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Hand-Geometry Recognition Using
Entropy-Based Discretization

Ajay Kumar and David Zhang

Abstract—The hand-geometry-based recognition systems
proposed in the literature have not yet exploited user-specific de-
pendencies in the feature-level representation. We investigate the
possibilities to improve the performance of the existing hand-ge-
ometry systems using the discretization of extracted features.
This paper proposes employing discretization of hand-geometry
features, using entropy-based heuristics, to achieve the perfor-
mance improvement. The performance improvement due to the
unsupervised and supervised discretization schemes is compared
on a variety of classifiers: k-NN, naive Bayes, SVM, and FFN.
Our experimental results on the database of 100 users achieve
significant improvement in the recognition accuracy and confirm
the usefulness of discretization in hand-geometry-based systems.

Index Terms—Biometrics, feature discretization, feature repre-
sentation, hand geometry, personal recognition.

I. INTRODUCTION

HE ever-increasing demand for better security technology

for public- and private-access control has highlighted the
need to improve user acceptance and recognition accuracy of
current biometric systems. The face is the most highly accepted
and user-friendly biometric but the reliability of personal iden-
tification system based on face images is quite low. This can
be attributed to the problems resulting from variations due to
pose, expression, or lighting. The user acceptance of hand ge-
ometry is second only to the face [1]. However, the recogni-
tion accuracy of hand-geometry-based identifications is limited
and, therefore, efforts are still required to achieve acceptable
performance.

The commercial usage of biometric technology began more
than 25 years ago when the hand-geometry-based attendance
system was installed at Shearson Hamil on Wall Street. The U.S.
patent office later issued several patents [2]-[5] for personal
identification devices that measure hand-geometry features.
Jang et al. [6] describe a device and system for personal
authentication using a bootstrap technique which effectively
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utilizes hand-geometry features. A recent European patent
[7] discloses a similar system using hand-geometry features.
Sanchez-Reillo et al. [8] extracted 25 hand-geometry features
and employed a Gaussian mixture model for user identification.
However, the results in [8] and [9] may be biased by the small
size of the database. The usability of the approach detailed in
[10] and [23] is limited due to the usage of the digital scanner
and large number of features (30 and 40, respectively). Jain
et al. [11] employed 17 geometric features from the images
acquired from digital-camera-based low-resolution imaging.
These authors have used fixation pegs to restrict the hand
movement but have shown promising results. Kumar et al. [12]
have also demonstrated the performance from hand-geometry
features using peg-free imaging. However, their work is more
focused on palm features since, unlike [8] or [11], they use
high-resolution imaging to extract palm features.

A. Motivation

The feature representation in biometrics has received very
little attention and prior work has been quite limited to the use
of normalization schemes! for performance improvement. A
survey on available biometrics literature [22] suggests that there
has not been any effort to exploit user-specific dependencies in
the feature-level representation. The usefulness of discretiza-
tion schemes is yet to be investigated in biometric-based user
identification. This paper therefore suggests and investigates the
possibility of performance improvement using both supervised
and unsupervised discretization schemes. The performance
improvement due to the discretization schemes is investigated
on the real biometric data acquired from the hand-geometry
trait. The way features should be discretizaed is highly de-
pendent on the classifiers. Therefore, the improvement in the
recognition accuracy, using different discretization approaches,
is ascertained on a variety of classifiers.

II. FEATURE DISCRETIZATION

The discretization of hand-geometry features offers several
advantages. The discrete features are closer to knowledge-level
representation than the continuous (nominal) values which may
be unstable due to noise or inaccuracies in the feature extraction
or image normalization algorithms. The problems due to such
perturbations are likely to be smaller than those for hand-geom-
etry systems [8], [11] that use user pegs to constrain the rota-
tion and translation of the hand than those systems [9], [12] em-
ploying unconstrained peg-free imaging, which highly relies on

IThe score normalization schemes suggested in [13] for multimodal score
normalization can also be employed for feature normalization.
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Fig. 1. Discretization of biometric features to exploit class-specific
dependencies.

the efficiencies of the algorithm to achieve illumination, trans-
lation, and rotation-invariant features.

The idea of discretization is to project continuous feature
values into discrete ones such that the projection preserves im-
portant distinction among different users. Fig. 1 illustrates the
transformation of continuous feature F' into discrete feature F'x
with values {V1,V5,V3,....,V,} for n = 4. Each value V; of
the new feature F'x represents a certain range of numeric values
in the original feature F'. Discretization methods in the machine
learning literature have been categorized into supervised and
unsupervised categories. The unsupervised discretization in its
simplest form, also known as equal-interval width, divides an
observed feature value range into k equal-size bins where the
parameter k is provided by the user. Another unsupervised ap-
proach for the discretization is to use equal-frequency intervals.
This approach sorts the available values of a feature and then
assigns them to 1/k of the values in each bin. The supervised
approaches also examine the distribution of class labels (users)
and are more likely to give higher accuracies. The supervised
discretization allows interclass feature dependencies to be cap-
tured in the feature discretization and, thus, indirectly promoting
accuracy.

A. Entropy-Based Discretization

The potential problems with the unsupervised discretization
methods is the loss of classification information because of the
resulting discretized feature values that are strongly associated
with different classes in the same interval [18]. The supervised
discretization uses sorted feature values to locate the potential
interval boundaries (i.e., cutpoint 71") such that the resulting in-
terval has the strong majority of one particular class. The cut-
point for discretization is selected by evaluating the favorite dis-
parity measure (i.e., class entropies) of candidate partitions. The
multiple intervals of a feature are computed by recursively ap-
plying this algorithm on two intervals of those previous split
until some stopping criteria are satisfied.

The set .S of instances (i.e., training samples) of a sorted fea-
ture array is first partitioned into subset S; and Ss. The class
entropy of subset S is defined as

zZ

But(S) = - 3 p(Ci. §)loga((C1,5) (1)

i=1

where p(C;, S) is the proportion of samples/instances lying in a
class C; and Z is the total number of classes. The resulting class
entropy, due to the partition of S into S; and S5, is estimated
by weighted average of resulting individual entropies. The class
information entropy of the partition induced by a cutpoint 7', for
a feature I, is computed as follows:

E(F.T;5) = %En‘c(Sl) + %Ent(sg). 2

The cutpoint for which E(F,T;S) is minimum among all the
candidate cutpoints is taken as best cutpoint T and determines
the binary discretization of feature F' [16], [21]. The splitting
procedure is recursively applied unless a stopping criterion is
reached. The stopping criteria prescribe to accept a partition
induced by cutpoint 7" only if there is any gain after splitting.
Thus, a partition due to cutpoint 7" is accepted only if

1 M -1 A(F, T,
Gain(F, T; S) > °g2(M ) 4 A o 9 5
where
Gain(F,T;S)=Ent(S) — E(F,T;S), and

A(F,T;8) = logy(3% —2)
—[2Ent(S) — 2z, Ent(S1) — 20Ent(S2)]. (4)

The number of samples in set .S is denoted as M, and the number
of classes present in S7 and S, are z; and z,, respectively.

Another supervised approach for evaluating the worth of the
features is to measure the average compression (per sample) of
the class afforded by an attribute. Kononenko [15] has shown
that this criterion is the most promising on multivalued features
among a number of other simple impurity-based measures. This
measure, commonly referred to as minimum description length
(MDL), is defined as

1 n n+7-—1

_ n.j _ n.;+ Z—1
Zlog2 <n1j7 e aan> Zlog2< Z-1 )) ©)
J J

where 7 is the number of training samples, Z is the total number
of classes, n; is the number of training samples from class z;,
n_; is the number of training instances with the jth value of a
given feature, and n;; is the number of training samples of class
z; having the jth value of the feature. The first two terms in (5)
represent the description length of the class labels prior to parti-
tioning on the values of a feature, while the remaining two terms
represent the description length after partitioning. The model for
MDL is simply the difference in probability distribution over a
class label (number of training samples in each class), before
and after the partition is induced by a given feature using (2).

III. EXPERIMENTS

The right-hand images of users using a digital camera were
acquired from the 100 users within an interval of three months.
Each user contributed about five images in one session and only
ten images from every user were employed in our experiments.
The hand images were acquired using a simple peg-free imaging
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setup as detailed in [12]. The acquired images were binarized
and employed for feature extraction. The thresholding limit
was automatically computed, once for each acquisition setup
using Otsu’s approach, and used in subsequent images. We ex-
tracted 23 hand-geometry features and used in our experiments:
4-finger length (hy — hy), 8-finger width (hs — hi2), palm
width (h13), palm length (h14), hand area (hy5), hand length
(h16), perimeter (h17), solidity(hg), extent (h1g), convex area
(h2o), eccentricity (ho1) and x—y position of centroid relative
to shape boundary (hay — ha3). The details of these features
and preprocessing steps can be found in [12] and [17]. The
5-hand images from each user were used for the training and
the remainder were employed for the testing.

The training samples from the 100 users were subjected to
discretization as discussed in Section III. The performance for
unsupervised discretization using equal interval width and equal
frequency interval was investigated on four classifiers: neighbor
(k-NN), 2) Naive Bayes, 3) support vector machine (SVM), and
4) feedforward neural network (FFN). The k-nearest neighbors
were obtained from the minimum Euclidean distance between
the query feature vector and those from training samples. The
parameters of SVM and FFN employed in the experiments were
empirically selected. The SVM using the second-order polyno-
mial kernel achieved much better results than those from the ra-
dial basis function. Therefore, to conserve the space, only the re-
sults from the polynomial kernel are reported. The SVM training
was achieved with C-SVM, a commonly used SVM classifica-
tion algorithm [14]. The training parameter y and € were empir-
ically fixed at 1 and 0.001, respectively. Similarly, the number
of input nodes in FFN were also empirically selected for the
best performance; 80. The FFN neuron weights were updated
using the resilient backpropagation algorithm and the training
was aborted if the maximum number of training steps reached
1000. The confusion matrix resulting from the experiments on
500 test samples is quite large to be reproduced in this paper.
Therefore, we selected the following few performance indices,
that is, Kappa Statistic [19], accuracy, and precision [20] to as-
certain the performance improvement

P(A) - P(E)
Kappa = = P(E)
Accuracy = TP+TN ,
TP+TN+FP+ FN’
Precision = L (6)
TP+ FP

where P(A) is the observed proportion of true positive (TP) and
true negative (TN), P(F) is the expected proportion of TP and
TN, and FN and FP, respectively, represent the false-negative
and false-positive matches from the test data.

IV. RESULTS

The k-NN classifier is a simple nonparametric classifier that
does not involve the training phase and, hence, it provides an
easier way to include a new user in the biometric system. There-
fore, it has been commonly preferred in biometric recognition
applications. Fig. 2 illustrates its gain in recognition accuracy
with an increase in the number of bins used to discretize the
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Fig. 2. Performance improvement for k-NN classifier due to unsupervised
discretization.

TABLE I
COMPARATIVE PERFORMANCE FOR k-NN WITH
AND WITHOUT FEATURE DISCRETIZATION

l KNN |

[ decuracy || Kappa || Precision |
[ Supervised - Entropy [ 938 ][ 09374 || 9394 |
[ Supervised - MDL [ 892 ][ 08909 |[ 89067 |
| Unsupervised - Equal Frequency || 924 | 09232 |[ 929 |
[ Unsupervised — Equal Width [ 926 ][ 09232 |[ 9292 |
[ Without Discretization |[ 876 || 08747 || 7957 |

features in an unsupervised approach. We can observe the ini-
tial increase in performance and its stabilization in subsequent
stages/increase. The equal frequency approach achieves better
performance for a smaller number of bins while the equal width
approach outperforms a higher number (crossover of about 16)
of bins. Table I illustrates the comparative performance for
k-NN classifier using unsupervised and supervised discretiza-
tion schemes with k empirically selected as unity. The average
precision result in this table closely follows the recognition
accuracy, except those in the last row which suggest the pres-
ence of large false positive matches in absence of any feature
discretization. The overall performance indicator kappa closely
follows the results from recognition accuracy, suggesting a sig-
nificant increase in performance with the feature discretization.
The results in Table I suggest that the feature discretization
using entropy-based heuristics outperforms those based using
the MDL representation of hand-geometry features.

The supervised discretization of features using entropy gain
discretized 23 hand-geometry features into 181 discrete levels.
The discretization of some of these features from the training
samples is illustrated in Fig. 3. The first feature (h1, the left
finger length) required only seven discrete levels which can be
observed from Fig. 3. This figure also illustrates the distribu-
tion of these seven discrete levels among 500 training samples.
Similar partitioning of continuous feature values into discrete
ones for the feature ho, h3, and hy is illustrated in Figs. 4-6,
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Fig. 6. Supervised discretization of feature 24 from the training samples.

respectively. The feature representation for hig and hqi7, rep-
resenting the hand-length and perimeter, respectively, required
the highest number of discrete levels (i.e., 19 and 18 levels,
respectively) (Fig. 7). The discretization scheme using an en-
tropy-based heuristic, on average, required 7.87 discrete levels
per feature. However, the supervised discretization using the
equal interval width does not offer any gain in recognition accu-
racy if less than 12 bins are employed for discretization. Even

with the increase in the number of bins, the maximum recogni-
tion accuracy that can be achieved from an equal interval width
is 92.6% (22 bins) while those from the equal frequency interval
are 92.4% (12 bins) (i.e., smaller than that can be achieved from
the supervised entropy-based approach, requiring only 7.87 bins
on average). The feature discretization requirements using MDL
were huge (i.e., requiring an average of 23 discrete levels per
feature), while achieving a maximum accuracy of only 89.2%.
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Fig. 7. Supervised discretization of (a) feature ks representing the hand length and (b) feature - representing the perimeter into 19 and 18 bins, respectively,

resulting from the training samples.

TABLE II
COMPARATIVE PERFORMANCE FOR NAIVE BAYES
WITH AND WITHOUT FEATURE DISCRETIZATION

\ Naive Bayes l

| Accuracy || Kappa || Precision |
[ Supervised - Entropy [ 946 ][ 09455 | 9483 |
[ Supervised - MDL |[ 912 ][ 69111 ][ 9068 |
[ Unsupervised - Equal Frequency || 934 [ 09333 | 9311 |
[ Unsupervised — Equal Width [ 946 ][ 09455 || 94.86 |
[ Without Discretization [ 894 ][ 0.8%29 ][ 9520 |
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Fig. 8. Performance improvement for the naive Bayes classifier using unsuper-
vised discretization.

Table II illustrates the summary of comparative performance
achieved from the Naive Bayes classifier. The usage of unsu-
pervised discretization can deliver 5.2% improvement in recog-
nition accuracy for an equal interval width and 3.4% for equal
frequency interval discretization. The entropy-based discretiza-
tion achieves the best performance (i.e., recognition accuracy
of 94.6%), while employing a minimum average number (7.87)
of bins for feature representation. Figs. 8—10 illustrate gain in
recognition accuracy with the increase in the number of bins for
naive Bayes, SVM, and FEN classifiers, respectively. The per-
formance indices from the naive Bayes are slightly better than

Performance for SM using Supervised Discretization
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Fig. 9. Performance improvement for SVM classifier using unsupervised
discretization.

those from £—NN but this comes with the additional cost of in-
creased classifier complexity. Table III similarly presents com-
parative results from SVM while Table IV summarizes results
from FFN classifiers. The comparison of Tables I-IV suggests
that the discretization of features achieves a significant increase
in performance for these four classifiers while SVM performs
the best of all with a recognition accuracy of 95%. Although our
experiments have been focused on the performance improve-
ment for recognition, we also performed few experiments to
illustrate the performance improvement for biometric verifica-
tion. The receiver operating characteristics using the SVM clas-
sifier for verification experiments are illustrated in Fig. 11. The
results in this figure illustrate an equal error rate (EER) im-
provement of 1.1% due to the entropy-based discretization of
hand-geometry features.

V. CONCLUSION

Our experimental results illustrated in the previous section
suggest that 1) the discretization of hand-geometry features
achieves significant improvement in the performance (6.1%
for k-NN, 5.2% for naive Bayes, 7% for SVM, 4% for FFN)
and 2) a gradual increase (decrease) in performance for equal
frequency (width) unsupervised discretization with an increase
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Fig. 10. Performance improvement for the FFN classifier using unsupervised
discretization.

TABLE III
COMPARATIVE PERFORMANCE FOR SVM WITH
AND WITHOUT FEATURE DISCRETIZATION

| SVM |
[ Accuracy || Kappa || Precision |
[ Supervised - Entropy [ 95 ][ 09495 |[ 958 |
| Supervised - MDL [ 922 ][ 09212 || 9481 |
[ Unsupervised - Equal Frequency || 948 || 09475 | 9582 |
[ Unsupervised — Equal Width [ 95 ][ 09495 ][ 9583 |
[ Without Discretization [ 872 ][ 08707 |[ 7765 |
TABLE IV

COMPARATIVE PERFORMANCE FOR FFN WITH
AND WITHOUT FEATURE NORMALIZATION

| FFN |

[ Accuracy || Kappa || Precision |
[ Supervised - Entropy [ 94 ][ 09394 || 9429 |
[ Supervised - MDL [ 912 ][ 09111 ][ 9699 ]
[ Unsupervised - Equal Frequency || 928 |[ 09273 |[ 9295 |
| Unsupervised — Equal Width [ 93 ][ 09293 || 9421 |
[ Without Discretization [ 90 ][ 08990 | 9145 |

in the number of bins and the crossover is between 14—17 bins,
3) the performance of the equal frequency interval is much
better for a smaller number of bins which is computationally
attractive for online biometric devices, and 4) the supervised
discretization scheme using entropy-based heuristics achieves
the best overall performance (i.e., highest recognition accuracy
with the smallest average number of bins, and is highly recom-
mended for its usage).

The discretization of hand-geometry features significantly re-
duces the number of possible values of the continuous features
and can be useful for several reasons—the classifier operating
on discretized data investigates the narrow space of possible hy-
potheses and, thus, reduces the likelihood of overfitting (i.e.,
chances of finding complex hypotheses that fits well for the
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Fig. 11. Performance improvement for the verification using the SVM
classifier.

training samples just by chance). Second, the discretization ac-
celerates learning [21], [24] because discrete features processed
faster than continuous ones, assuming that the time required for
the discretization of continuous features is negligible. Thus, in
addition to higher recognition accuracy, the discretization sig-
nificantly reduces the complexity of classifiers than those di-
rectly operating on normalized biometric data.

The supervised discretization requires recomputation of dis-
crete intervals (levels) every time a new user is added to the
biometric system and, therefore, is highly suitable for those bio-
metric systems in which a number of users is fixed (e.g., access
in buildings and offices). In situations where the number of users
varies dynamically, unsupervised discretization can be a better
alternative to avoid the recomputation of discretization intervals
with each new user addition. This work has illustrated the bene-
fits of discretization for the hand-geometry system and its ex-
ploitation for other biometric traits (i.e., ear, palmprint, face,
etc.) is suggested for performance improvement. The cost-ef-
fective discretization of continuous biometric features, based on
some performance indices (EER, FAR, or FRR), can be highly
useful in dynamically controlling the performance of biometric
systems and is suggested for future work.
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