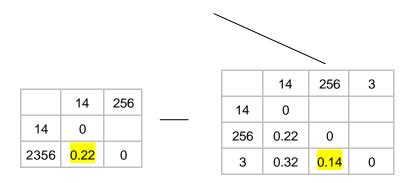

Supplementary Notes #6

COMP 578 Data Mining and Data Warehousing MScECT, Semester 1, 03-04

Solutions to exercises in Supplementary Notes #3

1) Using Euclidean distance as the distance metric, the following dissimilarity matrix can be generated



Γ	Stock	Average	Average
L	No.	High	Low
	1	0.5	0.1
	2	0.8	0.3
	3	0.9	0.2
	4	0.6	0.1
	5	0.7	0.3
6		0.8	0.4

	14	25	3	6
14	0			
25	0.22	0		
3	0.32	0.14	0	
6	0.36	<mark>0.1</mark>	0.22	0

	1	2	3	4	5	6
1	0					
2	0.36	0				
3	0.41	0.14	0			
4	<mark>0.1</mark>	0.28	0.32	0		
5	0.28	<mark>0.1</mark>	0.22	0.22	0	
6	0.42	<mark>0.1</mark>	0.22	0.36	0.14	0

	14	2	3	5	6
14	0				
2	0.28	0			
3	0.32	0.14	0		
5	0.22	<mark>0.1</mark>	0.22	0	
6	0.36	<mark>0.1</mark>	0.22	0.14	0

2)

Let the 2 random initial cluster C1 and C2 be sample 1 and sample 2 C1 = $\{1\}$, C2 = $\{2\}$; Center of C1 = $\{0.5, 0.1\}$, Center of C2 = $\{0.8, 0.3\}$

Iteration 1:

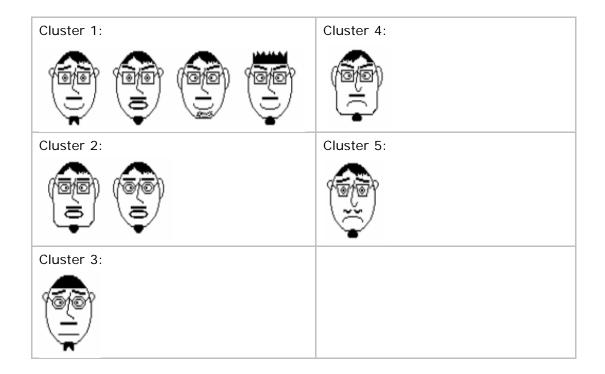
 Sample 3 D(3, Center of C1) = 0.41; Sample 3 is assigned to C2 	D(3, Center of C2) = 0.14
 Sample 4 D(4, Center of C1) = 0.1; Sample 4 is assigned to C1 	D(4, Center of C2) = 0.28
 Sample 5 D(5, Center of C1) = 0.28; Sample 5 is assigned to C2 	D(5, Center of C2) = 0.1
 Sample 6 D(6, Center of C1) = 0.42; Sample 6 is assigned to C2 	D(6, Center of C2) = 0.1
$C1 = \{1,4\}, C2 = \{2,3,5,6\}$	

New centers for C1 = (0.55, 0.1) for C2=(0.8, 0.3)Iteration 2:

- Sample 1
 D(1, Center of C1) = 0.05; D(1, Center of C2) = 0.36
 Sample 1 is assigned to C1
- Sample 2

	D(2, Center of C1) = 0.32;	D(3, Center of C2) = 0
	Sample 2 is assigned to C2	
•	Sample 3	
	D(3, Center of C1) = 0.36;	D(3, Center of C2) = 0.14
	Sample 3 is assigned to C2	
٠	Sample 4	
	D(4, Center of C1) = 0.05;	D(4, Center of C2) = 0.28
	Sample 4 is assigned to C1	
•	Sample 5	
	D(5, Center of C1) = 0.25;	D(5, Center of C2) = 0.1
	Sample 5 is assigned to C2	
•	Sample 6	
	D(6, Center of C1) = 0.39;	D(6, Center of C2) = 0.1
	Sample 6 is assigned to C2	

The centers do not have any changes, the algorithm stops.



From left to right, label them as 1 – 9 Each face has 10 features.

- Addition of 1: Assigns 1 to cluster 1 (C1)
- Addition of 2:
 S(C1, 2) = S(1, 2) = -2
 Assigns 2 to cluster 2 (C2)
- Addition of 3:
 S(C1, 3) = S(1, 3) = 4
 S(C2, 3) = S(2, 3) = 2
 Assigns 3 to cluster 1 (C1)
- Addition of 4:
 S(C1, 4) = S(1, 4) + S(3, 4) = 2 + -2 = 0
 S(C2, 4) = S(2, 4) = -4
 Assigns 4 to cluster 2 (C3)
- Addition of 5:
 S(C1, 5) = S(1, 5) + S(3, 5) = 2 + 2 = 4
 S(C2, 5) = S(2, 5) = 2
 S(C3, 5) = S(4, 5) = -2
 Assigns 5 to cluster 2 (C1)
- Addition of 6:
 S(C1, 6) = S(1, 6) + S(3, 6) + S(5, 6) = -2 + 2 + 2 = 2
 S(C2, 6) = S(2, 6) = 6
 S(C3, 6) = S(4, 6) = 0
 Assigns 6 to cluster 2 (C2)

- Addition of 7:
 S(C1, 7) = S(1, 7) + S(3, 7) + S(5, 7) = -6 + -4 + 0 = -10
 S(C2, 7) = S(2, 7) + S(6, 7) = -2 + -4 = -6
 S(C3, 7) = S(4, 7) = -4
 Assigns 7 to cluster 4 (C4)
- Addition of 8:
 S(C1, 8) = S(1, 8) + S(3, 8) + S(5, 8) = 2 + 2 + 4 = 8
 S(C2, 8) = S(2, 8) + S(6, 8) = -2 + -2 = -4
 S(C3, 8) = S(4, 8) = 0
 S(C4, 8) = S(7, 8) = 0
 Assigns 8 to cluster 1 (C1)
- Addition of 9:

$$\begin{split} S(C1, 9) &= S(1, 9) + S(3, 9) + S(5, 9) + S(8, 9) = 0 + -2 + -6 + -4 = -12 \\ S(C2, 9) &= S(2, 9) + S(6, 9) = -8 + -6 = -14 \\ S(C3, 9) &= S(4, 9) = -2 \\ S(C4, 9) &= S(7, 9) = -4 \\ Assigns 9 to cluster 5 (C5) \end{split}$$

