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ABSTRACT 
 
This paper investigates a new approach for the 
detection of surface defects, in textured materials, 
using wavelet packets. Every inspection image is 
decomposed with a family of real orthonormal 
wavelet bases. The wavelet packet coefficients 
from a set of dominant frequency channels 
containing significant information are used for the 
characterization of textured images. A fixed 
number of shift invariant measures from the 
wavelet packet coefficients are computed. The 
magnitude and position of these shift invariant 
measures in a quadtree representation forms the 
feature set for a two-layer neural network classifier. 
The neural net classifier classifies these feature 
vectors into either of defect or defect-free classes. 
The experimental results suggest that this proposed 
scheme can successfully identify the defects, and 
can be used for automated visual inspection 
 

I. INTRODUCTION 
 
Quality assurance in textured materials using 
surface inspection is one of the most challenging 
problems in machine vision. The machine vision 
offers accuracy, consistency, repeatability and low 
cost solution to the problem of subjectivity, fatigue 
and high cost associated with the human inspection.    
 
 A multi-resolution approach for defect 
segmentation using Gabor filters has been described 
in the previous paper [1].  Sari-Sarraf et al. [2] have 
shown the usage of texture features based on 
pyramid-structured wavelet transform for the 
inspection of textile webs. 
 
 The wavelet decomposition of an image, using 
pyramid-structured wavelet transform, generates a 
set of subimages, which contains low-frequency 
components of the original image. This 
decomposition is suitable for images in which the 
majority of information is concentrated in low-
frequency region, i.e. for inspection images 
primarily with smooth components. However, it is 
not suitable for textured images where the dominant 
frequency channels are located in the middle 
frequency channels [3]. Many researchers have 
concluded [4] that the most significant information 
of texture often appears in the middle frequency 

bands. Hence, further decomposition in the lower 
frequency region by conventional wavelet 
transform may not help much for defect detection. 
Therefore an appropriate way to perform wavelet 
transform for textured image (such as real fabrics) 
is to locate dominant frequency bands and then 
decompose them further. This leads to the concept 
of tree-structured wavelet transform or wavelet 
packets, and has been investigated in this work for 
the identification of textured defects. The block 
diagram of this approach is shown in figure 1 and is 
detailed in following sections.  
 

II. WAVELET TRANSFORM 
 
The wavelet decomposition of a signal )(xf  is 
obtained by convolution of the signal with a family 
of real orthonormal basis functions )(x qp,ψ : 

(1)          ,)()()()( dxxxfxxf qp,qp, ∫
∞

∞−

=〉〈 ψψ  

where p and q are the integers, and are referred to 
as dilation and translation parameters. The basis 
functions )(x qp,ψ  are obtained through 

translation and dilation of a kernel function )(xψ  
known as mother wavelet, i.e. [4], 
 

(2)                   ).2(2)( 2/ qxx pp
qp, −= −− ψψ                         

 The mother wavelet )(xψ  can be constructed 

from a scaling function )(xφ . The scaling function 

)(xφ  satisfies the following two-scale difference 
equation [5], 
                        

∑ −=
k

kxkhx (3)                   ,)2()(2)( φφ  

where h(k) is the impulse response of a discrete 
filter which has to meet several conditions for the 
set of basis wavelet functions to be orthornormal 
and unique. Several different sets of coefficients of 
h(k), satisfying the required conditions, can be 
found in reference [5]-[6]. The mother wavelet 

)(xψ  is related to scaling function via 

∑ −=
k

kxkgx (4)                  ).2()(2)( φψ    
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 The coefficients of the filter g(k) are conveniently 
extracted from filter h(k) from the following 
(quadrature mirror) relation,  
  

(5)                              ).1()1()( khkg k −−=  
The discrete filters h(k) and g(k) are the quadrature 
mirror filters (QMF), and can be used to implement 
a wavelet transform instead of explicitly using a 
wavelet function 

III. WAVELET PACKETS 
 
The wavelet packets introduced by Coifman et al. 
[7] represents the generalization of the method of 
multi-resolution decomposition. In pyramid-
structured wavelet transform, the wavelet 
decomposition is recursively applied to the low 
frequency sub bands to generate the next level 
hierarchy. The key difference between the 
traditional pyramid algorithm and the wavelet 
packet algorithm is that the recursive 
decomposition is no longer applied to the low 
frequency sub-bands. Instead, it is applied to any of 
the frequency bands based on some criterion, 
leading to quadtree structure decomposition.  
 
 The concept of wavelet packet bases has 
been generalized to obtain multiresolution 
decomposition of an image. A given function, say 

0Θ , can be used to generate a library of wavelet 

packet basis functions { }
Nqq ∈

Θ  as follows: 

∑ −Θ=Θ
k

qq kxkhx  ),2()(2)(2      

∑ −Θ=Θ +
k

qq kxkgx   ),2()(2)(12      

where the function 0Θ  and 1Θ  can be identified 

with the scaling function φ  and the mother wavelet 
ψ , respectively. Equation (6) uniquely defines a 
library of wavelet packet bases as a set of 
orthonormal basis functions of the form 

)2( kxl
q −Θ . Each element in the library is 

determined by a subset of indices l, k, and q, which 
corresponds to the scaling, dilation, and oscillation 
parameters, respectively. A set of 2-D wavelet 
packet basis functions can be obtained from the 
tensor product of two separable 1-D wavelet basis 
functions in the horizontal and vertical directions. 
The corresponding 2-D filters in this set can be 
grouped as: 
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 As shown in figure 2, application of above 
four filters transforms a given image into a 
representation having components in four sub-
bands. These four sub-bands are four subimages 
that contain low frequency information 

(approximation 1+j
aω ) and high frequency details 

in horizontal ( 1
1
+j

dω ), vertical ( 1
2
+j

dω ), and diagonal 

( 1
3
+j

dω ) direction. Iterating this filtering process 
(figure 2) to each of the given sub-bands yields 
quadtree-structure decomposition. The subimages 
in the same decomposition level provide the 
multiple looks of the original image in different 
frequency bands.  
 

IV. METHODOLOGY 
 
The wavelet packet decomposition of every 
acquired image is performed. The Daubechies 
minimum-support least asymmetric wavelet, of 
filter length 4, is used in this experiment. 
Daubechies wavelets are compactly supported and 
are orthornomal, and are one of the most widely 
used wavelets. The coefficients of QMF’s, i.e. g(k) 
and h(k), are show in table 1. Full wavelet packet 
decomposition at every scale will produce a large 
number of coefficients. Therefore, only the 
dominant frequency channels based on Shannon’s 
entropy criterion are used. The best-basis wavelet 
packet tree is computed as follows [7]-[8]: 
 
(i) Decompose a given image into four subimages 

by convolution and decimation with a pair of 
QMF’s, as shown in figure 2. The given image 
can be viewed as parent node and subimages as 
the children nodes of a tree. 

(ii) Compute the Shannon’s entropy ( iε ) of the 
parent and children of this tree using equation 
(8). 

(iii)  If the sum of the entropy of four children 
nodes is higher than the entropy of parent node, 
then decomposition for this parent node is 
aborted. 

(iv)  If the sum of entropy of children nodes is 
lower than entropy of parent node, then above 
decomposition is further applied to each of the 
children nodes. 

 
 In this work, best-basis wavelet packet 
decomposition of every image at three resolution 
levels is used. The wavelet packet coefficients from 
each of the sub-images are used for the feature 
extraction.  
 
A. Feature Extraction 
 
 Since the wavelet coefficients are shift-variant, 
they are not suitable for direct use. Instead texture 
features must be shift-invariant [9]. Therefore four 
shift-invariant measures from the elements of 

)6(
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wavelet packet coefficients ),( nmiω  in each 
channel are computed as follows: 
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where ),( nmiω  denotes the wavelet coefficient 

matrix, iµ is the mean, iσ is the standard deviation, 
iε  is the entropy, iα is the kurtosis, and iß  is the 

skewness of the wavelet coefficient matrix for each 
of the ith channel. Five dominant values of each of 
these four features and their location (integer value) 
on the best-basis wavelet packet tree are used as 
features vector for every acquired image. Thus 40 
features characterize every image. Further, the KL 
transform is used to reduce the dimension of feature 
vector. 
 
B. Neural Net classifier 
 
 A two layer feed-forward neural network with 
20 input nodes and one output node is used to 
classify feature vectors in one of the two classes. 
The hyperbolic tangent sigmoid activation function 
with gradient descent training algorithm is 
employed to train the neural network. The values    
–1 and 1 corresponding to samples with defect and 
without defect were used for training. 
 

V. EXPERIMENT AND RESULTS 
 
Several real fabric samples were gathered from 
textile loom and were divided into two classes; (i) 
with defect and (ii) without defect. Images of these 
fabric samples with 256 gray levels were acquired 
under backlighting and covered 1.28 × 1.28 inch2 
area of fabric. These images were digitized into 256 
× 256 pixels. Figure 3 shows the best basis three 
level wavelet packet decomposition of fabric 
sample (figure 5.a) with defect mispick. The 
quadtree representation of this decomposition with 
the respective entropy values at the nodes is shown 
in figure 4. The full wavelet packet decomposition 
of this image requires 64 nodes as compared to 31 
nodes used in this work. Figure 5 shows images 
with 8 different categories of fabric defect used in 
this experiment. For every image the dimension of 

feature vector was reduced from 40 × 1 to 12 × 1 
using KL transform. Those feature values that 
contributed to less than 2 % of total variance in the 
transformed space were neglected.         
            
 In this work 42 images from each of the two 
classes were used for the training and 16 images 
were used for the testing. Each of these 42 images 
(16 for testing) were composed of one of the 8 
different categories of fabric defect shown in figure 
5. At least 5 images from each of these categories 
were used for training while 2 images from each 
category are used for testing. The scores of neural 
network output from testing and training images are 
summarized in table 2.  
 

VI. CONCLUSIONS 
 
In this paper a new approach for the defect 
identification using wavelet packets has been 
investigated. The experimental results in table 2 
show that the 12 fabric samples with defect, out of 
16 used for testing, have been successfully detected 
(75 %). The defect detection results for some of the 
fabric defects with very subtle intensity variations, 
e.g. in figure 5(a) and 5(g), were excellent (100 % 
detection). The results shown in this paper are 
promising and suggest its application for automated 
visual inspection.  
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Table 1: Coefficents Daubechies wavelet transform filter used in the experiment. 
          
                                                                                         

   
                        
 
 
 
 
 
 
 
 

Table 2: Scores of the Neural Network output from the experiment. 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Classification rate for test images (from above data) = 71.86% 
                                Classification rate for the training images = 100% 
 
 
 
 
 
 
 
 
 
 
 
 
 

h(0)   -0.01059740 g(0)  -0.23037781 
h(1)    0.03288301 g(1)    0.71484657 
h(2)    0.03084138 g(2)   -0.63088076 
h(3)   -0.18703481 g(3)   -0.02798376 
h(4)   -0.02798376 g(4)    0.18703481 
h(5)    0.63088076 g(5)    0.03084138 
h(6)    0.71484657 g(6)   -0.03288301 
h(7)    0.23037781 g(7)   -0.01059740 

SNo.- 
Category 

Class 1 
Samples with-defect 

Class 2 
Samples without-defect 

1.a -1.0060    1.0060     
2.a -1.0057    1.0041     
3.b -1.0060    0.9966    
4.b -0.9759    -0.6101    
5.c -0.9750    -1.0060    
6.c -1.0060    -0.5724     
7.d -1.0060    1.0012     
8.d -0.3366    1.0060    
9.e -1.0031    -1.0060     
10.e -0.9574     1.0001     
11.f 0.1385     1.0060     
12.f 1.0030    0.8704     
13.g -1.0060    1.0060     
14.g -0.9480     1.0060    
15.h 1.0060     1.0005    
16.h 1.0055 -0.8421 

Best basis  w avelet
packet decomposition

Extraction of shift invarient
dominant features

Dimension reduction
(KL transform)

NeuralNetw ork
Classifier

Image under
Inspection

Class 1
Defect

Class 2
No Defect

Figure 1: Block Diagram of the proposed inspection system for surface defects.
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Figure 2: Multiresolution decomposition of an image using QMF.
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Figure 3: The best basis wavelet packet decomposition
for fabric sample with defect mispick (figure 5.a)
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Figure 4: The Quadtree structure for best basis wavelet
packet decomposition shown in figure 3.

Figure 5: Fabric samples with defect of 8 categories used in the experiment
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