# Internet Infrastructure Security (COMP444) <br> A4 

Due at $11: 55 \mathrm{pm}$ on 12 March 2015
Submission site: https://submit.comp.polyu.edu.hk/

Rocky K. C. Chang

March 6, 2015

1. [6 marks] (The Chinese Remainder Theorem, CRT) Consider $p_{1}=2, p_{2}=3, p_{3}=5$, and $P=p_{1} \times p_{2} \times p_{3}=30$, and $x \in\{0,1,2, \cdots, 29\}$. We would like to compute $12^{9999} \bmod 30$. We know that by the CRT, $12^{9999} \bmod 30$ can be represented by $\left(0 \bmod 2,0 \bmod 3,12^{9999} \bmod 5\right)$.
(a) [4 marks] What is the value of $12^{9999} \bmod 5$ ? (Hint: $12^{4} \equiv 1(\bmod 5)$ ).
(b) [2 marks] What is the value of $12^{9999} \bmod 30$ ? (Hint: solving the CRT by setting $P_{3}=6$ and $y_{3}=1$ in the formula on slide 25 of L5).
2. [6 marks] (Multiplicative inverses) Consider $Z_{p}=\{0,1, \cdots, p-1\}$, where $p$ is a composite number. You are given two numbers $a$ and $b$ from $Z_{p}$.
(a) [3 marks] If $a$ or $b$ does not have multiplicative inverse, show that $c=a \times b \bmod p$ also does not have multiplicative inverse.
(b) [3 marks] If both $a$ and $b$ have multiplicative inverses, show that $c=a \times b \bmod p$ also has multiplicative inverse.
3. [ 6 marks] ( $e=3$ for RSA) Answer the following questions concerning the choice of $e$ for RSA. Hint: $e$ must be co-prime with $(p-1)(q-1)$.
(a) [2 marks] Why is 3 the smallest possible value for $e$ ?
(b) Could $e=3$ be possibly be used for the following values of $p$ and $q$ ?
i. [2 marks] $p \bmod 3=1$ and $q \bmod 3=1$.
ii. [2 marks] $p \bmod 3=2$ and $q \bmod 3=2$.
4. [ 6 marks] (RSA signature) Alice wants Bob to sign a message $m$. Assume that Bob's signing is based on RSA. However, she does not want Bob to see the message. Therefore, Alice "blinds" the message by computing $m^{\prime}=m k^{e} \bmod n$, where $k$ is a random value between 1 and $n$ and $\operatorname{gcd}(k, n)=1$. Alice then presents $m^{\prime}$ to Bob for his signature. How will Alice obtain Bob's signature on $m\left(m^{d} \bmod n\right)$ from Bob's signature on $m^{\prime}$ ? Hint: p. 9 of the RSA slides.
