
EEL 358 1

Multithreading

Reading:
Silberschatz
chapter 5

Additional Reading:
Stallings
chapter 4
Understanding Linux/Unix Programming, Bruce Molay, Prentice-Hall, 2003.

EEL 358 2

Outline
Process and Threads
Multithreading
Motivation
Advantages
RPC using Thread(s)
User-Level Threads
Kernel-Level Threads
Combined Approaches
Phtreads
Threading Issues

System Call Semantics
Thread Cancellation
Signal Handling
Thread Pools
Thread Specific Data

Introduction: Linux, Win32, Solaris and Java Threads

EEL 358 3

Process and Threads
Process Management

Resource Ownership
Memory, I/O channel, I/O devices and file

Scheduling/Execution
Execution state and priority

Independent treatment by OS
Unit of dispatching

Thread
Lightweight Process (LWP, even KLT)

Unit of resource ownership
Process
Task

EEL 358 4

Single Thread: Traditional approach

OS Support for Threads
MSDOS - a single user process and a single thread
UNIX - multiple user processes but only supports one thread per
process
Windows, Solaris, Linux, Mach, and OS/2 - multiple threads

Thread
Basic unit of CPU utilization, consisting of

PC
Register set
Stack

Multithreading
Multiple threads of execution within single process

EEL 358 5

Multithreading

EEL 358 6

Web Browser
One thread to display images
Other thread retrieves data from network

Word Processor
One thread for responding to keystrokes
Other thread for spelling and grammar checking
Other thread for displaying graphics

File Server on LAN
Controller thread accepts file service requests and spawns
worker thread for each request
Can handle many requests concurrently, thread finishes
service - destroyed

Examples - Motivation

EEL 358 7

Process

A virtual address space which holds the
process image
Protected access to processors, other
processes, files, and I/O resources

Within the process there can be one or more
threads

Unit of resource allocation and a unit of protection, associated:

EEL 358 8

Thread
An execution state (running, ready, blocked)
Saved thread context/state when not running
Has an execution stack
Some per-thread static storage for local variables
Access to the memory and resources of its
process

Shared by all threads of the process

EEL 358 9

Multithreading

• All of the threads of a process share the state and resources of process
• They reside in same address space and have access to same data

EEL 358 10

Advantage Threads!
Takes far less time to create a new thread in
existing process than a new process; Factor 10

Less time to terminate a thread than a process

Less time to switch between two threads within
the same process

Since threads within the same process share
memory and files, they can communicate with
each other without invoking the kernel

EEL 358 11

Key States – RRB but no suspend

Operations
Spawn
Spawn another thread
Block
Unblock
Finish

Functionality

EEL 358 12

RPC Using Single Thread

EEL 358 13

RPC Using Threads

EEL 358 14

Example - Multithreading

EEL 358 15

User-Level Threads
Thread Management → Application
New threads within the same process

Thread Library
Control, Library ↔ Thread
Context → user reg, pc & sp

EEL 358 16

User-Level Threads

EEL 358 17

ULT Vs KLT
Advantages of ULTs

Thread switching → Kernel mode privileges, less overhead
Scheduling can be application specific
Thread libraries → application utilities, Can run on any OS

Disadvantages of ULTs
High blocking, OS → many system calls are blocking, all
threads in process are blocked
Pure ULT strategy → cannot take advantage of multiprocessing

Solutions?
Jacketing
Writing application as multiple processes rather than threads

EEL 358 18

Kernel-Level Threads
Thread Management → Kernel
API to the kernel thread facility

Thread based scheduling by kernel
Pure ULT strategy → cannot take advantage of multiprocessing
Transfer of control → mode switch

EEL 358 19

Kernel-Level Threads

EEL 358 20

Combined Approaches

Thread creation → user space, Solaris
Bulk of scheduling and synchronization of threads
within application
Multiple threads within the same application → multiple
processors
Entire process is not blocked, Design

EEL 358 21

Relationship Between Threads and Processes

EEL 358 22

Threading Issues
Semantics of System Calls

fork()
exec()

Thread Cancellation
Asynchronous Cancellation
Deferred Cancellation

EEL 358 23

Threading Issues
Signal Handling

To thread to which its applicable
To every thread
To certain threads
To a specific thread assigned

Thread Pools
Sit & Wait
Work, Return to pool
Faster than waiting to create a thread
Limits # that can exists at any point of time

Thread Specific Data

EEL 358 24

Pthreads
A POSIX standard API for thread creation and sync

API implementation dependent on OS

Common in UNIX operating systems

All programs → pthread.h
pthread_create()
pthread_suspend()
pthread_yield()
pthread_continue()
pthread_join()
pthread_exit(); pthread_sigmask(); sigwait()

EEL 358 25

Example: Running 2 functions simultaneously

Screen output:
[ajaykr@lib ~]$./hello_single

hellohellohellohellohelloworld
world
world
world
world

Source code:
/* hello_single.c - a single threaded hello world program */

#include <stdio.h>
#define NUM 5

main()
{

void print_msg(char *);

print_msg("hello");
print_msg("world\n");

}

void print_msg(char *m)
{

int i;
for(i=0 ; i<NUM ; i++){
printf("%s", m);
fflush(stdout);
sleep(1);
}

}

Duration: 10 seconds

Single-threaded version

EEL 358 26

Example: Running 2 functions simultaneously

Screen output:
[ajaykr@lib ~]$./hello_multi

helloworld
helloworld
helloworld
helloworld
helloworld

Source code:
/* hello_multi.c - a multi-threaded hello world program */

#include <stdio.h>
#include <pthread.h>

#define NUM 5

main()
{

pthread_t t1, t2; /* two threads */

void *print_msg(void *);

pthread_create(&t1, NULL, print_msg, (void *)"hello");
pthread_create(&t2, NULL, print_msg, (void *)"world\n");
pthread_join(t1, NULL);
pthread_join(t2, NULL);

}

void *print_msg(void *m)
{

char *cp = (char *) m;
int i;
for(i=0 ; i<NUM ; i++){
printf("%s", m);
fflush(stdout);
sleep(1);

}
return NULL;
}

Duration: 5 seconds

Multi-threaded version

EEL 358 27

Linux Threads
Linux refers to them as tasks rather than threads

Thread creation → Clone() system call, Flags
CLONE_FS
CLONE_VM
CLONE_SIGHAND
CLONE_FILES

All flags → thread, No flags → fork (no sharing)

Clone() allows a child task to share the address space of
the parent task (process)

EEL 358 28

Win32 Threads
Primarily API for Win XP, NT, 2000, 98, 95
windows.h
Thread creation → CreateThread(), …
Windows XP application → Separate Process
Components of thread

- a thread id
- register set
- separate user and kernel stacks
- private data storage area

1:1 Mapping, fiber library

EEL 358 29

Solaris 2 Threads

EEL 358 30

Solaris Process

EEL 358 31

Java Threads
Java → language level support

Management → JVM, alternative to user/kernel

Thread Creation
Extending Thread class, new class → thread class
Implementing the Runnable interface

Java threads mapping → depends on OS

EEL 358 32

Java Thread States

EEL 358 33

Questions
Provide examples where multithreading does not provide
better performance than single-threaded solutions

Can a multithreaded solution using multiple user-level
thread achieve better performance on a multiple CPU
system than on a single processor system?

Consider a multiprocessor system (CPU) and a
multithreaded program written using combined model.
Let the number of user level threads in program be more
than # of processors in CPU. Discuss/Predict the
performance in following scenarios.

The # KLTs allocated to the process {<, =} to the # processors
The # KLTs allocated to the process > the # of processors but <
the # ULTs

