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Abstract

Extended fingerprint features such as pores, dots

and incipient ridges have been increasingly attracting

attention from researchers and engineers working on

automatic fingerprint recognition systems. A variety of

methods have been proposed to combine these features

with the traditional minutiae features. This paper

comparatively analyses the parallel and hierarchical

fusion approaches on a high resolution fingerprint

image dataset. Based on the results, a novel and more

effective hierarchical approach is presented for

combining minutiae, pores, dots and incipient ridges.

1. Introduction

Traditional automated fingerprint recognition

systems (AFRS) are mainly based on the minutiae

features, i.e. ridge endings and bifurcations [1-2]. In

recent years, increasing attention has been paid to

extended fingerprint features such as pores, dots and

incipient ridges (see Fig. 1) for the purpose of further

enhancing the fingerprint recognition accuracy. While

extended features are routinely used by experts in

manual latent fingerprint matching [3-4], they have

been exploited in AFRS only recently thanks to the

advent of high quality fingerprint sensors [5]. They

have been proven to be able to improve the accuracy

of AFRS when combined with minutiae [6-11].

A number of methods, including parallel and

hierarchical fusion approaches, have been proposed

for fusing minutiae and extended features. In [7] and

[9], for example, the authors combined minutiae with

pores and dots and incipient ridges by summing up

their match scores, which is parallel fusion. In [5], on

the other hand, pores were compared first and if they

could not be well matched, the input fingerprint was

rejected directly; otherwise, minutiae were further

compared. This is hierarchical fusion, which was also

used by [8] and [10]. The method of [8] proceeds
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from level-1 features to level-3 features, and directly

rejects the input fingerprint if any of the features are

found to be unmatched. In [10], level-2 (i.e. minutiae)

features were also compared before level-3 (i.e. Pores,

ridge contours, and edgeoscopic) features, but the

input fingerprint was directly accepted (rather than

rejected) if the level-2 features were matched well and

the level-3 features would not be further compared.

From above discussion, we can see that given the

various approaches in the literature of fusing extended

features and minutiae, an extensive study on them is

highly necessary to investigate how extended

fingerprint features can be better utilized by AFRS.

Toward the end, this paper will comparatively analyze

the parallel and hierarchical fusion approaches by

using a high resolution fingerprint image dataset.

Some basic problems in designing hierarchical fusion

approaches will be discussed for fingerprint features.

A novel hierarchical fusion method is then presented

to combine minutiae, pores, dots and incipient ridges,

and it is shown to be more effective than existing

approaches.

The rest of the paper is organized as follows.

Section 2 discusses different parallel and hierarchical

fusion approaches, including both existing and the

newly proposed ones. Section 3 reports and analyzes

the evaluation results. Section 4 concludes the paper.

Figure 1. Example extended fingerprint features: pores, dots

and incipient ridges.

2. Fusion Approaches

2.1. Parallel Fusion



Generally, the fusion in a biometric system can be

fulfilled at four different levels, i.e. sensor level,

feature level, score level, and decision level [12]. This

study focuses on the score level fusion of minutiae and

extended fingerprint features, which is most widely

used in fingerprint recognition. In parallel fusion

approaches, different fingerprint features are matched

separately and simultaneously, each defining a

matcher. Score normalization is then applied to change

the location and scale parameters of the match score

distributions at the outputs of the individual matchers

so that the match scores of different matchers are

transformed into a common domain [12]. The min-

max (MMN) and z-score normalization techniques [12]

are considered in our experiments. When applying z-

score normalization, the mean and standard deviation

of match score distribution are estimated in two

different ways. One uses the mean and standard

deviation of genuine match scores (ZNG), and the

other uses those of imposter match scores (ZNI). After

normalization, the match scores of individual matchers

are combined to form one single final score for the

input fingerprint by using the min (MIN), max (MAX),

and simple sum (SSUM) rules. The MIN and MAX

rules respectively pick as the final score the minimum

and maximum of the match scores of all individual

matchers, whereas the SSUM rule takes the

summation of the match scores as the final score [12].

2.2. Hierarchical Fusion

Hierarchical fusion, in contrast to parallel fusion,

launches the matchers in serial. The recognition

process can stop at any matcher if the matcher can

already make a decision with high confidence;

otherwise, it will proceed to the matcher at the next

layer until a decision can be made. Two basic

problems are involved in designing hierarchical fusion

approaches: 1) in which order should the

matchers/features be applied and 2) in what manner

should the features be used? For example, one kind of

features can be used in a positive manner, i.e. if its

match score is above a given threshold, then the input

fingerprint is directly accepted as a genuine; or in a

negative manner, i.e. if its match score is not above the

threshold, then the input fingerprint is directly rejected

as an imposter. Different orders and both manners

have been used in previous work [5-10]. However, so

far, no comparative study has been reported regarding

these approaches, and it is still unclear which approach

is better for combining minutiae and extended

fingerprint features.

In this paper, we will consider two different orders:

from minutiae to pores to dots and incipient ridges

(denoted as MPD), and inversely (denoted as DPM).

In each order, we consider using the features in both

positive (denoted as P) and negative (denoted as N)

manners. Thus, four different hierarchical fusion

approaches are studied here, MPD_P, MPD_N,

DPM_P, and DPM_N, among which DPM_P is for the

first time proposed in the literature. Fig. 2 shows the

flowcharts of MPD_N and DPM_P as examples. In the

figure, sm, sp, and sd denote respectively the match

scores of minutiae, pores, and dots and incipient ridges.

With respect to the associated thresholds, tm, tp, and td,

we chose them in the experiments according to the

manner in which the features were used. Specifically,

if a feature is used in a positive manner on prior layers

of the fusion hierarchy, we selected the threshold for it

as the minimum of the thresholds which produce the

minimum false acceptance rate (FAR). This is because

such threshold can give the lowest false rejection rate

(FRR) among all the thresholds that correspond to the

minimum FAR. Similarly, for a feature negatively

used, we selected its threshold as the maximum of the

thresholds which lead to the minimum FRR.

(a)

(b)

Figure 2. The flowcharts of two example hierarchical fusion

approaches: (a) MPD_N and (b) DPM_P.

3. Evaluation and Analysis

3.1. Dataset and Algorithms

Due to the lack of large database of high resolution

fingerprint images in public domain, a set of high

resolution (~1200dpi) fingerprint images were

collected by using our custom-built acquisition device

to evaluate different fusion approaches. The dataset

consists of 1,480 fingerprint images from 148 fingers,

each having five images captured in each of two

sessions (about two weeks apart). The images have a

spatial size of 640×480 pixels.

The minutiae were extracted from the fingerprint

images and matched by using the method in [13]. The

pores on the images were extracted by using an

improved method of [14], and matched by using the

method in [15]. The dots and incipient ridges were

extracted and matched by using methods similar to



those in [14] and [15]. Note that the minutiae match

score between two fingerprints is defined as the

percentage of the matched minutiae among the

complete set of minutiae on the two fingerprints. The

pore match score between them is defined as the

number of finally matched pores on them. The dots

and incipient ridges are matched together by

representing both of them with the coordinates of their

centers, and the match score of dots and incipient

ridges on two fingerprints is also defined as the

number of matched dots and incipient ridges on them.

With the above feature extraction and matching

methods, the following matches were conducted for

each individual feature. 1) Genuine matches: each of

the fingerprint images in the second session was

matched with all the fingerprint images of the same

finger in the first session, resulting in 3,700 genuine

match scores. 2) Imposter matches: the first fingerprint

image of each finger in the second session was

matched with the first fingerprint images of all the

other fingers in the first session, resulting in 21,756

imposter match scores. Based on these match scores,

the equal error rates (EER) and the receiver operating

characteristic (ROC) curves of different parallel fusion

and hierarchical fusion methods were calculated. In

the remaining part of this section, we report and

analyze the obtained results.

3.2. Fusion Results

The EERs of different parallel fusion approaches

are listed in Table 1. The best result among these

parallel fusion approaches is obtained by

MMN+SSUM, and the corresponding ROC curve

(denoted by MPD_MMN_SSUM) is plotted in Fig. 3

together with the ROC curves of different hierarchical

fusion approaches. For comparison, the ROC curves of

individual features are also displayed in Fig. 3.

Table 1. The equal error rates of different parallel fusion

methods.

3.3. Analysis

The above results show that the best EERs obtained

by parallel and hierarchical fusion are respectively

0.65% and 0.508%. This supports the conclusion of

previous studies [7-8] that hierarchical fusion is better

than parallel fusion in combing fingerprint features.

However, our results also show that in order to get the

best performance by using hierarchical fusion, the

MIN MAX SSUM

MMN 13.54% 0.71% 0.65%

ZNG 44.61% 13.92% 0.92%

ZNI 19.48% 16.22% 0.8%

order and manner of using fingerprint features should

be carefully considered; if the features are not properly

utilized, hierarchical fusion can even work worse than

parallel fusion.

Figure 3. The ROC curves of individual features and

different parallel and hierarchical fusion approaches.

Among different hierarchical fusion approaches,

the positive manner overwhelms the negative one in

all cases. When the features are used in a negative

manner, the performance after fusion becomes even

worse than that achieved by individual features. In

order to better understand why the positive manner is

better, we show in Fig. 4 the match score distributions

of the individual features, i.e. minutiae, pores, dots and

incipient ridges. We also calculated the following

statistics on these match scores: the minimum (Min),

maximum (Max), mean (Mean), and standard

deviation (Std) of the genuine and imposter match

scores. The results are presented in Table 2.

Table 2. The (genuine, imposter) match score statistics of

individual features.

According to Fig. 4 and Table 2, the genuine and

imposter match scores of all of the considered features

have overlap in the lower part of the range of match

scores. This means that some pairs of genuine

fingerprints would also fall into the cluster obtaining

low match scores. Consequently, if we directly reject

an input fingerprint just because its match score of

certain feature is small as what we have done on the

prior layers of hierarchical fusion in negative manner,

it will be very possible for us to commit a false

rejection. On the other hand, because there is no

Min Max Mean Std

MINU (0, 0)
(0.99,

0.23)

(0.61,

0.02)

(0.179,

0.036)

PORE (5, 0) (396, 9) (68, 6)
(63.5,

0.6)

DOTINR (0, 0) (65, 14) (5.9, 2.6)
(6.96,

1.63)



overlap between genuine and imposter match scores

on the higher part of the range of scores, we can accept

with high confidence the input fingerprint which gains

a high match score.
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Figure 4. The match score distributions of (a) minutiae, (b)

pores, and (c) dots and incipient ridges.

Furthermore, when the positive manner is taken,

the fusion from DOTINR to PORE to MINU

outperforms the fusion using an inverse order. This is

interesting considering that in most previous studies [8,

10], the fingerprint features on level-2 were compared

before those on level-3. The results here, however,

show that using the extended fingerprint features in a

positive manner and on the prior layers of the

hierarchical fusion system can benefit more the overall

accuracy of AFRS.

4. Conclusions

This paper comparatively studied parallel and

hierarchical fusion approaches for combining minutiae

and extended fingerprint features. The results showed

the advantages of hierarchical fusion over parallel

fusion, and demonstrated the importance of fusion

order and manner in designing hierarchical fusion

approaches. A more effective hierarchical fusion

approach has also been presented in the study.
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