1 Our work 

Remote identification of human at-a-distance using iris biometrics requires development of 

completely automated algorithm which can robustly segment the iris region from the distantly 
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acquired facial images. Despite some initial efforts in segmenting the VW iris images acquired in 

unconstrained conditions, the segmentation accuracies of those methods are quite limited. This 

paper focuses on the aforementioned segmentation problem and develops a completely 

automated and unified approach to segmenting the iris region from the facial image at a distance 

acquired using VW and NIR imaging [37]. The proposed approach works at pixel level by 

exploiting the localized Zernike moments [14] at different radii to classify each pixel into iris or 

non-iris category. Zernike moments have been shown to constitute discriminant features for the 

image representation since they are less sensitive to noise and the information redundancy. The 

complete orthogonal and rotation invariance properties of the Zernike moments are effectively 

exploited in the proposed segmentation approach for the noisy iris images acquired under visible 

illumination in unconstrained environments. The scale invariance in the feature representation is 

inherently addressed during the mapping process from a localized iris region to a unit circle. One 

of the important features of the proposed iris segmentation approach is its ability to segment iris 

images acquired under varying illumination bands and therefore offers a unified solution for the 

iris segmentation. Unlike previous approaches on VW iris segmentation, the proposed 

segmentation strategy for VW iris images is seamlessly adapted for NIR images and does not 

require any modification to segment iris images under variable spectral bands. In order to 

compensate the misclassification of the image pixels due to the limitations of the classifier, we 

develop a set of post-classification operations (Section 2.2) to robustly mitigate the influence of 

such noisy pixels (non-iris pixels). The post-classification processing is shown to be highly 

effective in reducing the segmentation error. Rigorous experiments were performed on two kinds 

of publicly available databases: (1) databases with localized face images (FRGC [21] and 

CASIA.v4 iris-at-a-distance (hereafter referred as CASIA.v4-distance) [31]) and (2) database 

with localized eye regions (UBIRIS.v2 iris database [3]). On the first case, face region is 

automatically localized by using AdaBoost-based face detector followed by a AdaBoost-based 

eye pair detector to localize the eyes. The performance comparison between the neural network 

and support vector machine based classifiers using the segmentation method is reported from the 

extensive experiments to ascertain the adaptability of the developed approach to different 

imaging environment/databases. The experimental results presented in this paper suggest an 

average improvement in the iris segmentation error by 47.5%, 34.1% and 32.6%, respectively on 

publicly available UBIRIS.v2, FRGC and CASIA.v4-distance databases, as compared to those 
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from previous approaches [4], [12], [10]. One of the important aspects of the experimental 

results and comparison presented in this paper is related to their repeatability. We have provided 

all the details of the employed images from the respective databases in our experiments (to 

ensure repeatability of experiments) and all the ground truth images employed in our evaluation 

[43]. In addition, recognition performance is also evaluated in order to ascertain the usefulness of 

the distantly acquired images for robust human recognition.  

The remainder of this paper is organized as follows. In Section 2, the proposed unified 

segmentation approach and the post-classification processing operations are detailed. The 

experiments and performance evaluation are presented in Section 3. Finally, discussions and 

conclusions are provided in Section 4. 

2. Iris segmentation for images acquired in visible and NIR illumination 

The iris segmentation approach developed in this paper is motivated by the work in [4]. The 

segmentation approach adopts pixel-based strategy to classify each pixel into iris/non-iris 

category. Fig. 4 and 5 show the block diagrams of the proposed iris segmentation approach for 

both localized eye and face images. The proposed segmentation approach can be divided into 

two stages: 1) training/classification and 2) post-classification. In the training/classification 

stage, local information at each image pixel is extracted by exploiting the Zernike moments 

represented by different radii. For training, the extracted localized Zernike features and the 

desired output labels (manually labeled iris mask) are fed into the machine learning algorithms 

such as neural network (NN)   and   support   vector machine (SVM).   For  classification, the  

 

Fig. 4. Block diagram of the proposed iris segmentation method with localized face image. 
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Fig. 5. Block diagram of the proposed iris segmentation method with localized eye image. 

extracted  Zernike features are passed to the trained classifier to predict the labels for each of the 

image pixel. Due to the limitations of the classifier, the classified output may contain some 

misclassified pixels which are not part of the iris region. As such, simple image processing 

techniques such as the morphological operations can be applied to eliminate majority of the non-

iris pixels. In this work, a set of post-classification processing operations are developed (section 

2.2) to further complement the trained classifier, in order to further refine the classified output. 

The post-classification processing operations are shown to be highly effective to further reducing 

the average segmentation error. 

2.1 Detection/Classification 

2.1.1 Face and eye detection  

Automated segmentation of eye region images, from the given face images in our experiments, is 

illustrated in Fig. 6. A hierarchical detection strategy is adopted by firstly detecting the face 

region. An eye- pair detector is then applied on the localized face region. The hierarchical 

detection approach improves the robustness to detect the eye region by confining the region of 

interest at each level, as compared to apply a single eye-pair detector. In this work, AdaBoost-

based face and eye-pair classifiers are employed for face and eye detection [22], [23]. The 

resulting output from the AdaBoost-based eye-pair detector is further refined by classifying each 
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eye into left or right eye category. The left or right eye classification is simply partitioning the 

width of the detected eye-pair region, the first half as right eye and the second half as left eye. 

 

Fig. 6. Hierarchical face-eye detection. 

2.1.2 Image enhancement 

Illumination variation poses the difficulties for both iris segmentation and recognition. The 

influence of the illumination conditions is even more noticeable when the acquisition is 

performed in the unconstrained environments using visible imaging. The problem, although 

usually been addressed, none of the approaches provide the solution especially in the context of  

 
Fig. 7. Image enhancement using SSR, image samples from (a) UBIRIS.v2, (b) FRGC, (c) CASIA.v4-

distance. 
 

iris segmentation for images acquired in the unconstrained environments using visible imaging 

[2], [10], [19], [34], [35]. For that reason, we propose to take the advantages of Single Scale 
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Retinex (SSR) algorithm for improving color consistency regardless of illumination variation 

[28]-[30]. The mathematical form for the SSR is as follows: 

   {     }(     )     
  (     )

     (     )
 (1) 

where    denotes the input image with i channels,    denotes the Gaussian kernel with standard 

deviation σ and ‘*’ denotes the convolution operator. For the case of NIR images, the 

multispectral channels are reduced to gray level. The SSR is applied on the localized eye region 

for image enhancement prior to the feature extraction operation. Fig. 7 shows some samples of 

the SSR enhanced images R from the three databases employed in the experiments.  

2.1.3 Feature extraction 

Localized texture description based on Zernike moments (ZM) has been shown to outperform 

other alternatives in terms of noise resilience, information redundancy and image representation 

[14], [15], [24], [25]. Therefore ZM is used as the feature extractor to compute higher order local 

pixel dependencies in the local region.  We extracted six features for every pixel at location 

(     ) from a given image I in the local region represented by multiple radii. The computed 

feature vector is of 6-dimensional defined as follows: 

{       (     )    
 (       )} (2) 

where I represents single channel of enhanced eye image. Therefore, conversion of the color 

image to the single channel image is required, for example, the images acquired using visible 

imaging. In order to meet such requirement, the red channel of the color image is employed
††

. 

This particular channel is utilized due to its spectral proximity towards NIR wavelength, which is 

commonly employed to acquire discriminative iris feature [12]. The Z is a function of I centered 

at (     ) which used to calculate the ZM at radius   {     }. The ZM of order     (m) 

and repetition     can be calculated using equation (3).  

   
  

   

 
∑ ∑  (   )[   (   )]

 

      

      

      

      

 (3) 

                                                            

†† The red channel image is employed throughout the experiments. 
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The Zernike order m is respectively set to 4 and 6 for VW and NIR databases and the repetition n 

is set to zero for databases from both wavelength
‡‡

. The function f denotes the extracted local 

region/sub-image which is mapped to a unit circle, i.e.,  (        ) . The Zernike 

polynomials V across the radius   [   ]       in the polar form is  

       ( ) 
    (4) 

where the repetition term n is subject to the conditions such that,   | | is even and | |   . 

The radial term in (4) is given as 

   ( )  ∑ (  ) 
(   ) 

  (
  | |

 
  )  (

  | |
 

  )  
     

(  | |)  

   

 (5) 

2.1.4 Training and classification 

The goal of classification is to find a generalized solution which can optimally separate the data 

into their corresponding classes/categories. SVM offers a computationally simpler model to 

obtain the solution which is global minimum and unique, as compared to NN. However, the 

performance comparison of each algorithm to solve the classification problem for iris 

segmentation has not yet been reported. In this work, two commonly used supervised machine 

learning approaches: feedforward neural network (FNN) and SVM are evaluated in order to 

show the adaptability to each different database used in our experiments. Both the classifiers are 

trained with the same training images, which are independent from the test images. 

Features are extracted for each image pixel which forms a set of feature vectors according to (2). 

As the supervised learning approaches require the labels (desired outputs) to be provided, iris 

regions of all the training images are manually masked to generate the binary labels. Fig. 8 

shows some samples of the training images from each different database and the corresponding 

manually labeled iris masks. It is important to note that the sample images shown in Fig. 8 are 

for illustration only and all the images employed are subject to the processing as described 

earlier. The extracted features from all the training images contribute a large amount of positive 

(iris) and negative (non-iris) training samples. However, only fraction of the positive and 

                                                            

‡‡ The coefficients were chosen empirically using training samples which were independent from the test dataset. 
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negative samples up to a certain amount is randomly selected to be used for training. 

 

 

 

 

 

 

 

 

 

Fig. 8. Sample training images and the corresponding manually labeled masks from database (a)  

                   UBIRIS.v2, (b) FRGC, and (c) CASIA.v4-distance. 

The information used in learning for both FNN and SVM are summarized in Table 2 and 3, 

respectively. For FNN, back-propagation with Levenberg-Marquardt learning method [26] is 

employed. Network topology selected in the experiments is a typical 3-layer FNN which consists 

of an input layer (i), a hidden layer (h) and an output layer (o) denoted as         in Table 

2, where    indicates the number of neurons at layer   {     } . For SVM, radial basis 

function (RBF) is selected as the non-linear kernel based on the preliminary results obtained 

from the validation samples. Table 3 suggests that least amount of positive and negative training 

samples
§§

 are used for training the SVM classifiers as compared to FNN. The differences are due 

to the fact that the generalization performance of an SVM is less dependent on the training data 

and is fully determined by the support vectors [27]. Classification of iris pixels is performed by 

using the trained classifier as described above. Features are extracted for each pixel in a similar 

manner as in learning phase to form a collection of feature vectors. The set of feature vectors is 

fed into the trained classifier to induce labels (iris/non-iris) for each pixel. 

 

                                                            

§§ Training samples used to train the SVM classifiers are subset of the training samples employed to train the NN 

classifiers. 
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Table 2. Training configurations for FFN-based classifiers. 
 UBIRIS.v2 FRGC CASIA.v4-distance 

Total number of train images 41 40 41 

No. of features per pixel 6 

No. of +/- samples 25000 / 25000 

No. of layes and neurons 6-11-1 6-11-1 6-9-1 

Radii for windows (pixels) 2, 5, 7 

Order of Zernike Moments 4 6 

Learning algorithm Levenberg-Marquardt 

Table 3. Training configurations for SVM-based classifiers. 
 UBIRIS.v2 FRGC CASIA.v4-distance 

Total number of train images 41 40 41 

No. of features per pixel 6 

No. of +/- samples 10000 / 10000 10000 / 10000 10000 / 10000 

Radii for windows (pixels) 2, 5, 7 

Order of Zernike Moments 4 6 

Kernel function Radial Basis Function (RBF) 

2.2 Post-classification processing  

The operations developed in this section play a vital role to further refine the classification 

results produced by the trained NN/SVM classifier. The pixels classified by the trained NN/SVM 

classifier often include noise resulting from false negative and false positive errors in the 

classification stage. Therefore, the robust post-classification processing steps are developed to 

mitigate the errors and improve the segmentation accuracy of the algorithm. 

2.2.1 Iris center estimation and boundary refinement 

Iris center is estimated by fitting a circle to an edgemap generated using the classified iris mask 

which is firstly processed with morphological operations. The holes (pupil/reflection in the 

classified iris masks) are filled to obtain better estimation of iris center by minimizing the 

influence from the pupil and reflection regions. There are two parameters required for the 

operation: i) initial iris center and ii) range of radius, which both can be easily 
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Input image Estimated iris center Classified iris mask (with 

morphological operations) 

Refined iris mask 

Fig. 9. Examples of iris center estimation and boundary refinement. 

estimated from the classified binary iris mask B. The initial center (       ) is estimated by 

calculating the center of mass of the B. For estimating the range of radius r, one can utilize the 

width and height information of B. In this work, we consider only the height information h, 

which is least sensitive to the presence of eyelashes spread horizontally. The r can be computed 

as follows: 

{                           }  (6) 

After obtaining the necessary parameters, the best fitted circle is searched within a small offset 

(±15 pixels) from the (       ). The pixels in B which are fallen outside the best fitted circle are 

removed, resulting in a boundary refined iris mask, as shown with some examples in Fig. 9. 

2.2.2 Eyelid localization 

The estimated iris center (    
     

) and the radius r obtained in the previous step are employed 

here. The iris center serves as a reference point to partition the localized iris into two regions: 

upper and lower eyelid regions, which are delimited by r. Both upper and lower eyelids can be 

localized in a similar manner, thus we explicate the localization approach by using the upper 

eyelid as an example. The key idea of the eyelid localization is to fit a polynomial curve with 

degree 2 to the candidate eyelid points extracted from an edgemap generated using Canny edge 

detector [32]. Considering the fact that the intensity of eyelashes is usually darker than the skin 
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Fig. 10. Sample eyelid localization results for iris images with various noisy artifacts. 

and iris regions, robustness to extract the candidate eyelid points can be improved by exploiting 

the intensity information of an input image I simultaneously.  The average columnwise intensity 

information,   and   , delimited by P pixels from an edge point (   
    

), i.e. 

   
 

 
∑  (   

    
 )

    

  
      

              
 

 
∑  (   

    
 )

    

  
      

 

are computed. The (   
    

)  is considered a rightful candidate if        (   
    

)  is 

satisfied. Furthermore, we adopted the strategy in [19] to consider only one edge point per 

columnwise, which can further mitigate the effect from the outlier. Fig. 10 presents some sample 

of the eyelid localization results which has shown superior performance even under challenging 

conditions. 

2.2.3 Reflection removal 

Reflection removal technique reported here can be considered an extension to [19]. In [19], an 

adaptive threshold is calculated by considering the top 5% of the brightest intensity
***

 of an 

image. The calculated threshold is used to extract the candidate reflection regions. The extracted 

regions are filled using bilinear interpolation method. The reflection problems appear to be more 

challenging in unconstrained environments for visible imaging acquisition images due to 

multiple sources of the reflections (specular and diffuse). In addition, the levels of pigmentation 

also quantify the spectral radiance in the iris region, from which the variation is more significant 

                                                            

*** The percentage reported was tuned for NIR acquired iris images. 
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in visible imaging [4], as depicted in Fig. 11. The dynamic nature of the reflection in visible 

imaging acquired images justifies that the reflection removal technique in [19] is not sufficient 

for capturing the reflection regions in unconstrained environments. For that reason, we propose a 

relativity propagation reflection pixel detection approach, which can robustly localize the 

reflection regions. This approach can be detailed as follows: 

  

Fig. 11. Reflection is often severe for the iris images acquired at-a-distance using VW imaging in 

unconstrained environments. 

1. Candidate reflection regions are firstly initialized, similar to as in [19] by considering the 

top 20% of the brightest intensity as the candidate regions. The candidate regions which 

are fallen beyond the iris region are filtered and are not to be considered in the 

subsequent operations. The remaining candidate regions serve as seed points
†††

 

{          } for the propagation to work. Select a relativity term {          }, 

which is used to calculate the relative threshold. 

2.  Evaluate the 8-connected neighborhood pixels         (  )       which is not indicated 

as reflection point. If the intensity value of  (  )     (  ), mark    as reflection 

point and repeat 2 at    for p iteration (p is set to 5 throughout the experiments).  

The undetected reflection points are propagated by comparing the intensity values with respect to 

the center pixel (reference pixel) in an 8-connectd neighborhood, whose relationship is 

controlled by the relativity term R
‡‡‡

. For examples, let R = 0.9, the neighborhood pixels whose 

                                                            

††† One can opt for other methods to initialize the seed points. 

‡‡‡ 90% – 95% intensity value from the reference pixel is a reasonable choice for parameter R. 
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intensity value is of 90% of the reference pixel is then updated as reflection point. Figure 12 

presents the sample results for reflection detection using [19] and the proposed method.  

 

(a) 

 

(b) 

 

(c) 

Fig. 12. Reflection detection; (a) source image (b) method [19] (c) proposed method. 

 

2.2.4 Eyelashes and shadow removal 

The proposed eyelash and shadow removal approach is motivated based on [19] by exploiting 

the intensity distribution of the classified/localized iris region, as illustrated in Fig. 13. The 

localized iris region is first divided into two sub-regions namely eyelashes and shadow (ES) 

region, and iris (IR) region, as depicted in Fig. 13(a). The ES region is defined as the area from 

the upper eyelid delimited by distance d with respect to the iris radius    , i.e. (         ). 

Histograms of these sub-regions are constructed subject to the transformation as follows: 

 ( )   

( ( )   ) 

   
 

 
(7) 

where   denotes the intensity level,    and    denote the mean and the standard deviation of the 

histogram  . An adaptive threshold    to mask out the noisy artifact in ES region can be 

obtained by considering the intensity levels          and         , from the peaks of the 

transformed histograms, i.e.       (                 ). The   can be considered as a weight 

that bias to either side of the peak, which is set to 0.4 for all of the experimental results reported 

in this paper.   

 

2.2.5 Pupil masking 
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Accurate localization of the pupil region for VW acquired images is more challenging as 

compared to those for NIR acquired images. This problem becomes more serious for the darkly 

pigmented irises  where  the contrast  level  between  pupil and iris regions is relatively low. The 

 

 

(d) 

Fig. 13. Eyelashes and shadow removal; (a) ES (red) and IR (green) regions, (b) localized iris masks 

before ES removal, (c) localized iris masks after ES removal (d) histograms of sub-regions of 

images in (a). 

 

image enhancement technique described in section 2.1.2 plays an important role to address such  

problem. This can also be observed from the images in Fig. 7 where the contrast level between 

pupil and iris regions is greatly improved after applying the retinex algorithm for image 

enhancement. In order to localize the pupil region, the gray level distribution in the localized iris 
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region is again exploited to automatically compute the adaptive threshold    to extract the 

candidate pupil region, i.e.      ( (    )    ). The function   returns the intensity level 

of the maximum frequency      of the histogram and    denotes the minimum intensity level 

from the histogram. The constructed histogram is divided into 10 equally spaced bins as we 

assume the intensity values in the localized iris region are highly similar since most of the 

artifacts such as reflection, eyelashes and shadow have been eliminated with the prior post-

processing operations. 

 

 

 

 

 

 

 

 

 

 

(a)                                                            (b) 

 

(c) 

Fig. 14. Pupil localization; (a) input images, (b) binary masks after pupil masking, (c) histograms of the 

localized iris regions for images in (a). 
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The parameter   can be considered as a weight factor which determines the   , which is set to 

0.4 in all the experiments. The selection of    is motivated by the fact that the intensity 

distribution for iris pixels is more concentrated (peak of the histogram) in the localized iris 

region. The extracted candidate pupil region is subjected to the refinement using morphological 

operations and pupil center can be approximated similar to the steps for finding iris center, as 

described in section 2.2.1. Fig. 14 illustrates sample pupil localization results using the approach 

described in this section. 

3. Experiments and results 

In order to ascertain the performance of the proposed unified segmentation approach for distantly 

acquired iris/face images, experiments on three free publicly available databases: UBIRIS.v2, 

FRGC and CASIA.v4-distance were utilized. The first two databases were acquired using visible 

imaging while the latter was acquired using NIR imaging. All the databases employed in the 

experiments provide the images acquired at a distance ranging from 3 – 8 meters
§§§

, which have 

justified the main objective of our work. Repeatability and reproducibility of the experimental 

results are one of the important issues in biometrics. It is not uncommon for the researchers to 

find difficulties in reproducing the published results due to lack of details on the selection of 

training/test images, especially in the context of visible imaging iris recognition. We have 

therefore  elaborated  such  desired information  to  ensure reproducibility of experimental 

results.  

Table 4. Summary of the train/test images from different databases employed in the experiments 

 UBIRIS.v2 FRGC CASIA.v4-distance 

Imaging type VW VW NIR 

Standoff distance 4 – 8 meters N/A ≥ 3 meters 

No. of test images (S/R) 904 / 904 500 / 500 502 / 961 

No. of test subjects (S/R) 152 / 152 150 / 150 67 / 131 

No. of train images (S/R) 40 / 96 40 / 40 41 / 79 

No. of train subjects (S/R) 17 / 19 13 / 13 6 / 10 

                                                            

§§§ The exact standoff distance is not yet available for the still images in FRGC database.   
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Above table summarizes the respective details on the train/test images employed in two types of 

experiments performed in this work. The first type of experiment evaluates the segmentation 

accuracy from the proposed segmentation approach. The second type of experiment evaluates the 

recognition performance using the segmented iris images. The details for the segmentation and 

recognition experiments are denoted respectively as S and R in Table 4. 

3.1 Databases 

 UBIRIS.v2. The database is the contribution of the SOCIA Lab from the University of 

Beira Interior. The images were acquired in unconstrained conditions using visible 

imaging which presents more realistic noise factors. The full database consists of a total 

of 11102 images acquired from 261 subjects in two distinct sessions. The standoff 

distance of the subjects to the camera is range from 4 to 8 meters [3]. A subset of this 

database which consists of 1000 images from 171 subjects was employed in the 

experiments. This database subset was released for Noisy Iris Challenge Evaluation - Part 

II (NICE:II), which was a competition initiated from the same research team [20]. The 

first 96 (19 subjects) out of the 1000 images were selected as training samples. The 

remaining 904 (152 subjects) images were served as test samples. 

 

Fig. 15. Falsely classified eye-pair region by AdaBoost eye-pair classifier. 

 

 FRGC. FRGC database was acquired to encourage the development and evaluation of 

new algorithms for automatic face recognition. The databases comprised of three 

categories of images: high resolution still images, 3D images and multi-images of a 

person [21]. Among the available categories, the high resolution still images were 

employed in our experiments as the images in this category can closely represent/meet 

the objective of our work. The images employed in the experiments were selected from 

the sessions 2002-269 to 2002-317 of “Fall2002” academic year. Eye regions were 

automatically extracted from the face using the procedures as described in section 2.1.1.  
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Our observations have suggested that the average iris diameter from the extracted eyes 

images are less than 140 pixels, which do not meet the minimum acceptable diameter as 

reported in [2]. The ISO/IEC 19797-6 Annex A [35] requires even stricter constraint on 

iris diameter with a minimum of 200 pixels for high security applications. Therefore, it is 

reasonable to filter or reject those images which are not expected to be compliant (or 

even near) with such standard. We have also estimated the average iris diameter for the 

segmented iris images for all the three employed databases, using the ground truth masks, 

and are summarized in table 5. As such, we applied filtering rule to the results obtained 

from the AdaBoost-based eye-pair classifier. The detected eye-pair regions not satisfying 

the predefined minimum size of 300 × 150 pixels were not considered in the 

experiments
****

. The qualified eye-pair region is subject to further classification into left 

or right eye region and rescaled the region size to 300 × 150 pixels. The AdaBoost-based 

eye-pair classification also has some limitations, though not serious, which remains to be 

addressed to ensure accurate eye-pair detection. The false alarm rate is 0.93%, for all the 

FRGC images considered in this experiment. The falsely classified eye-pair images (see 

Fig. 15) where not considered in the experiments.  

      Table 5: Estimated Iris diameters 

 Min. diameter Max. diameter Mean diameter 

UBIRIS.v2 49 200 122.48 

FRGC 46 75 61.72 

CASIA.v4-distance 129 185 164.23 

 

 CASIA.v4-distance. The first publicly available long-range and high quality iris/face 

database acquired using NIR imaging released by the Center for Biometrics and Security 

Research (CBSR) from the Chinese Academy of Sciences (CASIA). The full database 

consists of a total of 2567 images acquired from 142 subjects in single session. The 

standoff distance of the subjects to the camera is from 3 meters away [31]. Images from 

the subject 1 to 10 were selected for training, while the rest serve for testing purpose 

(images from subject 11-77 used in experiment S; images from subject 11-141 used in 

                                                            

**** Although the filtering rule provides localized eye images with larger iris diameters, the average iris diameter is 

still beyond the minimum requirement set by the ISO/IEC 19797-6.  
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experiment R). Note that only the first eight left eye images from each subject were 

employed in the experiments. Similarly to the FRGC database, eye region detection and 

classification are required in order to provide the localized eye image for segmentation. 

The false alarm rate of AdaBoost-based eye-pair classifier is 4.76%, for all the images 

employed in the experiment from this database. 

 

3.2 Evaluation protocols and experimental results 

Experiments were carried out on three publicly available databases to ascertain the performance 

of the proposed iris segmentation approach. In addition, recognition performance for the images 

from these three challenging databases was evaluated. The evaluation is essential to ascertain the 

usefulness of the distantly acquired images for robust human recognition. Both segmentation and 

recognition performance is also compared to three state-of-the-art methods [4], [12], [10], which 

were reproduced in either C/C++ (with OpenCV Library) or Matlab environment. 

 

3.2.1 Experiments on segmentation (S) 

In order to ascertain the performance from the proposed iris segmentation approach, the 

evaluation protocol as used in NICE.I competition [13] is adopted. The classification error E is 

employed as the performance criterion and can be expressed as follows: 

  
 

   
∑∑ (     )   (     )

    

 (8) 

where O and C referring the ground truth and segmented iris masks; c and r denote the width and 

height of the image, respectively. The ‘ ’ denotes an XOR operator which evaluates the 

disagreeing pixels between the ground truth O and the segmented iris masks C. Table 6 and 7 

summarize the segmentation results obtained from the proposed segmentation approach on the 

three databases described earlier as well as the comparisons with the state of the art methods [4], 

[12], [10]. The proposed method has achieved improvement of 49.3% and 45.6% on UBIRIS.v2 

database over the methods [4] and [12], respectively. For the experiments on FRGC database, 

improvement of 24.0% and 44.2% has been achieved as compared to [4] and [12]. The 

improvement   of    32.3%,   36.3%   and  29.2%  has  also  been achieved for the experiments on  
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                     Table 6: Summary of the segmentation results for VW acquired iris images 

 

Segmentation Error, E 

UBIRIS.v2 FRGC 

Sclera Iris Sclera Iris 

Proposed method (NN) N/A 1.90 N/A 1.84 

Proposed method (SVM) N/A 2.05 N/A 2.14 

Method 1 [4] 4.99 3.75 6.50 2.42 

Method 2 [12] N/A 3.49 N/A 3.30 

N/A – Not Applicable 

 

Table 7: Summary of the segmentation results for NIR acquired iris images 

 

Segmentation Error, E 

CASIA.v4-distance 

Iris 

Proposed method (NN) 1.13 

Proposed method (SVM) 1.09 

Method 1 [4] 1.61 

Method 2 [12] 1.71 

Method 3 [10] 1.54 

 

 

(a) 
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(b) 

Fig. 16. Sample segmentation results from VW databases employed in experiments; (a) UBIRIS.v2, (b) 

FRGC. 

 
Fig. 17. Sample segmentation results from NIR database (CASIA.v4-distance) employed in experiments. 

 

CASIA.v4-distance database, as compared to [4], [12], and [10], respectively. In general, the 

average improvements achieved by the proposed method on UBIRIS.v2, FRGC and CASIA.v4-

distance databases are 47.5%, 34.1% and 32.6%, respectively. Fig. 16 and 17 show some 

sample segmentation results produced by the proposed iris segmentation approach on the three 

publicly available databases as mentioned above. 

3.2.2 Experiments on recognition (R) 

Conventional iris imaging using NIR illumination has been shown to offer highly accurate 

performance for the personal identification [2], [7]-[10], [19], [33]-[34]. This could be attributed 

to the accurate segmentation and extraction of discriminative iris features in the controlled 

acquisition environment. On the contrary, distantly acquired iris images in real or unconstrained 
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VW illumination environments are often noisy which can result from defocus, motion blur, scale, 

pose changes and shadows. Therefore such images are often of degraded image quality and have 

questionable pieces of information for their usefulness in the human identification. As such, 

experiments described in this section investigate the usefulness of such distantly acquired 

face/iris images for reliable human recognition and also verification. The segmented iris images 

and the corresponding masks are normalized
††††

 using the rubber sheet model [2]. The feature 

extraction on each of the segmented and normalized iris images is performed using 1D Log-

Gabor filter [36].  The parameters of the 1D Log-Gabor, i.e., center wavelength and SigmaOnf 

(     ), was estimated from the training images of the respective database and are as follows: 

UBIRIS.v2 (35/0.3), FRGC (20/0.5) and CASIA.v4 (20/0.25). Hamming distance is employed to 

compute the matching score between probe and gallery sets. The verification and identification 

performance on the independent test set from the three employed databases is illustrated from the 

receiver operating characteristics (ROC) and cumulative match characteristics (CMC), 

respectively in Fig. 18 and 19. The recognition results, for the images acquired from the NIR and 

VW illuminations, suggests that the proposed approach outperforms the other methods 

considered in this work. The results for the distantly acquired images using NIR illumination 

provide superior performance than those images acquired using VW illumination under 

unconstrained environments. It can also be observed that the recognition performance for the 

noisy images acquired using VW illumination is not adequate to be considered for high security 

or forensic applications. The conventional iris feature extraction strategies such as the one 

employed in this work may not  able to  effectively  extract  discriminative feature  from  the  iris  

 

 

 

 

 

Fig. 18. ROC curves from the experiments using (a) UBIRIS.v2, (b) FRGC, and (c) CASIA.v4-distance database. 

                                                            

†††† The normalized templates for UBIRIS.v2, FRGC and CASIA.v4 are of sizes of 512 × 64, 256 × 32 and 512 × 64, 

respectively. 
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Fig. 19. CMC curves from the experiments using (a) UBIRIS.v2, (b) FRGC, and (c) CASIA.v4-distance database. 

images acquired using VW illumination under unconstrained environments. The nature and the 

distribution of features which are observed in the normalized VW illumination iris images is 

quite  unique  and  different  than those from normalized images using acquired NIR illumination. 

Therefore the development of feature extraction and matching techniques which are tailored to 

the nature of the features, observed under VW illumination, can help to further improve the 

performance for the VW iris recognition and should pursued in the further work. 

4. Discussion and Conclusions 

This paper has detailed the development of a new approach for the completely automated iris 

segmentation using distantly acquired facial images. The iris recognition performance has also 

been evaluated to ascertain the usefulness/superiority of the correspondingly segmented iris 

images from the distantly acquired images. The main conclusions/contributions from of the work 

described in this paper can be summarized as follows: 

1. A unified framework for completely automated iris segmentation using images acquired 

in both visible and NIR imaging is presented. The proposed approach exploits the higher 

order pixel relationship in a local region using Zernike moments and performs the pixel-

based classification using trained NN/SVM classifier. In particular, the pixel-based 

classification addresses the problem of conventional segmentation approaches for 

segmenting images acquired at a distance and under unconstrained environments. 

Experimental results (Table 5 and Table 6) presented on three publicly available 

databases in section 3.2.1 illustrated superior performance than previously proposed 

approaches for the VW imaging iris segmentation. The presented results suggest 
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significant improvement in the average segmentation error by 47.5%, 34.1% and 32.6% 

over the previously proposed approaches. 

2. The developed framework has incorporated robust post-classification processing 

operations which have been detailed in Section 2.2. These developed operations have 

been found to be highly efficient to mitigate the classification errors from the 

classification stage. These important steps are found not to be comprehensive in the 

previous approaches [4], [10]. When applying the developed post-classification 

processing to the classification results obtained using [4], the segmentation errors can be 

further improved by 34.7%, 10.3% and 25.5% for UBIRIS.v2, FRGC and CASIA.v4-

distance databases, respectively. The presented results have not only confirmed the 

effectiveness of the developed techniques but also suggest potential adaptability of the 

developed techniques with other segmentation approaches to further refine the 

segmentation results. 

3. Image enhancement using SSR has been employed in this paper to account for the 

illumination variation problem. SSR is a color constancy algorithm which helps to 

alleviate the influence of the varying illumination to the iris segmentation problem. 

Illumination variation is often significant in the images acquired under unconstrained 

environments. Such problem has also been discussed in previous approaches [4], [12], 

but there have not yet been any effort to address this problem. 

4. In addition to the NN, we have presented the segmentation results of the proposed 

method obtained using SVM classifier. The NN classifier often suffer from the 

performance limitation due to the local minima problems and it requires rigorous training 

to ensure good classification performance. Therefore, an alternative classifier which 

requires least amount of training and provides competing or better performance is highly 

desirable. The SVM classifier was therefore evaluated in this paper and achieved 

competing performance to than those from NN classifier (Table 5 and 6).  One of the 

possible reasons that SVM has not performed better than NN for iris classification 

(except for the case of CASIA.v4-distance database) could be due to the lack of adequate 

training samples (see Table 3). In general, all the segmentation results obtained using our 

method with NN/SVM classifier outperforms other state-of-the-art segmentation 

approaches considered in this paper.  
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5. Unlike previous efforts on visible imaging iris segmentation, this paper presented iris 

recognition performance from several publicly available databases. The proposed iris 

segmentation approach achieves superior performance (Section 3.2.2) for the iris 

recognition as compared to those from previously developed approaches. The 

experimental results from distantly acquired (noisy) iris images are not yet comparable to 

those from conventional iris recognition systems for commercial/civilian applications. 

However, these have high potential for surveillance and forensic applications as shown 

from the iris recognition results in this paper.  

The experiment results from the distantly acquired face/iris images using the 

developed iris segmentation approach are promising but require further efforts to exploit 

complimentary information for the human recognition. For example, fusion with other 

biometric modalities such as face or periocular features is expected to greatly improve the 

recognition performance and is suggested for further work. Previous work on periocular 

biometrics [23], [42] using the distantly acquired FRGC dataset has not attempted to 

exploit (ignored) iris features and our work has shown the usefulness of such iris features 

in the human recognition. Another possible approach to explore the performance 

improvement is to exploit the inconsistent/unstable bits in the iris code. The iris code 

produced as a quantization result of the filtered response for the noisy image is likely to 

be unstable due to the unconstrained imaging conditions. We believe that the 

performance from iris recognition-at-a-distance can be further improved by analyzing 

those unstable/inconsistent bits in the iris code. In this context recent efforts in [39]-[41] 

have shown promising results but for the iris code generated from the images NIR under 

imaging. The utility and applicability of these methods for the VW acquired images for 

the robust human verification/identification requires further investigation. Feature 

extraction based on orientation estimation [44], or multilobe differential filtering 

(MLDFs) [38] can hold some promises for extracting more discriminative VW iris 

features. However, due to the high degrees of freedom for configuring MLDFs, a 

thorough study is required to search for the best possible configurations which can 

effectively work for VW iris images and is suggested for further work. 
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