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Abstract. Sparse representation techniques for robust face recognition
have been widely studied in the past several years. Recently face recogni-
tion with simultaneous misalignment, occlusion and other variations has
achieved interesting results via robust alignment by sparse representa-
tion (RASR). In RASR, the best alignment of a testing sample is sought
subject by subject in the database. However, such an exhaustive search
strategy can make the time complexity of RASR prohibitive in large-scale
face databases. In this paper, we propose a novel scheme, namely mis-
alignment robust representation (MRR), by representing the misaligned
testing sample in the transformed face space spanned by all subjects.
The MRR seeks the best alignment via a two-step optimization with a
coarse-to-fine search strategy, which needs only two deformation-recovery
operations. Extensive experiments on representative face databases show
that MRR has almost the same accuracy as RASR in various face recog-
nition and verification tasks but it runs tens to hundreds of times faster
than RASR. The running time of MRR is less than 1 second in the
large-scale Multi-PIE face database, demonstrating its great potential
for real-time face recognition.

1 Introduction

After many years investigation of face recognition (FR) techniques [1], there are
mainly two branches of FR research and development. One focuses on face verifi-
cation with face images captured in uncontrolled or less controlled environment.
The representative databases include LFW [2] and PubFig [3], with the repre-
sentative methods such as [3], [4], [5], [6], etc. The other emphasizes on proposing
new frameworks for (semi) controlled scenarios and with cooperative subjects,
which have extensive applications including access control, computer systems,
automobiles or automatic teller machines, etc [7]. The goal of the latter branch
is for high robustness and high accuracy, and many state-of-the-art works [7],
[8], [9], [10], [11], [12], [13], [14] have been proposed along this line to address
various challenges, including face corruption, occlusion, misalignment and the
variations of illumination, expression, etc.

The recently developed sparse representation based FR methods belong to
the above mentioned second branch, and they target one important category
of applications where many well-controlled training images are available. The
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pioneer work in [8], i.e., sparse representation-based classification (SRC), casts
the recognition problem as finding a sparse linear representation of the test
image over the training images. Furthermore, by assuming that the outlier pixels
in the face image are sparse and using an identity matrix to code the outliers,
SRC shows good robustness to face occlusion and corruption. The success of
SRC inspires many following works, such as structured sparse representation [9],
robust sparse coding [10], SRC for continuous occlusion [11], etc.

Although the well-aligned training images could be prepared, the testing im-
ages have to be automatically cropped by using some detector, e.g., the Viola
and Jones’ face detector [15]. Inevitably there will be certain registration er-
ror of several pixels, which will deteriorate much the performance of many FR
methods [16], including SRC [8]. To solve this problem, by adding a deformation
term to face representation [17], FR methods such as robust subspace learning
to misalignment [14] and simultaneous image alignment and sparse represen-
tation [7], [12] have been proposed, where misalignment, occlusion and other
variations (e.g., illumination) could be simultaneously handled. Though some
face image registration methods, such as Active Appearance Models [17], Ac-
tive Shape Models [18] and Unsupervised Joint Alignment [5], have advantages
in dealing with variations in expression and pose, their goal is for face image
alignment but not for recognition, and their complexity can be too high for the
application of real-time FR. Therefore, in this paper we aim to propose a new
robust FR method along the line of [7], [8], [12], and [14].

The simultaneous face image alignment and representation [7], [12], [14] pro-
poses a promising framework for robust FR with occlusion, misalignment, illumi-
nation and expression changes, etc. However, there are still significant concerns
on them. The approach in [14] adopts an indirect model (by using neighboring
pixels’ relation) to recover image transformation, which would complicate the
original problem and weaken the capability of handling misalignment. Different
from [14], direct recovery of image transformation and sparse representation is
adopted in [7] and [12]. However, deforming training samples instead of the test-
ing image [12] makes the size of dictionary for sparse representation very large,
which dramatically increases the difficulty and time complexity of image repre-
sentation. The recent work in [7] uses an integral model of robust alignment by
sparse representation (RASR), which is free of the shortcomings in [12] and [14].
However, the model in [7] is hard to optimize due to the coupling of image spatial
transformation and unknown identity, and the authors proposed a suboptimal
algorithm via subject-by-subject exhaustive search, whose time complexity in-
creases linearly as the number of subjects. Such a time-consuming optimization
makes RASR prohibitive in large-scale and real-time FR systems.

This paper will present an efficient misalignment-robust representation (MRR)
for real-time FR. We will show that the exhaustive search yet suboptimal opti-
mization used in [7] is not necessary. By analyzing why simultaneous image align-
ment and representation is difficult, we design a misalignment-robust model via
correspondence-based representation, which could effectively avoid falling into a
bad local minimum. The proposed MRR scheme is free of the time-consuming
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sparsity constraint on representation coefficients, and can be efficiently solved
by a two-step optimization algorithm with a coarse-to-fine search strategy. Com-
pared to RASR [7], the time complexity of MRR is nearly independent of subject
number (denoted by c) in the database, and the speedup of MRR over RASR is
more than c/2. Our experiments on benchmark face databases clearly show that
MRR has very competitive FR results with RASR, and more importantly, it can
be a truly real-time FR method; e.g., it is over 150 times faster than RASR in
the large-scale Multi-PIE database.

The rest of this paper is organized as follows. Section 2 briefly reviews the
RASR method in [7]. Section 3 presents the model and algorithm of the proposed
MRR. Section 4 analyzes the time complexity. Section 5 conducts experiments
and Section 6 concludes the paper.

2 Robust alignment by sparse representation (RASR)

Different from the previous face alignment methods [5], [17], [18], which may
have advantages in dealing with large variations in expression and pose, the
RASR [7] focuses on deformations with fewer degrees of freedom, i.e., similarity
transformations, and uses the the training images themselves as the appearance
model.

Suppose that y is the observed query face image which is warped due to
misalignment and denote by A = [a1,a2, · · · ,am] ∈ Rn×m the matrix with
all vectorized training samples as its column vectors. RASR assumes that the
deformation-recovered image y0 = y ⊙ τ has a sparse representation over A:
y0 = Aα + e, where τ represents some kind of spatial transformation (e.g.,
similarity, affine, etc.) but with unknown parameters, α is the sparse coding
vector and e is the coding residual vector. The model of RASR [7] is

⟨α̂, τ̂ ⟩ = argmin
α,τ ,e

∥α∥1 + ∥e∥1 s.t. y ⊙ τ = Aα+ e (1)

where the sparsity of α is claimed to provide a strong cue for finding the correct
deformation τ . Due to the difficulty of solving Eq. (1), the authors turned to
seek for the best alignment of y via a subject-to-subject optimization:

⟨τ̂ i, êi⟩ = argmin
αi,τ i,ei

∥ei∥1 s.t. y ⊙ τ i = Aiαi + ei (2)

where Ai is the matrix associated with subject i, and τ i is the transformation
aligning y to subject i.

After an exhaustive alignment to every subject in the face database, the top S
candidates k1, · · · , kS with the smallest residuals ||êi||1 are selected to construct
a new dictionary D =

[
Ak1 ⊙ τ̂−1

k1
,Ak2 ⊙ τ̂−1

k2
, · · · ,AkS ⊙ τ̂−1

kS

]
, where Aki ⊙

τ̂−1
ki

means aligning each training sample of subject ki to y and formingAki⊙τ̂−1
ki

with the aligned training samples. Then the sparse vector α is computed via

α̂ = argmin
α,e

∥α∥1 + ∥e∥1 s.t. y = Dα+ e (3)
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Finally, like SRC [8] RASR classifies y by evaluating which class could yield the
least reconstruction error [7].

While RASR has shown impressive results [7], it has a few drawbacks as
described below.

1. For a large-scale face database with c subjects, Eq. (2) needs to be
solved c times, making RASR have a high time complexity.
2. Aligning well-cropped training samples to poorly-cropped testing sam-
ples may lose some facial features and introduce disturbances (i.e., back-
ground)..
3. The accuracy of solving Eq.(2) is based on the good representation
ability of the training samples Ai, which could not be ensured in the
lack of enough training samples.

3 Misalignment-robust representation (MRR)

3.1 Simultaneous alignment and representation

The problem of simultaneous alignment and representation could be represented
by:

y ⊙ τ = Aα+ e (4)

where α in y0 = Aα+ e is unknown for the image alignment sub-problem (i.e.,
y0 = y ⊙ τ ) while τ in y0 = y ⊙ τ is unknown for the image representation
sub-problem (i.e., y0 = Aα + e). Because the joint optimization of (τ , α) is
neither convex nor smooth (for example when α is regularized by l1-norm [7]),
the alternative optimization of (τ , α) may have many local minima, making τ
be estimated inaccurately and α indicate the face identity incorrectly.

For the application of FR, fortunately we have two important priors for
simultaneous image alignment and representation. One prior is that 2D similarity
transformation τ could well handle the misalignment problem in FR, while 2D
projective transformation could handle moderate pose variation well. This prior
has been adopted in [12], [7]. The other prior is the fact that face images from
different subjects share big similarities, which is much ignored in previous works
[12], [7]. It is not difficult to see that all people’s key facial features (i.e., eyes,
nose, mouth, etc.) are somewhat similar in appearance and they also have similar
locations in face. This is why human can accurately manually align a face image
even with pose variation according to another person’s reference face image.

However, the similarities of face images could not be well exploited except
that a suitable representation model is used, for example, the correspondence-
based representation (please refer to Eq. (5) and the related explanations for
more information). Fig. 1 gives an example. Fig. 1(a) shows five face images,
whose eyes’ centers are in the same position. The direct average of these five
images is shown in Fig. 1(b). We can see obvious artifacts in the nose and mouth
areas because the facial features (except for eyes) are not well aligned in the
average. Fig. 1(c) shows the mean image of the five images with correspondence-
based representation. Clearly, a much better mean face is produced.
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(a) (b) (c)

Fig. 1. Face image representation with and without correspondence. (a) shows five face
images with aligned eye centers; (b) shows the mean face of these five images, where
clear artifacts can be seen in the nose and mouth areas; (c) presents the mean face of
the five images with correspondence-based representation, which looks much better.

The correspondence-based representation could make the face space spanned
by the training face images as close to the true face space as possible, and hence
help to prevent the simultaneous alignment and representation from falling into
a bad local minimum.

3.2 Model of MRR

Suppose there is a well cropped and centered face template yt for all face images.
If both the query image y and the training image set A can be aligned to yt,
then the facial structures of y can be corresponded well to those of A. With this
virtual template yt (it does not need to be obtained explicitly in our approach)
as a bridge to make y correspond to A, the proposed correspondence-based
simultaneous alignment and representation model is

y ⊙ τ = (A⊙ T )α+ e (5)

where T = [t1, t2, · · · , tm], and the operations, y ⊙ τ and A ⊙ T , align the
query image y and each training image ai to yt via the transformation τ and
ti, i = 1, · · · ,m, respectively. Therefore, the proposed misalignment-robust rep-
resentation (MRR) model for FR is formulated as

min
α,τ ,e,T

∥e∥1 s.t. y ⊙ τ = (A⊙ T )α+ e (6)

In the above model of MRR, the operation of A⊙T aligns the training samples,
which makes the linear combination of all the training samples, (A⊙T )α, more
accurate to represent a query face image and benefit the accurate recovery of
transformation τ . The l1-norm minimization of representation error aims to
increase the robustness of MRR to image occlusions, such as disguise, block
occlusions or pixel corruption.

Usually the training data set in a face database includes more than tens of
subjects. Given well-aligned training samples of each subject, the representation
coefficient α of a well-aligned query sample (say from class i) can be sparse since
using only the training samples from class i can represent the query sample well.
However, the sparsity constraint on α will make the optimization of representa-
tion very time-consuming [13], especially for the alternative optimization of α
and τ , which may need many iterations.
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Actually, it is not necessary to solve a sparse representation problem in the
alternative optimization of Eq. (6) because the sparse coefficient α here is only
used to do representation but not classification. We rewrite the dictionary A⊙T
via singular value decomposition (SVD): A⊙T = UΣV T , where U and V are
orthogonal matrixes and Σ is a diagonal matrix with descending-order diagonal
values. Therefore the original MRR model is transformed into

min
β, τ , e

∥e∥1 s.t. y ⊙ τ = Uβ + e (7)

where β = ΣV Tα and only the first several elements of β will have big absolute
values. Therefore, Eq.(7) could be approximated as

τ̂ = argmin
βη,τ ,e

∥e∥1 s.t. y ⊙ τ = Uηβη + e (8)

where Uη is formed by the first η column vectors of U . Due to the fact that
Uη is a tall matrix and almost all the element of βη have significant values, the
representation on Uη will be stable enough and the regularization (e.g., ∥·∥1) on
βη is not necessary.

After optimizing Eq. (8), the coding coefficient α (regularized by l2-norm as
[13]) could be solved by

α̂ = argmin
α

∥e∥lp + λ∥α∥22 s.t. y ⊙ τ̂ = (A⊙ T )α+ e (9)

where p = 1 for face with occlusion and p = 2 for face without occlusion (in that

case, Eq. (9) is equal to α̂ = argmin
α

∥y ⊙ τ̂ − (A⊙ T )α∥22 + λ ∥α∥22).

3.3 Coarse-to-fine search of MRR

Instead of optimizing via an exhaustive search subject by subject [7], with MRR
we directly align the query image y to the training data A of all subjects.
Specifically, we propose a two-step coarse-to-fine search strategy. Before the on-
line coarse-to-fine search for y, we first estimate offline the transformation T .

3.3.1. Estimate T . In the MRR model, we assume that there is a universal
template yt to align query image y and training samples A. However, such a
universal template yt is hard to get in practice. One more practical way is to
estimate adaptively a template yt for each given database. Furthermore, since
our goal is to align y to A, we do not need to explicitly have a template yt. In
particular, we can align all the samples in A to each other first, and then align
y to the already aligned dataset A ⊙ T . The alignment of training images A
could be done offline using methods such as AAM [17] and robust alignment by
sparse and low rank decomposition (RASL) [19]. In this paper, we adapt RASL
to our model since it does not need to manually locate the many feature points
except for the initial locations of eyes.
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Let B be the aligned dataset of A after some processing. Due to the high
similarity existed in face images, the well aligned face vectors in B will be highly
correlated. That is, B will have a low rank. Therefore, the transformation T
could be estimated by solving the following optimization:

T̂ = argmin
B,T ,E

rank (B) + γ∥E∥0 s.t. A⊙ T = B +E (10)

where γ > 0 is a parameter that trades off the rank of the aligned face images
B and the sparsity of error E. Different from RASL [19] where A contains the
training images from the same subject, here A consists of training images from
all subjects.

3.3.2. The coarse search of MRR. With the transformation computed
in Eq. (10), the aligned training samples are Â = A ⊙ T̂ and the SVD of Â
is Â = UΣV T . We can then do alignment and representation of y over Â via
coarse-to-fine search. The coarse search of MRR is as follows:

τ̂ 1 = argmin
β1,τ1,e1

∥e1∥1 s.t. y ⊙ τ 1 = U1β1 + e1 (11)

where U1 is formed by the first η1 columns of U .
Then the aligned query image y ⊙ τ̂ 1 is coded via Eq. (9), and the recon-

struction error of each class to represent y is

r1i =
∥∥∥y ⊙ τ̂ 1 − Âiα̂i

∥∥∥
lp

(12)

where α̂i and Âi are the coding vector and aligned training sample matrix
associated with class i, respectively.

3.3.3. The fine search of MRR. The top S candidates k1, · · · , kS with the

smallest residuals r1i are selected to build a new dictionary,Df =
[
Âk1 , · · · , ÂkS

]
.

Denote the SVD of Df as Df = U ′Σ ′V ′T . The fine optimization of MRR is

τ̂ 2 = argmin
β2,τ2,e2

∥e2∥1 s.t. y ⊙ τ 2 = U2β2 + e2 (13)

where the first η2 column vectors of U ′ form U2.
Then the coding vector α̂f of the aligned query image with τ̂ 2 is solved via

Eq. (9), and the identity of the query image is classified as

identity (y) = argmin
i

∥∥∥y ⊙ τ̂ 2 − Âiα̂
i
f

∥∥∥
lp

(14)

where α̂i
f is the coding vector associated with class i. It should be noted that the

estimated transformation τ̂ 1 could be used as the initial value of τ 2 in optimizing
Eq. (13) and the final representation could also be performed on Df .
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The algorithm of MRR is summarized in Algorithm 1. In the coarse-to-fine
search of MRR, the solving of Eq. (11) and Eq. (13) is the same as the optimiza-
tion of Eq. (2) in RASR [7], which iteratively linearizes the current estimate of
τ and seek for representations like (take Eq. (11) as an example):

y ⊙ τ + J∆τ = U1β1 + e1 (15)

where J = ∂
∂τ y⊙ τ is the Jacobian of y⊙ τ with respect to the transformation

parameters τ .

Algorithm 1 Algorithm of Misalignment-Robust Representation (MRR)

1: Input
Training data matrix A, query image y, and initial transformation τ 0 of y.

2: Offline estimation of the transformation T
By Eq. (10), the transformation T̂ of A is estimated, and the aligned training
images are Â = A⊙ T̂ .

3: Coarse search
Estimate coarse transformation τ̂ 1 by Eq. (11) and calculate the reconstruction
error associated to each subject.

4: Fine search
Choose top S candidates to form a new dictionary, and estimate fine transformation
τ̂ 2 by Eq. (13).

5: Output
Represent the well aligned test sample, y⊙ τ̂ 2, via Eq. (9), and output the identity
of y.

4 Complexity analysis

In this section, we compare the time complexity of the proposed MRR with
two state-of-the-art sparse-representation based robust FR methods: Huang’s
method [12] and RASR [7]. The main time complexity of MRR and RASR [7]
contains two parts: simultaneous alignment and representation (SAR) and image
representation (IR) for final classification; while the most time-consuming part
of Huang’s method [12] is the iterative process of SAR.

The complexity of SAR in MRR for one step (coarse or fine step) search,
denoted by Oτ , is similar to that of SAR in RASR for one subject because they
has the same optimization process [7] with similar-size dictionaries (U l and Ai

have similar number of columns for l = 1, 2 and i = 1, 2, · · · , c). For the IR with
an n × m dictionary, due to the l2-norm regularization of α of MRR, Eq. (9)
with p = 2 has the time complexity of O(mn), while for p = 1 Eq. (9) could
be efficiently solved by Augmented Lagrange Multiplier (ALM) algorithm [20]
with the time complexity of O(kmn), where k is the iteration number (usually
less than 50) of ALM. It can be seen that MRR is much faster than the sparse
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representation in RASR, whose time complexity is O(n2(mS/c)ε) where ε ≥ 1.2
[21] and S is the number of candidates selected from all the subjects. The overall
time complexities of MRR and RASR are listed in Table 1, which clearly shows
that MRR has much lower time complexity than RASR.

For Huang’s method [12], taking affine spatial transformation as an example,
its dictionary size for SAR in each iteration is n×7m (each training sample gen-
erates 6 column vectors as the dictionary atoms to deal with transformation).
The time complexity for one iteration is O(7εn2mε) ≈ O(10n2mε). Therefore the
total complexity of Huang’s method is O(10qn2mε), where q is the iteration num-
ber. Since one-step SAR costs less time than sparse coding, i.e., Oτ < O(n2mε),
the overall complexity of MRR (2Oτ + 2O(kmn)) is much lower than Huang’s
method [12], which is the slowest one among the three methods.

Table 1. Time complexity of MRR and RASR.

Step SAR IR Comparison comment

RASR [7] cOτ O(n2(mS/c)ε) MRR usually has over c
2
times speedup over

MRR 2Oτ 2O(nm) or 2O(knm) RASR (c is the number of subjects).

5 Experimental result

We perform experiments on benchmark face databases to demonstrate the ef-
fectiveness of MRR. We first discuss the parameter selection of MRR in Section
5.1; in Section 5.2, we evaluate the alignment of MRR via simulating 2D defor-
mation. In Section 5.3, we test the robustness of MRR to the number of training
samples and block occlusion. In Section 5.4, we verify the effectiveness of MRR
on real face recognition and verification, followed by the running time compari-
son in Section 5.5. All the training face images are manually cropped based on
the locations of eyes, while the testing face images in all experiments (except the
simulation on 2D deformation) are automatically detected by using Viola and
Jone’s face detector [15] without manual intervention. The supplementary ma-
terial which includes more results and the Matlab source code of this paper can
be downloaded at http://www4.comp.polyu.edu.hk/~cslzhang/code.htm.

5.1 Discussion of parameter selection

In MRR, apart from γ in estimating T (we use the default value of γ in [19]),
there are four parameters (λ ,η1, η2 and S) need to be set beforehand. Among
them, λ, η2 and S are relatively easy to set and they can be fixed for all ex-
periments, while η1 depends much on the face subspace generated by U1β1 in
Eq. (11). A small η1 will reduce the representation power of U1β1 but increase
its robustness to big misalignment. Thus, when the misalignment is small, a big
U1β1 is preferred, and vice versa. In this following, if no specific instructions,
we fix η2 = 40, λ = 0.01, and S = 25 for all the experiments. For the simulation



10 Meng Yang, Lei Zhang, and David Zhang

in Section 5.2 and the experiment of robustness to occlusion, η1 is set as a small
value (i.e., 4), while for all the other cases, η1 is fixed as 25. In addition, 2D
spatial similarity transformation τ is used in the experiments.

5.2 Simulation on 2D Deformation

We first verify the capability of MRR to deal with 2D deformation (including
translation, rotation and scaling) using the CMU Multi-PIE database [22]. As
in [7], all the subjects in Session 1, each of which has 7 frontal images with
extreme illuminations {0, 1, 7, 13, 14, 16, 18} and neutral expression, are used for
training, and the subjects from Session 2 with illumination {10} are used for
testing. The images were down-sampled to 80×64 with the distance between
the two outer eye corners as 46 pixels. Artificial deformation of translations,
rotation and scale are introduced to the testing images based on the coordinates
of eye corners located manually. We compute the success ratio as N1/N2, where
N1 is the number of misaligned testing samples (i.e., with artificial deformation)
correctly classified by MRR, andN2 is the number of well-aligned testing samples
(i.e., manually cropped without any deformation) correctly classified by using
the classifier employed in MRR.

Fig. 2 shows the success ratio for each single artificial deformation: 2(a) and
2(b) for x and y translations, 2(c) for rotation, and 2(d) for scaling. It can be
seen that MRR works well when the translation in x or y direction is less than
20% of the eye distance and when the in-plane rotation is less than 30%. This
performance is similar to RASR [7], while it should be noted that the generic
alignment to all subjects in MRR is much harder than the specific alignment to
one subject in RASR. In addition, from Fig. 2(d) we can see that MRR performs
well up to 20% change in scale, better than RASR [7] (up to 15% scale variation).
It is also interesting to see that face scaling up (e.g., 1 ∼ 1.4 scaling) is easier
to handle than face scaling down (e.g., 0.6 ∼ 1 scaling), which is because small
cropped face regions would lose some discriminative facial features.

We then compare MRR with three state-of-the-art methods, SRC [8], Huang’s
method (H’s) [12] and RASR [7], by performing FR experiments on the Extended
Yale B (EYB) [23] and Multi-PIE [22] databases. The experimental settings on
Multi-PIE remains the same as above except that an artificial translation of
5 pixels in both x and y directions is introduced into the test image. For the
settings on EYB, as in [12][7] 20 subjects are selected and for each subject 32
frontal images (selected randomly) are used for training, with the remaining
32 images for testing. An artificial translation of 10 pixels in both x and y
directions is introduced into the test image. The image is cropped to 192×168.
Because there are only 20 subjects in EYB, S is set as 10 here. Table 2 shows
the recognition rates on these two datasets by the four competing methods. It
can be seen that SRC is very sensitive to misalignment, and it gives the worst
performance. Both MRR and RASR have much higher recognition rates than
Huang’s method [12]. Compared with RASR, MRR achieves 0.6% improvement
on Multi-PIE and achieves almost the same rate on EYB. However, as we will
see in Section 5.5, MRR is tens to hundreds of times faster than RASR.
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Fig. 2. Success ratio of MRR versus 2D deformation: (a) translation (percent of eye
distance) in x direction only; (b) translation (percent of eye distance) in y direction
only; (c) in-plane rotation only and (d) scale variation only.

Table 2. Recognition rates with trans-
lations (MPIE: Multi-PIE).

SRC[8] RASR[7] H’s[12] MRR

MPIE 24.1% 92.2% 67.5% 92.8%
EYB 51.1% 93.7% 89.1% 93.6%

Table 3. Recognition rate vs. the number
of training samples on the MPIE database.

Sample number 3 5 7

RASR [7] 78.2% 95.8% 96.8%
MRR 82.0% 97.5% 97.5%

5.3 Robustness evaluation

We first evaluate MRR’s robustness to the number of training samples in com-
parison with RASR [7] on Multi-PIE. The first 100 subjects in Session 1 and
Session 3 are used as the training and testing sets, respectively. For each person,
7 frontal images with the same illuminations as those in Section 5.2 are used
for training, while 4 frontal images with illuminations {3, 6, 11, 19} are used for
testing. Three tests with the first 3, 5 and 7 training samples per person are
performed. The recognition results of MRR and RSAR versus the number of
training samples are shown in Table 3. We can see that MRR is better than
RASR in all cases (about 3.8%, 1.7% and 0.7% improvement in the cases of 3,
5, and 7 training samples, respectively), which shows that MRR is more robust
to the small sample size (SSS) problem. The reason is that when the number of
training samples per subject is small, the subspace of one specific subject cannot
be well built, and hence the performance of RASR will be much reduced since
it works subject by subject; in contrast, MRR uses the training samples from
all subjects to collaboratively represent the query sample, which can alleviate
much the SSS problem [13], making it more robust to sample size than RASR.

Next we test the robustness of MRR to various levels of block occlusion
on Multi-PIE. A randomly located block of the face image is replaced by the
image Baboon. As [7], the training set remains the same as before, while the
frontal images with illumination {10} from Session 1 are used for testing. The
comparison of MRR and RASR is listed in Table 4. We see that MRR has very
similar recognition rates to RSAR, and both of them still have good recognition
accuracy up to 30% occlusion.

5.4 Face recognition and validation

In this section, a large-scale Multi-PIE face dataset [22] with 337 subjects is used
for practical face recognition and verification tests, where all the 249 subjects
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Table 4. Recognition rates (%) under
various levels of random block occlusion.

Percent 10% 20% 30% 40% 50%

RASR [7] 99.6 94.9 79.6 46.5 19.8
MRR 99.6 95.2 79.5 43.4 20.1

Table 5. Face recognition on the Multi-PIE
database.

Rec. Rates Session2 Session3 Session4

RASR [7] 93.9% 93.8% 92.3%
MRR 93.7% 92.8% 93.0%

in Session 1 are used as training samples and the remaining 88 subjects are
used as “imposters”, or invalid images. For each of the training subjects, the 7
frontal images with the same illuminations as before are used for training. Here
the images are resized to 60×48. It should be noted that all the testing face
images are automatically detected by the Viola and Jones’ face detector [7], and
a rectangular window is used to crop the facial region.

For face recognition experiments, as [7] the frontal images with all 20 illu-
minations from Sessions 2-4 (recorded at different times over a period of several
months) are used as testing samples. The recognition rates of MRR and RSAR
are presented in Table 5. We can see that MRR has very similar recognition rate
to RASR in average. Specifically, MRR is better than RASR in Session 4 with
0.7% improvement, almost the same as RASR in Session 2, and slightly worse
than RASR in Session 3 with 1.0% gap.

For face validation experiments, from Session 2 we choose the subjects ap-
pearing in Session 1 as the customers. The 88 imposters are from Session 2 (37
subjects with ID between 251 and 292) and Session 3 (51 subjects with ID be-
tween 293 and 346) with 10 even-number illuminations for each subject. To be
identical to [7], we also use the Sparsity Concentration Index (SCI) proposed
in [8] to do validation after getting the coding coefficients. With the alignment
method in [7], Nearest Neighbor (NN) and Nearest Subspace (NS) are also em-
ployed for comparison. Fig. 3 plots the receiver operating characteristic (ROC)
curves by sweeping the threshold through the entire range of possible values for
each algorithm. It can be seen that MRR and RASR significantly outperform
NN and NS. MRR generally has very similar performance to RASR, although
they locally across each other. For instance, the true positive rates of MRR and
RASR are 87.5% and 86.7%, respectively, when the false positive rate is 5%; and
the true positive rates of MRR and RASR are 91.8% and 92.5%, respectively,
when the false positive rate is 15%.

5.5 Running time

From Sections 5.2∼5.4, we can see that MRR and RASR achieve almost the
same results in various tests. Then let’s compare their running time, which is
one of the most important concerns in practical FR systems.

We do face recognitions on Multi-PIE with the same experimental setting
as that in Section 5.4 except that the number of subjects is set as 10, 50, 100,
150, 200, and 249, respectively. The programming environment is Matlab version
2011a. The desktop used is of 3.16 GHz CPU and with 3.25G RAM. The average
running time of MRR and RASR (our reimplementation) is listed in Table 6.
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Fig. 3. ROC curves with false positive rate as 0 ∼ 1 (left) and 0 ∼ 0.1 (right) for
subject verification on the Multi-PIE database.

It can be seen that in all cases, the running time of MRR is less than 1
second, validating that MRR is suitable for real-time FR systems. Compared to
MRR, the running time of RASR is much longer, over 1 minute when the number
of subjects is more than 100. Especially, we can see that RASR’s running time
linearly increases with the number of subjects, while the running time of MRR is
nearly independent of the number of subjects. The speedup of MRR to RASR is
more than half of the number of subjects, for example, 105 times speedup when
the number of subjects is 150. This accords with our time complexity analysis
in Section 4 very well.

Table 6. The average running time (second) of MRR and RASR vs. subject number.

Num 10 50 100 150 200 249

RASR 6.1 30.5 60.8 91.6 122.2 152.7
MRR 0.59 0.81 0.84 0.87 0.90 0.91

Speedup 10.3 37.7 72.4 105.3 135.8 167.8

6 Conclusion

We proposed a novel misalignment-robust representation (MRR) model in order
for real-time face recognition. An efficient two-step optimization algorithm with
a coarse-to-fine search strategy was developed to implement MRR. MRR has
strong robustness to face misalignment coupled with illumination variation and
occlusions, and more importantly, it can do face recognition at a real-time speed
(less than 1 second under the Matlab programming environment). We evaluated
the proposed MRR on various misaligned face recognition and verification tasks.
The extensive experimental results clearly demonstrated that MRR could achieve
similar accuracy to state-of-the-arts but with much faster speed, making it a good
candidate for use in real-time face recognition systems.
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