LST-Net: Learning a Convolutional Neural Network with a Learnable Sparse Transform

Lida Li^{1[0000-0001-9386-194X]*}, Kun Wang^{2,1[0000-0001-5954-8036]*}, Shuai Li^{1,3[0000-0003-0760-5267]}, Xiangchu Feng^{2[0000-0002-3463-2060]}, and Lei Zhang^{1,3[0000-0002-2078-4215]**}

¹ Dept. of Computing, The Hong Kong Polytechnic University, Hong Kong, China ² School of Mathematics and Statistics, Xidian University ³ DAMO Academy, Alibaba Group {cslli, csshuaili, cslzhang}@comp.polyu.edu.hk, kwang96@stu.xidian.edu.cn, xcfeng@mail.xidian.edu.cn

In this supplementary material, we provide more details about:

- 1. Experimental settings;
- 2. The LST-Net structures *w.r.t.* existing CNN architectures (e.g., ResNet, VGG, AlexNet) on different datasets;
- 3. Extra experimental results of LST-Net for large-scale scene recognition.

1 Experimental settings

All experiments are conducted using an 8-way NVIDIA Tesla P100 GPU server with 2 Intel Xeon Gold 6136 CPUs and 128G RAM. **CIFAR-10 and CIFAR-100 datasets**. Standard data augmentation strategies [7,3] were adopted in training, including random horizontal flip, padding of four extra pixels on each side, random crop, etc. Each model was trained for 160 epochs. We used SGD with a mini-batch of 128 samples for optimization. Weight decay and momentum were set to 5×10^{-4} and 0.9, respectively. Learning rate started at 0.1, and was reduced by a factor of 10 after 32K and 48K iterations. One GPU card was used to train LST-Nets constructed w.r.t. ResNet-20 and ResNet-56 architectures; two GPU cards were employed for 110- and 164-layer LST-Nets; four GPU cards were adopted to train LST-Nets built regarding to other architectures. We did not use any SyncBN layers.

ImageNet LSVRC2012 dataset. By default, we follow the settings in [4,1] to compare different methods on the validation set (no test labels are released). SGD with a mini-batch of 256 samples was used for optimization. Weight decay was set to 1×10^{-4} and momentum to 0.9. We trained each model from scratch for 90 epochs. Learning rate started at 0.1, and was reduced by a factor of 10 for every 30 epochs. We employed four GPU cards to train LST-Net constructed w.r.t. ResNet-18, ResNet-34, ShiftNet, AlexNet and MobileNet V2. Eight GPU cards were all used to train other models.

^{*} The first two authors contribute equally in this work.

^{**} Corresponding author. This work is supported by HK RGC General Research Fund (PolyU 152216/18E).

2 L. Li et al.

ImageNet-C dataset. We used the ImageNet-C dataset to study the robustness of those models trained on ImageNet. No fine-tuning was conducted for test on ImageNet-C.

Places365-Standard dataset. We reused the same training settings on ImageNet. We report the best Top-5 test accuracy achieved by ten-crop estimation for each model.

2 Detailed structures of LST-Net

We can construct our LST-Nets *w.r.t.* existing CNN architectures (e.g., ResNet, VGG and AlexNet, etc.) by replacing their main building blocks, such as conventional Conv2d layers or featured bottlenecks, with our proposed LST-I or LST-II bottleneck. For each existing CNN architecture, we closely followed its instantiation on different datasets to construct our corresponding LST-Net.

LST-Net w.r.t. **ResNet on CIFAR-10/100**. Table I shows the structures of LST-Net w.r.t. ResNet on CIFAR-10/100. We substituted each basic bottleneck of ResNet with a pair of LST-I or LST-II bottlenecks as there are two Conv2d operations in each original bottleneck. To keep the same classifier (the last FC layer), we inserted a PWConv before GAP (please refer to the third last row of Table Ib) so that C_{in} of FC remains 64.

LST-Net w.r.t. ResNet on ImageNet. Table II shows the architectures of LST-Net w.r.t. ResNet on ImageNet. For shallow models, such as ResNet-18 and ResNet-34, we built up LST-Net for ImageNet in the same way as that for CIFAR-10/100. For deep models, such as ResNet-50 and ResNet-101, we did not introduce extra PWConv before the GAP layer. We employed LST-II bottlenecks at each stage of conv2_x~conv5_x with comparable number of parameters and computational cost.

LST-Net w.r.t. **WRN on CIFAR-10/100**. Table III presents the details of LST-Net constructed w.r.t. WRN on CIFAR-10/100. We adopted LST-II bottlenecks for construction. Following WRN, we enlarged the core channels of each LST-II bottleneck, *i.e.*, C_{r_out} , for a few times according to the pre-defined width multiplier.

LST-Net w.r.t. **WRN on ImageNet**. LST-II bottlenecks are adopted to construct LST-Net w.r.t. WRN on ImageNet. Following WRN, we enlarged the core channels of each LST-II bottleneck, *i.e.*, C_{r_out} , for a few times according to the pre-defined width multiplier. Thus, it has very similar structure to the one built up w.r.t. ResNet on ImageNet.

LST-Net w.r.t. **VGG on ImageNet**. Table IV presents the LST-Nets constructed w.r.t. VGG on ImageNet using two distinct classifiers. As VGG has a larger spatial size at various layers than that of the corresponding layers in ResNet, we adopt LST-I bottleneck for VGG to save overhead. LST-Net (FC) adopts the same classifier as the standard VGG, *i.e.* three FC layers. In contrast, classifier of LST-Net (GAP) is similar to that of ResNet.

LST-Net *w.r.t.* **AlexNet on ImageNet**. Table V presents the LST-Net constructed *w.r.t.* AlexNet on ImageNet. For the same reason as that of VGG,

we employed LST-I bottleneck. LST-Net (FC) has the same classifier as the original AlexNet. In contrast, LST-Net (GAP) takes the same classifier structure as ResNet.

LST-Net w.r.t. **ShiftNet on ImageNet**. Table VI shows the LST-Net constructed w.r.t. ShiftNet on ImageNet. We employ LST-I bottleneck for the same reason as VGG and AlexNet. Besides, we set a = 2 for all bottlenecks. Following ShiftNet, we set the base width to 32 for LST-Net (A) and half the number for LST-Net (B) and LST-Net (C). We reduced a few bottlenecks at each stage to match its original expansion rate.

LST-Net w.r.t. MobileNet V2 on ImageNet. Table VII shows the structure of LST-Net built up w.r.t. MobileNet V2. To adapt LST-I bottleneck to the Inverted Residual bottleneck, we replaced the Inverted Residual bottlenecks in MobileNet V2 with modified LST-I bottlenecks and reused the original settings, including kernel size, stride, expansion rate \mathcal{E} , number of bottlenecks, etc. We made three changes for the modified version of LST-I bottlenecks: (1) we replaced each ReLU in the original LST-I bottleneck by ReLU6 and the ReLU-ST activation scheme was adapted to ReLU6-ST, where we set $\tau = 1 \times 10^{-8}$ in ST to take care of the need for a linear transform; (2) we removed PWConv and BN in channel-wise transform T_c when the expansion rate $\mathcal{E} = 1$; (3) we removed the downsample operator D and element-wise plus when $\mathcal{E} > 1$ while stride>1 or $C_{in} \neq C_{out}$. Fig. 3 illustrates the LST-I bottlenecks corresponding to MobileNet V2 bottlenecks. Batch size, initial learning rate and weight decay are set to 256, 0.05 and 5×10^{-4} , respectively. We adopted a cosine learning rate decay strategy and trained our model for 150 epochs.

Finally, we present the convergence curves of LST-Net on ImageNet in terms of Top-1 and Top-5 error rates. Figs. 1 and 2 compare the convergence curves of ResNet-18, ResNet-50 and their corresponding LST-Nets. One can see that our LST-Nets achieve lower error rates during the entire training process.

3 Extra experimental results of LST-Net for large-scale scene recognition

We evaluate LST-Net for large-scale scene recognition on Places365-Standard dataset [10]. We build up LST-Nets w.r.t. ResNet [1], AlexNet [6] and 11-layer VGG [8] for fair comparison. We compare LST-Net with its counterpart networks. Table VIII presents Top-5 accuracies obtained using ten-crop estimation.

One can see that LST-Net surpasses its counterparts. This validates that LST-Net is also effective for the large-scale scene recognition task. In particular, an 18-layer LST-Net can even surpass ResNet-50 by 1.27% while saving nearly 70% of the total parameters and 64% of the total FLOPs. Meanwhile, LST-Net under ResNet-50 architecture achieves the best performance on Places365-Standard dataset, 0.96% higher than its closest follower, CBAM-50. Besides, by replacing the last linear layers of AlexNet by GAP, the accuracy drops significantly, while LST-Net(GAP) is robust in this case. AlexNet (BN) only slightly

4 L. Li et al.

improves AlexNet [5], while LST-Net (FC) built up w.r.t. AlexNet, also depicting BN and FC, improves much AlexNet (BN). Similarly, the accuracy drops by nearly 1% when the last linear layers of VGG is replaced by GAP, while LST-NET (GAP) constructed regarding to VGG is also robust in the same case. And LST-Net (FC) built up w.r.t. VGG improves VGG (BN) by 0.24%.

References

- 1. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks.In: Proc. ECCV. Springer (2016)
- 2. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proc. CVPR (2018)
- 3. Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks withstochastic depth. In: Proc. ECCV. Springer (2016)
- 4. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training byreducing internal covariate shift. In: Proc. ICML (2015)
- 5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proc. NeurIPS (2012)
- 6. Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks. arXiv preprint arXiv:1404.5997 (2014)
- 7. Lin, M., Chen, Q., Yan, S.: Network in network. In: Proc. ICLR (2014)
- 8. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale imagerecognition. In: Proc. ICLR (2015)
- 9. Woo, S., Park, J., Lee, J.Y., So Kweon, I.: CBAM: Convolutional block attentionmodule. In: Proc. ECCV (2018)
- 10. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: A 10 millionimage database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell.40(6),1452-1464 (2018)

Table I: LST-Net constructed w.r.t. ResNet on CIFAR-10/100. Please refer to Table 1 and Table 2(a) in our paper.

(a) LST-I

(b) LST-II (by default)

Type/Stride	C_{in}	$a^2 \times C_s$	C_{out}	20	Re 56	epeat 110	164	Type/Stride	C_{in}	C_{r_out}	C_{out}	20	Re 56	epeat 110	164
Conv3x3/1	3	N.A.	16			1		Conv3x3/1	3	N.A.	16			1	
LST-I/1	16	64	16	5	17	35	53	LST-I/1	16	16	64			1	
LST-I/2	16	100	00			1		1.51-1/1	64	10	04	5	17	35	53
LST-I/1	32	128	32	5	17	35	53	LST-II/2	64	20	199			1	-
LST-I/2	32	050				1		LST-II/1	128	32	120	5	17	35	53
LST-I/1	64	256	64	5	17	35	53	LST-II/2	128	G A	956			1	
GAP	64	N.A.	64			1		LST-II/1	256	04	200	5	17	35	53
FC	64	N.A.	10/100			1		Conv1x1/1	256	N.A.	64			1	
								GAP	64	N.A.	64			1	
								FC	64	N.A.	10/100			1	

	(a) 18 a	and 3	4 lay	ers.		(b) 50 and 101 layers.							
Name	Type/Stride	C_{in}	C_{r_out}	C_{out}	Rej 18	peat 34	Name	Type/Stride	C_{in}	C_{r_out}	C_{out}	Re 50	peat 101
conv1	$Conv7 \times 7/2$	3	N.A.	64	1	1	conv1	$Conv7 \times 7/2$	3	N.A.	64	1	1
	$MaxPool3 \times 3/2$	64	N.A.	64	1	1		$MaxPool3 \times 3/2$	64	N.A.	64	1	1
$conv2_x$	LST-II/2 LST-II/1	$\frac{64}{256}$	64	256	1 1	1 5	conv2_x	LST-II/2 LST-II/1	$\frac{64}{256}$	64	256	$\frac{1}{9}$	1 9
conv3_x	LST-II/2 LST-II/1	$256 \\ 512$	128	512	1 1	1 7	conv3_x	LST-II/2 LST-II/1	$256 \\ 512$	128	512	$1 \\ 13$	1 13
conv4_x	LST-II/2 LST-II/1	$512 \\ 1024$	256	1024	1 1	1 11	conv4_x	LST-II/2 LST-II/1	$512 \\ 1024$	256	1024	$\frac{1}{20}$	1 77
conv5_x	LST-II/2 LST-II/1	$1024 \\ 2048$	512	2048	1 1	1 5	conv5_x	LST-II/2 LST-II/1	$\begin{array}{c} 1024 \\ 2048 \end{array}$	512	2048	1 9	1 9
	Conv1x1/1	2048	N.A.	512	1	1		GAP	2048	N.A.	2048	1	1
	GAP	512	N.A.	512	1	1		FC	2048	N.A.	365/1K	1	1
	FC	512	N.A.	365/1K	1	1							

Table II: LST-Net constructed w.r.t. ResNet on ImageNet and Places365-Standard. Please refer to Table 3(a), Table 4 and Table 5(a) in our paper.

Table III: LST-Net constructed w.r.t. WRN on CIFAR-10/100. Please refer to Table 2(b) in our paper.

(a) width multiplier $= 8$								(b) width multiplier $= 10$							
Type/Stride	C_{in}	C_{r_out}	C_{out}	16	Repeat 22 28	40		Type/Stride	C_{in}	C_{r_out}	C_{out}	16	Rej 22	peat 28	40
Conv3x3/1	3	N.A.	16		1			Conv3x3/1	3	N.A.	16			1	
LST-II/1	16 512	128	512	1	$\begin{array}{c}1\\2&3\end{array}$	5		LST-II/1	$\begin{array}{c} 16 \\ 640 \end{array}$	160	640	1	2	$^{1}_{3}$	5
LST-II/2 LST-II/1	$512 \\ 1024$	256	1024	1	$\begin{array}{c}1\\2&3\end{array}$	5		LST-II/2 LST-II/1	$640 \\ 1280$	320	1280	1	2	1 3	5
LST-II/2 LST-II/1	$\begin{array}{c} 1024 \\ 2048 \end{array}$	512	2048	1	$\begin{array}{c}1\\2&3\end{array}$	5		LST-II/2 LST-II/1	$1280 \\ 2560$	640	2560	1	2	$^{1}_{3}$	5
Conv1x1/1	2048	N.A.	512		1			Conv1x1/1	2560	N.A.	640			1	
GAP	512	N.A.	512		1			GAP	640	N.A.	640			1	
FC	512	N.A.	10/100		1			FC	640	N.A.	10/100			1	

Table IV: LST-Net constructed w.r.t. VGG on ImageNet and Places365-Standard. Please refer to Table 3(c) and Table 5(b) in our paper.

(a) LST-Net (FC)

(b) LST-Net (GAP)

Type/Stride	C_{in}	$a^2 \times C_s$	C_{out}	Repeat	Type/Stride	C_{in}	$a^2 \times C_s$	C_{out}	Repeat
Conv3×3/1	3	N.A.	64	1	Conv3×3/1	3	N.A.	64	1
MaxPool2×2/2 LST-I/1	64 64	N.A. 512	64 128	1	MaxPool2×2/2 LST-I/1	64 64	N.A. 512	64 128	1
MaxPool2×2/2 LST-I/1 LST-I/1	128 128 256	N.A. 1024	128 256	1	MaxPool2×2/2 LST-I/1 LST-I/1	128 128 256	N.A. 1024	128 256	1
MaxPool2×2/2 LST-I/1 LST-I/1	256 256 512	N.A. 2048	256 512	1	MaxPool2×2/2 LST-I/1 LST-I/1	$256 \\ 256 \\ 512$	N.A. 2048	256 512	1
MaxPool2×2/2 LST-I/1	$512 \\ 512$	N.A. 2048	512 512	1 2	MaxPool2×2/2 LST-I/1	$512 \\ 512$	N.A. 2048	$512 \\ 512$	1 2
FC FC	$25088 \\ 4096$	N.A. N.A.	$4096 \\ 4096$	1	GAP	512	N.A.	512	1
FC	4096	N.A.	365/1K		FC	512	N.A.	365/1K	1

Table V: LST-Net constructed w.r.t. AlexNet on ImageNet and Places365-Standard. Please refer to Table 3(c) and Table 5(b) in our paper.

(a) LST-Net (FC)

```
(b) LST-Net (GAP)
```

Type/Stride	C_{in}	$a^2 \times C_s$	C_{out}	Repeat	Type/Stride	C_{in}	$a^2 \times C_s$	C_{out}	Repeat
$Conv11 \times 11/4$	3	N.A.	64	1	$Conv11 \times 11/4$	3	N.A.	64	1
MaxPool3×3/2 LST-I/1	$\begin{array}{c} 64 \\ 64 \end{array}$	N.A. 768	64 192	1	MaxPool3×3/2 LST-I/1	64 64	N.A. 768	64 192	1
MaxPool3×3/2 LST-I/1	$ 192 \\ 192 $	N.A. 1536	$ \begin{array}{r} 192 \\ 384 \end{array} $	1	MaxPool3×3/2 LST-I/1	192 192	N.A. 1536	192 384	1
MaxPool3×3/2 LST-I/1 LST-I/1	$384 \\ 384 \\ 256$	N.A. 1024	384 256	1	MaxPool3×3/2 LST-I/1 LST-I/1	384 384 256	N.A. 1024	384 256	1
FC	9216 4006	N.A.	4096	1	GAP	512	N.A.	512	1
FC	4096	N.A.	365/1K	T	FC	512	N.A.	365/1K	1

Table VI: LST-Net constructed w.r.t. ShiftNet on ImageNet. Please refer to Table 3(c) in our paper.

(a) LST-Net (A)

(b) LST-Net (B)

(c) LST-Net (C)

Type/Stride	C_{in}	$a^2 \times C_s$	C_{out}	Repeat	Type/Stride	C_{in}	$a^2 \times C_s$	C_{out}	Repeat	Type/Stride	C_{in}	$a^2 \times C_s$	C_{out}	Repeat
$Conv7 \times 7/2$	3	N.A.	32	1	$Conv7 \times 7/2$	3	N.A.	16	1	$Conv7 \times 7/2$	3	N.A.	16	1
LST-I $5 \times 5/2$ LST-I $5 \times 5/1$	32	128	32	1 4	LST-I $5 \times 5/2$ LST-I $5 \times 5/1$	16	64	16	1 4	LST-I $5 \times 5/2$ LST-I $5 \times 5/1$	16	64	16	1
LST-I $5 \times 5/2$ LST-I $5 \times 5/1$	$32 \\ 64$	256	64	1 2	$\begin{array}{c} \text{LST-I } 5{\times}5/2 \\ \text{LST-I } 5{\times}5/1 \end{array}$	16 32	128	32	1 2	LST-I $5 \times 5/2$ LST-I $5 \times 5/1$	16 32	128	32	1
LST-I $3 \times 3/2$ LST-I $3 \times 3/1$	$^{64}_{128}$	512	128	1	LST-I 3×3/2 LST-I 3×3/1	$\frac{32}{64}$	256	64	1	LST-I 3×3/2 LST-I 3×3/1	$32 \\ 64$	256	64	1
LST-I 3×3/2 LST-I 3×3/1	$\frac{128}{256}$	1024	256	1	LST-I 3×3/2 LST-I 3×3/1	64 128	512	128	1	LST-I 3×3/2 LST-I 3×3/1	64 128	512	128	1
GAP	256	N.A.	256	1	GAP	128	N.A.	128	1	GAP	128	N.A.	128	1
FC	256	N.A.	1K	1	FC	128	N.A.	1K	1	FC	128	N.A.	1K	1

Type/Stride	C_{in}	$a^2 \times C_s (\mathcal{E})$	C_{out}	Repeat
Conv3x3/1	3	N.A.	16	1
Modified LST-I/1	16	16(1)	16	1
Modified LST-I/2 Modified LST-I/1	$ \begin{array}{c} 16 \\ 24 \end{array} $	96 (6) 144 (6)	24	1 1
Modified LST-I/2 Modified LST-I/1	24 32	$144 (6) \\ 192 (6)$	32	$\frac{1}{2}$
Modified LST-I/1	$\frac{32}{64}$	$\begin{array}{c} 192 \ (6) \\ 384 \ (6) \end{array}$	64	$\frac{1}{3}$
Modified LST-I/2 Modified LST-I/1	64 96	$384 (6) \\ 576 (6)$	96	$\frac{1}{2}$
Modified LST-I/2 Modified LST-I/1	96 160	$576(6) \\ 960(6)$	160	$\frac{1}{2}$
Modified LST-I/1	160	960 (6)	320	1
PWConv	320	N.A.	1280	1
GAP	1280	N.A.	1280	1
FC	1280	N.A.	1K	1

Table VII: LST-Net constructed w.r.t. MobileNet V2 on ImageNet. Please refer to Table 3(c) in our paper.

Table VIII: Results on Places365-Standard dataset.

(a) ResNet family.

_ _

(b) AlexNet and VGG.

Model	$\mathbf{Param}/\mathbf{FLOPs}$	Top-5 Acc. $(\%)$	Model	$\mathbf{Param}/\mathbf{FLOPs}$	Top-5 Acc. (%)
ResNet-50 [1] SENet-50 [2] CBAM-50 [9]	25.24M/4.09G 26.77M/4.09G 26.79M/4.09G	85.08 85.86 86.22	AlexNet [6] AlexNet (BN) AlexNet (GAP)	58.50M/0.71G 58.50M/0.71G 2.56M/0.66G	82.89 82.98 77.89
LST-Net (ResNet-18) LST-Net (ResNet-34)	7.71M/1.48G 13.50M/2.56G	86.35 86.94	LST-Net (FC) LST-Net (GAP)	$57.70 \mathrm{M}/0.64 \mathrm{G}$ $2.09 \mathrm{M}/0.62 \mathrm{G}$	83.99 82.95
LST-Net (ResNet-50)	23.01M/4.05G	87.18	VGG [8] VGG (BN) VGG (GAP) LST-Net (FC)	130.26M/7.61G 130.26M/7.61G 9.73M/7.49G 127.15M/6.01G	84.91 85.09 83.95 85.33
			LST-Net (GAP)	$\mathbf{6.30M}/\mathbf{5.89G}$	85.12

Fig. 1: Convergence curves of ResNet-18 and our LST-Net on ImageNet: (a) Top-1 error rates, and (b) Top-5 error rates.

Fig. 2: Convergence curves of ResNet-50 and our LST-Net on ImageNet: (a) Top-1 error rates, and (b) Top-5 error rates.

Fig. 3: Illustration of LST-I bottleneck w.r.t. the Inverted Residual bottleneck in MobileNet V2. (a): $\mathcal{E} = 1$; (b): $\mathcal{E} > 1$ while stride>1 or $C_{in} \neq C_{out}$; (c): $\mathcal{E} > 1$ while stride=1 and $C_{in} = C_{out}$. EWPlus means element-wise plus. PW-Conv/DWConv in red font indicates initialization with 2D-DCT while blue font suggests random initialization.