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ABSTRACT 

  
High resolution fingerprint images have been increasingly 
used in fingerprint recognition. They can provide more fine 
features (e.g. pores) than standard fingerprint images to 
improve the recognition accuracy. It is however still an open 
issue whether or not existing quality assessment methods are 
suitable for high resolution fingerprint images. This paper 
compares some typical quality indexes by analyzing the 
correlation between them and their prediction ability on 
minutia-based and pore-based high resolution fingerprint 
recognition accuracy. Experimental results show that the 
indexes based on ridge orientation are more effective for 
high resolution fingerprint recognition systems. 
 

Index Terms— Fingerprint Recognition, Quality 
Assessment, High Resolution Fingerprint Images 
 

1. INTRODUCTION 
 
Fingerprint recognition is one of the most widely used 
biometric techniques for personal authentication. Usually, 
two fingerprint images are not compared directly, but have 
the features on them extracted and matched. Whereas level-
1 and level-2 features such as singular points and minutiae 
(i.e. ridge endings and bifurcations) are the basis of most 
existing automatic fingerprint recognition systems (AFRS) 
[1], level-3 features such as pores are also very distinctive 
and are now increasingly used to improve fingerprint 
recognition accuracy, thanks to the advent of high resolution 
fingerprint imaging devices which enable the reliable 
extraction of them from fingerprint images [2-3]. 

When capturing fingerprint images, a number of factors 
can affect the image quality, e.g. the sensor noise, the 
acquisition conditions, and the finger skin conditions [1]. 
Fig. 1 shows two example fingerprint images, one of good 
quality and the other of poor quality. Features on the poor 
quality fingerprint images are difficult to precisely detect, 
and automatic algorithms often miss true features or detect 
spurious features. The recognition accuracy of AFRS will be 
consequently degraded. Therefore, in order to ensure good 
performance of AFRS, it is very important to evaluate the 
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quality of captured fingerprint images. According to the 
quality of fingerprint images, appropriate follow-up 
operations can be then taken, e.g. re-capturing the 
fingerprint if the image quality is too bad, or incorporating 
the quality into feature extraction and matching to augment 
the recognition accuracy [4]. Many different methods have 
been proposed in the literature for assessing the quality of 
fingerprint images [5-10]. In Section 2, we will briefly 
review these methods. 

 

  
 

Fig. 1: One good quality (left) and one bad quality (right) high 
resolution fingerprint images. 

 
 High resolution ( ≥ 1000ppi) fingerprint images have 

been recently increasingly used in fingerprint recognition. 
Compared with conventional low resolution (~500ppi) 
fingerprint images, they provide more fine features on 
fingerprint ridges (e.g. pores) and can thus help to further 
improve the fingerprint recognition accuracy [2].  Because 
of the introducing of new features, it is unclear whether 
existing quality assessment methods are suitable for high 
resolution fingerprint images or not. So far, no study has 
been published on the quality assessment of high resolution 
fingerprint images. In this paper, we will investigate which 
method is better for evaluating the quality of high resolution 
fingerprint images when pores are utilized for fingerprint 
recognition. Section 3 will report and analyse the 
experimental results. Section 4 finally concludes the paper. 
 

2. QUALITY ASSESSMENT METHODS 
 
Existing fingerprint image quality assessment methods can 
be divided into three categories [10]. The first kind of 
methods are based on local features of fingerprint images, 
e.g. local ridge orientation and local ridge clarity. These 
methods are most widely used. They usually divide a 
fingerprint image into a number of blocks and extract 
features from each block. The quality of each block is then 



assessed based on the extracted features, and a quality index 
is finally calculated for the whole fingerprint image 
according to the quality of all the local blocks on it. A 
variety of local features have been exploited, including ridge 
orientation [6, 8], pixel intensity [7], Gabor features [5], and 
power spectrum [7]. 

Two typical local feature based fingerprint image 
quality indexes are orientation certainty level (OCL) [6] and 
uniformity of local pixel intensity [7]. The OCL index 
measures the energy concentration along the dominant ridge 
orientation on a local block. It can be calculated based on 
the eigenvalues of local structure tensor defined as 
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where B is a local block and |B| denotes the number of 
pixels on B, x

ig  and y
ig  are respectively the x- and y- 

gradients at the pixel i, and 'T' is the transpose operator. Let 
1λ  and 2λ  ( 21 λλ ≤ ) be the two eigenvalues. The OCL index 

in [6] is then defined as 21 /λλ . Differently, the uniformity 
index evaluates the fingerprint image quality based on the 
degree to which similar pixels (i.e. ridges and valleys) 
cluster in the nearby region. To get the index value for a 
fingerprint image, the image is first binarized and the 
clustering factor is then calculated as the uniformity index 
(denoted as CFU). 

Methods in the second category assess the fingerprint 
image quality based on global features. They analyze 
fingerprint images in a holistic manner. For example, in [6], 
the authors consider the continuity of fingerprint ridge 
orientation field and the uniformity of fingerprint ridge 
frequency field over the fingerprint image. The method in 
[8] is based on the observation that the ridge frequency 
values on a fingerprint image lie within a certain range. It 
thus assumes that the energy on the spectrum becomes more 
concentrated in few bands as the quality of fingerprint 
image increases. Based on this assumption, the method 
defines a global quality index which measures the energy 
concentration by using entropy (we denote this method as 
EC). 

The third kind of method predicts fingerprint image 
quality by using classifiers such as neural networks [9]. In 
these methods, the quality measure is essentially defined as 
a degree of separation between the match and non-match 
score distributions of a given fingerprint based on some 
fingerprint features (e.g. minutiae). They classify fingerprint 
images into five classes of image quality, instead of 
generating continuous quality index values for them. 

From the above discussion, we can see that different 
quality indexes evaluate the fingerprint image quality from 
different aspects. As a result, they may be more effective in 
some cases, but less in others. Moreover, because the 
recognition performance of AFRS highly depends on the 
extraction and matching accuracy of the features used for 
fingerprint recognition, a good quality index for an AFRS 
should correlate with the features used by the AFRS and 

thus be able to predict its performance. Motivated by this, 
we in this study investigate the effectiveness of existing 
fingerprint image quality assessment methods on high 
resolution fingerprint images when level-3 features (i.e. 
pores) are used for recognition, and aim to provide helpful 
guidance on choosing and designing quality indexes for high 
resolution fingerprint images. In the next section, we report 
the experiments and analyze the obtained results. 
 

3. EXPERIMENTS 
 
3.1. Selected Quality Indexes 
 
We considered two local feature based quality indexes, OCL 
[6] and CFU [7], and one global feature based quality index, 
EC [8]. These three quality indexes assess the fingerprint 
image quality based on local ridge orientation consistency, 
local ridge and valley clarity, and concentration of ridge 
frequency field, respectively. In the experiments, all quality 
index values were normalized into the range between 0 and 
1, with 0 denoting the worst quality and 1 the best quality. 
 
3.2. Database and Protocol 
 
We collected a set of high resolution fingerprint images by 
using our custom-built ~1200ppi fingerprint image 
acquisition device. There are totally 1480 images from 148 
fingers, each finger having five images captured in each of 
two sessions (about two weeks apart). The spatial size of the 
images is 640 pixels in width and 480 pixels in height. 

The three quality indexes were calculated for each of 
the fingerprint images. The correlation between the quality 
indexes was then studied. In order to investigate the 
recognition accuracy prediction ability of the three quality 
indexes, we implemented two fingerprint matchers, one 
based on minutiae [11] and the other based on pores [12-
13]. By using each matcher, the following genuine and 
imposter matches were carried out. 1) Genuine matches: 
each of the fingerprint images in the second session was 
matched with all the fingerprint images of the same finger in 
the first session, resulting in 3,700 genuine match scores. 2) 
Imposter matches: the first fingerprint image of each finger 
in the second session was matched with the first fingerprint 
images of all the other fingers in the first session, resulting 
in 21,756 imposter match scores. Following the strategy in 
[8], we sorted all the fingerprint images according to their 
quality, and pruned the last p percent poor quality 
fingerprint images. The match scores corresponding to these 
poor quality fingerprint images were removed and the equal 
error rate (EER) was then calculated based on the rest match 
scores. By investigating the EERs under different p's, we 
can understand the recognition accuracy prediction ability of 
the quality index. Next, we report and analyze the obtained 
experimental results. 

 
3.3. Experimental Results and Analysis 



 
Fig. 2 plots the values of the three quality indexes on the 
high resolution fingerprint images used in the experiments. 
The Pearson correlation between each two of the quality 
indexes is also given. From the results, we can see that the 
Pearson correlations between the three quality indexes are 
all below 0.5. This is because they are based on different 
fingerprint features, and moreover, the good quality of one 
kind of features does not necessarily guarantee the good 
quality of other kinds of features. 

 

 

 
Fig. 2: Correlation between the three quality indexes on the high 
resolution fingerprint images used in the experiments. 
 

The fingerprint recognition accuracy with respect to the 
quality of fingerprint images is shown in Fig. 3. We 

considered pruning 5%, 10%, 15%, 20%, 25% and 30% 
poor quality fingerprint images. If a quality index is good at 
predicting the recognition accuracy, the EER is expected to 
decrease as more poor quality fingerprint images are pruned 
according to the quality evaluated by the quality index. 
However, according to the results in Fig. 3, the CFU quality 
index does not work at all for either minutia-based or pore-
based fingerprint matchers on high resolution fingerprint 
images. This is better illustrated in Fig. 4. In the left 
fingerprint fragment, there are many pores (i.e. bright blobs) 
on ridges; whereas in the right fingerprint fragment, very 
few pores appear on ridges. By using the CFU quality index, 
the right fragment is evaluated to have better quality than 
the left one because the pores on ridges decrease the clarity 
of ridges. However, these pores are in fact useful features on 
high resolution fingerprint images. Consequently, the CFU 
quality index seems not suitable for quality assessment of 
high resolution fingerprint images as demonstrated in Fig. 3. 
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Fig. 3: The fingerprint recognition accuracy with respect to the 
quality of fingerprint images. 

 

  
Fig. 4: Two example high resolution fingerprint fragments. The 
CFU index values of them are respectively 0.09 and 0.12 (from left 
to right). 

 



The EC quality index is almost effective when the 
minutia-based fingerprint matcher is used, but does not 
work for the pore-based fingerprint matcher. As discussed in 
Section 2, the EC quality index essentially evaluates the 
fingerprint ridge frequency field. Such frequency feature is 
important for the minutia extractor used here which is based 
on fingerprint images enhanced by Gabor filters, because 
the ridge frequency has to be estimated for the filters, and 
thus a good quality ridge frequency field is very important 
for the method. On the other hand, the pore extractor used in 
the experiments is less dependent on the ridge frequency. 
Moreover, the appearance of pores on ridges could bias the 
estimation of ridge frequency, and decrease the value of the 
EC quality index. Consequently, the EC quality index 
cannot well predict the recognition accuracy of pore-based 
fingerprint matcher as observed in Fig. 3. 

Different from the other two quality indexes, the OCL 
quality index can well predict the recognition accuracy of 
both minutia-based and pore-based fingerprint matchers on 
high resolution fingerprint images. The ridge orientation 
field plays an important role in the extraction of both 
minutiae and pores. Fingerprint images with good quality 
ridge orientation field can thus benefit both minutia-based 
and pore-based fingerprint matchers. This is demonstrated 
by Fig. 3. Moreover, as small dots on ridges, the pores have 
little interference on the local dominant ridge orientation. 
Therefore, the OCL quality index still works well on high 
resolution fingerprint images and can well predict the 
recognition accuracy of fingerprint matchers when high 
resolution fingerprint images are used. 

 

  
Fig. 5: Two impressions of the same finger at ~500ppi (left) and 
~1200ppi (right). 

 
3.4. Discussion 

 
The above experiments clearly demonstrate that not all 
existing fingerprint image quality assessment methods are 
suitable for high resolution fingerprint images. This is due to 
the characteristics of high resolution fingerprint images 
compared with low resolution fingerprint images. As shown 
in Fig. 5, on high resolution fingerprint images, many fine 
features on ridges come into sight, e.g. pores (see the bright 
blobs on ridges). In conventional fingerprint matchers for 
low resolution fingerprint images, such fine ridge features 
are however taken as noise, rather than useful features, and 
hence will be suppressed by using some enhancement 

filters. As a result, many existing fingerprint image quality 
indexes cannot well handle high resolution fingerprint 
images as they are initially proposed for low resolution 
fingerprint images. One exception is the OCL quality index, 
which assesses the fingerprint image quality based on the 
ridge orientation field. This is because the orientation field 
composes the basis of fingerprint matchers for both low 
resolution and high resolution fingerprint images. 
 

4. CONSLUSION 
 
A comparative study has been presented in this paper for 
quality assessment of high resolution fingerprint images. 
The results show that not all existing image quality indexes 
are equally effective for high resolution fingerprint images 
when the fine ridge features (e.g. pores) on them are utilized 
in fingerprint recognition. Therefore, fingerprint image 
resolution and the specific features used for recognition 
have to be considered when designing fingerprint image 
quality indexes. In addition to the OCL quality index which 
is suitable for high resolution fingerprint images, we are 
going to develop new indexes specially designed for fine 
ridge features on high resolution fingerprint images. 
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