A
€V

Multithreading

Reading:
Silberschatz
chapter 5

Additional Reading:

Ctallinac
CAITIT] -~

/L ||

chapter 4

/4

Understanding Linux/Unix Programming, Bruce Molay, Prentice-Hall, 2003.
EEL 358 1

N

Outline

Process and Threads
Multithreading
Motivation
Advantages

RPC using Thread(s)
User-Level Threads

Kernel-Level Threads

Combined Approaches

Phtreads

Threading Issues

m System Call Semantics

» Thread Cancellation

= Signal Handling

s Thread Pools

m Thread Specific Data

» Introduction: Linux, Win32, Solaris and Java Threads

VVVYVVVVYVYY

EEL 358

Process and Threads

N

» Process Management

= Resource Ownership
+ Memory, I/0O channel, I/0O devices and file

= Scheduling/Execution
+ Execution state and priority

» Independent treatment by OS

» Unit of dispatching
= Thread
= Lightweight Process (LWP, even KLT)

» Unit of resource ownership

m Process
m |ask

EEL 358

Multithreading

N

L/

Multiple threads of execution within single process

» Single Thread: Traditional approach

» OS Support for Threads

= MSDOS - a single user process and a single thread

s UNIX - multiple user processes but only supports one thread per
process

s Windows, Solaris, Linux, Mach, and OS/2 - multiple threads

» Thread

s Basic unit of CPU utilization, consisting of
+ PC
+ Register set
+ Stack

EEL 358

Multithreading

N

0Ne Process
one thread

One process
multiple threads

multiple processes
one thread per process

multiple processes
multiple threads per process

S

s = instruction trace

EEL 358

Examples - Motivation

N

L/

> Web Browser

= One thread to display images
s Other thread retrieves data from network

» Word Processor
= One thread for responding to keystrokes
= Other thread for spelling and grammar checking
s Other thread for displaying graphics

> File Server on LAN

s Controller thread accepts file service requests and spawns
worker thread for each request

= Can handle many requests concurrently, thread finishes
service - destroyed

EEL 358

N

Process

Unit of resource allocation and a unit of protection, associated:

» A virtual address space which holds the
Drocess image

» Protected access to processors, other

nrocesses, files, and I/O resources

- Within the process there can be one or more
threads

EEL 358 7

Thread

N

» An execution state (running, ready, blocked)

» Saved thread context/state when not running

» Has an execution stack

» Some per-thread static storage for local variables

» Access to the memory and resources of its
process

= Shared by all threads of the process

EEL 358 8

Multithreading

N

e All of the threads of a process share the state and resources of process
* They reside in same address space and have access to same data

EEL 358 9

N

Advantage Threads!

» Takes far less time to create a new thread In
existing process than a new process; Factor 10

» Less time to terminate a thread than a process

> Less time to switch between two threads within
the same process

» Since threads within the same process share
memory and files, they can communicate with
each other without invoking the kernel

EEL 358 10

Functionality

N

» Key States — RRB but no suspend

» Operations
= Spawn
Spawn another thread
Block
Unblock
Finish

EEL 358

11

N

EEL 358

Process 1

RPC Using Single Thread

Timg ——»

RPC RFPC
Request Request

TSI TS TSI

(a) RPC Using Single Thread

12

RPC Using Threads

N

Thread A (Process 1)

Thread B (Process 1)

(b)) RPC Using One Thread per Server (on a uniprocessor)
(A4 Blocked, waiting for response to RPC

1 Blocked, waiting for processor, which is in use by Thread B
B Running

EEL 358

13

Example - Multithreading

N

Time

¥

o Request Time quanium
request complete expires

Thread A (Process 1) M |

Thread B (Process 1) [~ I_— |

/i

Time quantum —
Thread C (Process 2} explres /
Process
created
2% Blocked [Ready BN Running

EEL 358

User-Level Threads

N

> Thread Management — Application
» New threads within the same process

SR
\|/

Thrends | / User
Library Space

Kernel
Space

®
» Thread Library

» Control, Library <> Thread
» Context — user reg, pc & sp

EEL 358

15

N

User-Level Threads

Blocked

Colared state
is current state

EEL 358

16

ULT Vs KLT

N

» Advantages of ULTs
= Thread switching — Kernel mode privileges, less overhead
= Scheduling can be application specific
= Thread libraries — application utilities, Can run on any OS

» Disadvantages of ULTs

= High blocking, OS — many system calls are blocking, all
threads in process are blocked

s Pure ULT strategy — cannot take advantage of multiprocessing

» Solutions?

= Jacketing
= Writing application as multiple processes rather than threads

EEL 358 17

Kernel-Level Threads

N

» Thread Management — Kernel
» API to the kernel thread facility

¢t

User
Space

Kernel
Space

= Thread based scheduling by kernel
= Pure ULT strategy — cannot take advantage of multiprocessing
= Transfer of control - mode switch

EEL 358 18

N

Kernel-Level Threads

Table 4.1

Thread and Process Operation Latencies (us) [ANDE92]

Kernel-Level
Operation User-Level Threads Threads Processes
Null Fork 34 048 11,300
Signal Wait 37 441 1,840

EEL 358

19

Combined Approaches

N

» Thread creation — user space, Solaris

» Bulk of scheduling and synchronization of threads
within application

» Multiple threads within the same application — multiple
processors

» Entire process is not blocked, Design

EEL 358 20

N

Relationship Between Threads and Processes

Threads:Processes

Description

Example Systems

1:1

M:1

1:M

M:N

Each thread of execution is a
unique process with its own
address space and resources.

A process defines an address
space and dynamic resource
ownership. Multiple threads
may be created and executed
within that process.

A thread may migrate from
one process environment to
another. This allows a thread
to be easily moved among
distinct systems.

Combines attributes of M:1
and 1:M cases.

Traditional NI

implementations

Windows NT. Solaris. Linux
08/2. O8/390, MACH

Ea (Clouds), Emerald

TRIX

EEL 358

Threading Issues

N

» Semantics of System Calls
= fork()
= exec()

» Thread Cancellation
= Asynchronous Cancellation
m Deferred Cancellation

EEL 358

22

Threading Issues

N

» Signal Handling
= To thread to which its applicable
= To every thread
= To certain threads
= To a specific thread assigned

» Thread Pools
= Sit & Wait
= Work, Return to pool
» Faster than waiting to create a thread
= Limits # that can exists at any point of time

» Thread Specific Data

EEL 358

23

N

Pthreads

» A POSIX standard API for thread creation and sync

» APl implementation dependent on OS

» Common in UNIX operating systems

» All programs — pthread.h

m pthread create()

pthread_suspend()

pthread_vyield()

pthread continue()

pthread_join()

pthread_exit(); pthread_sigmask(); sigwait()

EEL 358

24

Example: Running 2 functions simultaneously

N

g Single-threaded version

Duration: 10 seconds

Source code:

/* hello_single.c - a single threaded hello world program */

#include <stdio.h>
#define NUM 5

main()

{

void print_msg(char *);

print_msg("hello™);
print._msg(*'world\n");

}

void print_msg(char *m)

{. -
int i;
for(i=0 ; i<NUM ; i++){
printf(*%os", m);
fflush(stdout);
sleep(1);
be

bs

EEL 358

| e Thread in execution

I
main
0 : print_msg()
: . .
print msg | |
print_msg |]

Screen output:
[ajaykr@lib ~]$./hello_single

hellohellohellohellohelloworld
world
world
world
world

25

Example: Running 2 functions simultaneously

N

L/

Multi-threaded version

Duration: 5 seconds
Source code:

/* hello_multi.c - a multi-threaded hello world program */
#include <stdio.h>
#include <pthread.h>

#define NUM 5
main()
{
pthread_t t1, t2; /* two threads */

void *print_msg(void *);

pthread_create(&tl, NULL, print_msg, (void *)"hello™);
pthread_create(&t2, NULL, print_msg, (void *)"world\n");

pthread_join(tl, NULL);
pthread_join(t2, NULL);

by
void *print_msg(void *m)
{
char *cp = (char *) m;
inti;

for(i=0 ; i<NUM ; i++){
printf("%s", m);
fflush(stdout);
sleep(1);

by

return NULL;

}
EEL 358

+— Onginal Thread

print_msg()

-9
I
|

x

main()
print_msg |-
print_msg |—
L|':
|
I
v

Screen output:

\

Mew threads

[ajaykr@lib ~]$./hello_multi

helloworld
helloworld
helloworld
helloworld
helloworld

26

N

Linux Threads

> Linux refers to them as tasks rather than threads

» Thread creation — Clone() system call, Flags
= CLONE_FS

« CLONE_VM
a CLONE_SIGHAND
= CLONE_FILES

» All flags — thread, No flags — fork (no sharing)

» Clone() allows a child task to share the address space of
the parent task (process)

EEL 358 27

N

WIin32 Threads

» Primarily API for Win XP, NT, 2000, 98, 95

» windows.h

» Thread creation — CreateThread(), ...

» Windows XP application — Separate Process

» Components of thread

- a thread id

- register set

- separate user and kernel stacks
- private data storage area

» 1.1 Mapping, fiber library

EEL 358

28

kernel thread

EEL 358

task 1

task 2

task 3

-I— CPU

user-level thread

lightweight process

29

N

Solaris Process

process id

memory map

priority

list of open
files

EEL 358

LWP,

LWP,

LWP;

Solaris process

30

N

Java Threads

> Java — language level support

» Management — JVM, alternative to user/kernel

» Thread Creation

s Extending Thread class, new class — thread class
= Implementing the Runnable interface

» Java threads mapping — depends on OS

EEL 358

31

N

Java Thread States

suspend()

1/O

blocked

EEL 358

32

N

Questions

L/

4 Provide examples where multithreading does not provide
better performance than single-threaded solutions

d Can a multithreaded solution using multiple user-level
thread achieve better performance on a multiple CPU
system than on a single processor system?

 Consider a multiprocessor system (CPU) and a
multithreaded program written using combined model.
Let the number of user level threads in program be more
than # of processors in CPU. Discuss/Predict the
performance in following scenarios.

U The # KLTs allocated to the process {<, =} to the # processors

U The # KLTs allocated to the process > the # of processors but <
the # ULTs

EEL 358 33

