
LST-Net: Learning a Convolutional Neural
Network with a Learnable Sparse Transform

Lida Li1[0000−0001−9386−194X]?, Kun Wang2,1[0000−0001−5954−8036]?, Shuai
Li1,3[0000−0003−0760−5267], Xiangchu Feng2[0000−0002−3463−2060], and Lei

Zhang1,3[0000−0002−2078−4215]??

1 Dept. of Computing, The Hong Kong Polytechnic University, Hong Kong, China
2 School of Mathematics and Statistics, Xidian University

3 DAMO Academy, Alibaba Group
{cslli, csshuaili, cslzhang}@comp.polyu.edu.hk, kwang96@stu.xidian.edu.cn,

xcfeng@mail.xidian.edu.cn

In this supplementary material, we provide more details about:

1. Experimental settings;

2. The LST-Net structures w.r.t. existing CNN architectures (e.g., ResNet,
VGG, AlexNet) on different datasets;

3. Extra experimental results of LST-Net for large-scale scene recognition.

1 Experimental settings

All experiments are conducted using an 8-way NVIDIA Tesla P100 GPU server
with 2 Intel Xeon Gold 6136 CPUs and 128G RAM. CIFAR-10 and CIFAR-
100 datasets. Standard data augmentation strategies [7,3] were adopted in
training, including random horizontal flip, padding of four extra pixels on each
side, random crop, etc. Each model was trained for 160 epochs. We used SGD
with a mini-batch of 128 samples for optimization. Weight decay and momentum
were set to 5× 10−4 and 0.9, respectively. Learning rate started at 0.1, and was
reduced by a factor of 10 after 32K and 48K iterations. One GPU card was used
to train LST-Nets constructed w.r.t. ResNet-20 and ResNet-56 architectures; two
GPU cards were employed for 110- and 164-layer LST-Nets; four GPU cards were
adopted to train LST-Nets built regarding to other architectures. We did not
use any SyncBN layers.
ImageNet LSVRC2012 dataset. By default, we follow the settings in [4,1]
to compare different methods on the validation set (no test labels are released).
SGD with a mini-batch of 256 samples was used for optimization. Weight decay
was set to 1× 10−4 and momentum to 0.9. We trained each model from scratch
for 90 epochs. Learning rate started at 0.1, and was reduced by a factor of 10
for every 30 epochs. We employed four GPU cards to train LST-Net constructed
w.r.t. ResNet-18, ResNet-34, ShiftNet, AlexNet and MobileNet V2. Eight GPU
cards were all used to train other models.

? The first two authors contribute equally in this work.
?? Corresponding author. This work is supported by HK RGC General Research Fund

(PolyU 152216/18E).

mailto:cslli@comp.polyu.edu.hk,csshuaili@comp.polyu.edu.hk,cslzhang@comp.polyu.edu.hk
mailto:kwang96@stu.xidian.edu.cn
mailto:xcfeng@mail.xidian.edu.cn


2 L. Li et al.

ImageNet-C dataset. We used the ImageNet-C dataset to study the robust-
ness of those models trained on ImageNet. No fine-tuning was conducted for test
on ImageNet-C.
Places365-Standard dataset. We reused the same training settings on Ima-
geNet. We report the best Top-5 test accuracy achieved by ten-crop estimation
for each model.

2 Detailed structures of LST-Net

We can construct our LST-Nets w.r.t. existing CNN architectures (e.g., ResNet,
VGG and AlexNet, etc.) by replacing their main building blocks, such as con-
ventional Conv2d layers or featured bottlenecks, with our proposed LST-I or
LST-II bottleneck. For each existing CNN architecture, we closely followed its
instantiation on different datasets to construct our corresponding LST-Net.

LST-Net w.r.t. ResNet on CIFAR-10/100. Table I shows the structures
of LST-Net w.r.t. ResNet on CIFAR-10/100. We substituted each basic bottle-
neck of ResNet with a pair of LST-I or LST-II bottlenecks as there are two
Conv2d operations in each original bottleneck. To keep the same classifier (the
last FC layer), we inserted a PWConv before GAP (please refer to the third last
row of Table Ib) so that Cin of FC remains 64.

LST-Net w.r.t. ResNet on ImageNet. Table II shows the architectures
of LST-Net w.r.t. ResNet on ImageNet. For shallow models, such as ResNet-18
and ResNet-34, we built up LST-Net for ImageNet in the same way as that for
CIFAR-10/100. For deep models, such as ResNet-50 and ResNet-101, we did not
introduce extra PWConv before the GAP layer. We employed LST-II bottlenecks
at each stage of conv2 x∼conv5 x with comparable number of parameters and
computational cost.

LST-Net w.r.t. WRN on CIFAR-10/100. Table III presents the details
of LST-Net constructed w.r.t. WRN on CIFAR-10/100. We adopted LST-II
bottlenecks for construction. Following WRN, we enlarged the core channels of
each LST-II bottleneck, i.e., Cr out, for a few times according to the pre-defined
width multiplier.

LST-Net w.r.t. WRN on ImageNet. LST-II bottlenecks are adopted to
construct LST-Net w.r.t. WRN on ImageNet. Following WRN, we enlarged the
core channels of each LST-II bottleneck, i.e., Cr out, for a few times according
to the pre-defined width multiplier. Thus, it has very similar structure to the
one built up w.r.t. ResNet on ImageNet.

LST-Net w.r.t. VGG on ImageNet. Table IV presents the LST-Nets
constructed w.r.t. VGG on ImageNet using two distinct classifiers. As VGG has
a larger spatial size at various layers than that of the corresponding layers in
ResNet, we adopt LST-I bottleneck for VGG to save overhead. LST-Net (FC)
adopts the same classifier as the standard VGG, i.e. three FC layers. In contrast,
classifier of LST-Net (GAP) is similar to that of ResNet.

LST-Net w.r.t. AlexNet on ImageNet. Table V presents the LST-Net
constructed w.r.t. AlexNet on ImageNet. For the same reason as that of VGG,



LST-Net: Learning a CNN with a Learnable Sparse Transform 3

we employed LST-I bottleneck. LST-Net (FC) has the same classifier as the
original AlexNet. In contrast, LST-Net (GAP) takes the same classifier structure
as ResNet.

LST-Net w.r.t. ShiftNet on ImageNet. Table VI shows the LST-Net
constructed w.r.t. ShiftNet on ImageNet. We employ LST-I bottleneck for the
same reason as VGG and AlexNet. Besides, we set a = 2 for all bottlenecks.
Following ShiftNet, we set the base width to 32 for LST-Net (A) and half the
number for LST-Net (B) and LST-Net (C). We reduced a few bottlenecks at
each stage to match its original expansion rate.

LST-Net w.r.t. MobileNet V2 on ImageNet. Table VII shows the struc-
ture of LST-Net built up w.r.t. MobileNet V2. To adapt LST-I bottleneck to the
Inverted Residual bottleneck, we replaced the Inverted Residual bottlenecks in
MobileNet V2 with modified LST-I bottlenecks and reused the original settings,
including kernel size, stride, expansion rate E , number of bottlenecks, etc. We
made three changes for the modified version of LST-I bottlenecks: (1) we re-
placed each ReLU in the original LST-I bottleneck by ReLU6 and the ReLU-ST
activation scheme was adapted to ReLU6-ST, where we set τ = 1× 10−8 in ST
to take care of the need for a linear transform; (2) we removed PWConv and BN
in channel-wise transform Tc when the expansion rate E = 1; (3) we removed the
downsample operator D and element-wise plus when E > 1 while stride>1 or
Cin 6= Cout. Fig. 3 illustrates the LST-I bottlenecks corresponding to MobileNet
V2 bottlenecks. Batch size, initial learning rate and weight decay are set to 256,
0.05 and 5×10−4, respectively. We adopted a cosine learning rate decay strategy
and trained our model for 150 epochs.

Finally, we present the convergence curves of LST-Net on ImageNet in terms
of Top-1 and Top-5 error rates. Figs. 1 and 2 compare the convergence curves of
ResNet-18, ResNet-50 and their corresponding LST-Nets. One can see that our
LST-Nets achieve lower error rates during the entire training process.

3 Extra experimental results of LST-Net for large-scale
scene recognition

We evaluate LST-Net for large-scale scene recognition on Places365-Standard
dataset [10]. We build up LST-Nets w.r.t. ResNet [1], AlexNet [6] and 11-layer
VGG [8] for fair comparison. We compare LST-Net with its counterpart net-
works. Table VIII presents Top-5 accuracies obtained using ten-crop estimation.

One can see that LST-Net surpasses its counterparts. This validates that
LST-Net is also effective for the large-scale scene recognition task. In particular,
an 18-layer LST-Net can even surpass ResNet-50 by 1.27% while saving nearly
70% of the total parameters and 64% of the total FLOPs. Meanwhile, LST-
Net under ResNet-50 architecture achieves the best performance on Places365-
Standard dataset, 0.96% higher than its closest follower, CBAM-50. Besides, by
replacing the last linear layers of AlexNet by GAP, the accuracy drops signifi-
cantly, while LST-Net(GAP) is robust in this case. AlexNet (BN) only slightly



4 L. Li et al.

improves AlexNet [5], while LST-Net (FC) built up w.r.t. AlexNet, also depict-
ing BN and FC, improves much AlexNet (BN). Similarly, the accuracy drops by
nearly 1% when the last linear layers of VGG is replaced by GAP, while LST-
NET (GAP) constructed regarding to VGG is also robust in the same case. And
LST-Net (FC) built up w.r.t. VGG improves VGG (BN) by 0.24%.

References

1. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks.In:
Proc. ECCV. Springer (2016)

2. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proc. CVPR (2018)
3. Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with-

stochastic depth. In: Proc. ECCV. Springer (2016)
4. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training byre-

ducing internal covariate shift. In: Proc. ICML (2015)
5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-

volutional neural networks. In: Proc. NeurIPS (2012)
6. Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks.

arXiv preprint arXiv:1404.5997 (2014)
7. Lin, M., Chen, Q., Yan, S.: Network in network. In: Proc. ICLR (2014)
8. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale im-

agerecognition. In: Proc. ICLR (2015)
9. Woo, S., Park, J., Lee, J.Y., So Kweon, I.: CBAM: Convolutional block attention-

module. In: Proc. ECCV (2018)
10. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: A 10 mil-

lionimage database for scene recognition. IEEE Trans. Pattern Anal. Mach. In-
tell.40(6),1452–1464 (2018)

Table I: LST-Net constructed w.r.t. ResNet on CIFAR-10/100. Please refer to
Table 1 and Table 2(a) in our paper.

(a) LST-I

Type/Stride Cin a2 × Cs Cout
Repeat

20 56 110 164

Conv3x3/1 3 N.A. 16 1

LST-I/1 16 64 16 5 17 35 53

LST-I/2 16
128 32

1
LST-I/1 32 5 17 35 53

LST-I/2 32
256 64

1
LST-I/1 64 5 17 35 53

GAP 64 N.A. 64 1

FC 64 N.A. 10/100 1

(b) LST-II (by default)

Type/Stride Cin Cr out Cout
Repeat

20 56 110 164

Conv3x3/1 3 N.A. 16 1

LST-I/1
16

16 64
1

64 5 17 35 53

LST-II/2 64
32 128

1
LST-II/1 128 5 17 35 53

LST-II/2 128
64 256

1
LST-II/1 256 5 17 35 53

Conv1x1/1 256 N.A. 64 1

GAP 64 N.A. 64 1

FC 64 N.A. 10/100 1



LST-Net: Learning a CNN with a Learnable Sparse Transform 5

Table II: LST-Net constructed w.r.t. ResNet on ImageNet and Places365-
Standard. Please refer to Table 3(a), Table 4 and Table 5(a) in our paper.

(a) 18 and 34 layers.

Name Type/Stride Cin Cr out Cout
Repeat
18 34

conv1 Conv7×7/2 3 N.A. 64 1 1

conv2 x
MaxPool3×3/2 64 N.A. 64 1 1

LST-II/2 64
64 256

1 1
LST-II/1 256 1 5

conv3 x
LST-II/2 256

128 512
1 1

LST-II/1 512 1 7

conv4 x
LST-II/2 512

256 1024
1 1

LST-II/1 1024 1 11

conv5 x
LST-II/2 1024

512 2048
1 1

LST-II/1 2048 1 5

Conv1x1/1 2048 N.A. 512 1 1
GAP 512 N.A. 512 1 1

FC 512 N.A. 365/1K 1 1

(b) 50 and 101 layers.

Name Type/Stride Cin Cr out Cout
Repeat

50 101

conv1 Conv7×7/2 3 N.A. 64 1 1

conv2 x
MaxPool3×3/2 64 N.A. 64 1 1

LST-II/2 64
64 256

1 1
LST-II/1 256 9 9

conv3 x
LST-II/2 256

128 512
1 1

LST-II/1 512 13 13

conv4 x
LST-II/2 512

256 1024
1 1

LST-II/1 1024 20 77

conv5 x
LST-II/2 1024

512 2048
1 1

LST-II/1 2048 9 9

GAP 2048 N.A. 2048 1 1

FC 2048 N.A. 365/1K 1 1

Table III: LST-Net constructed w.r.t. WRN on CIFAR-10/100. Please refer to
Table 2(b) in our paper.

(a) width multiplier = 8

Type/Stride Cin Cr out Cout
Repeat

16 22 28 40

Conv3x3/1 3 N.A. 16 1

LST-II/1
16

128 512
1

512 1 2 3 5

LST-II/2 512
256 1024

1
LST-II/1 1024 1 2 3 5

LST-II/2 1024
512 2048

1
LST-II/1 2048 1 2 3 5

Conv1x1/1 2048 N.A. 512 1

GAP 512 N.A. 512 1

FC 512 N.A. 10/100 1

(b) width multiplier = 10

Type/Stride Cin Cr out Cout
Repeat

16 22 28 40

Conv3x3/1 3 N.A. 16 1

LST-II/1
16

160 640
1

640 1 2 3 5

LST-II/2 640
320 1280

1
LST-II/1 1280 1 2 3 5

LST-II/2 1280
640 2560

1
LST-II/1 2560 1 2 3 5

Conv1x1/1 2560 N.A. 640 1

GAP 640 N.A. 640 1

FC 640 N.A. 10/100 1



6 L. Li et al.

Table IV: LST-Net constructed w.r.t. VGG on ImageNet and Places365-
Standard. Please refer to Table 3(c) and Table 5(b) in our paper.

(a) LST-Net (FC)

Type/Stride Cin a2 × Cs Cout Repeat

Conv3×3/1 3 N.A. 64 1

MaxPool2×2/2 64 N.A. 64
1

LST-I/1 64 512 128

MaxPool2×2/2 128 N.A. 128
1LST-I/1 128

1024 256
LST-I/1 256

MaxPool2×2/2 256 N.A. 256
1LST-I/1 256

2048 512
LST-I/1 512

MaxPool2×2/2 512 N.A. 512 1
LST-I/1 512 2048 512 2

FC 25088 N.A. 4096
1FC 4096 N.A. 4096

FC 4096 N.A. 365/1K

(b) LST-Net (GAP)

Type/Stride Cin a2 × Cs Cout Repeat

Conv3×3/1 3 N.A. 64 1

MaxPool2×2/2 64 N.A. 64
1

LST-I/1 64 512 128

MaxPool2×2/2 128 N.A. 128
1LST-I/1 128

1024 256
LST-I/1 256

MaxPool2×2/2 256 N.A. 256
1LST-I/1 256

2048 512
LST-I/1 512

MaxPool2×2/2 512 N.A. 512 1
LST-I/1 512 2048 512 2

GAP 512 N.A. 512 1

FC 512 N.A. 365/1K 1

Table V: LST-Net constructed w.r.t. AlexNet on ImageNet and Places365-
Standard. Please refer to Table 3(c) and Table 5(b) in our paper.

(a) LST-Net (FC)

Type/Stride Cin a2 × Cs Cout Repeat

Conv11×11/4 3 N.A. 64 1

MaxPool3×3/2 64 N.A. 64
1

LST-I/1 64 768 192

MaxPool3×3/2 192 N.A. 192
1

LST-I/1 192 1536 384

MaxPool3×3/2 384 N.A. 384
1LST-I/1 384

1024 256
LST-I/1 256

FC 9216 N.A. 4096
1FC 4096 N.A. 4096

FC 4096 N.A. 365/1K

(b) LST-Net (GAP)

Type/Stride Cin a2 × Cs Cout Repeat

Conv11×11/4 3 N.A. 64 1

MaxPool3×3/2 64 N.A. 64
1

LST-I/1 64 768 192

MaxPool3×3/2 192 N.A. 192
1

LST-I/1 192 1536 384

MaxPool3×3/2 384 N.A. 384
1LST-I/1 384

1024 256
LST-I/1 256

GAP 512 N.A. 512 1

FC 512 N.A. 365/1K 1

Table VI: LST-Net constructed w.r.t. ShiftNet on ImageNet. Please refer to
Table 3(c) in our paper.

(a) LST-Net (A)

Type/Stride Cin a2 × Cs Cout Repeat

Conv7×7/2 3 N.A. 32 1

LST-I 5×5/2
32 128 32

1
LST-I 5×5/1 4

LST-I 5×5/2 32
256 64

1
LST-I 5×5/1 64 2

LST-I 3×3/2 64
512 128 1

LST-I 3×3/1 128

LST-I 3×3/2 128
1024 256 1

LST-I 3×3/1 256

GAP 256 N.A. 256 1

FC 256 N.A. 1K 1

(b) LST-Net (B)

Type/Stride Cin a2 × Cs Cout Repeat

Conv7×7/2 3 N.A. 16 1

LST-I 5×5/2
16 64 16

1
LST-I 5×5/1 4

LST-I 5×5/2 16
128 32

1
LST-I 5×5/1 32 2

LST-I 3×3/2 32
256 64 1

LST-I 3×3/1 64

LST-I 3×3/2 64
512 128 1

LST-I 3×3/1 128

GAP 128 N.A. 128 1

FC 128 N.A. 1K 1

(c) LST-Net (C)

Type/Stride Cin a2 × Cs Cout Repeat

Conv7×7/2 3 N.A. 16 1

LST-I 5×5/2
16 64 16 1

LST-I 5×5/1

LST-I 5×5/2 16
128 32 1

LST-I 5×5/1 32

LST-I 3×3/2 32
256 64 1

LST-I 3×3/1 64

LST-I 3×3/2 64
512 128 1

LST-I 3×3/1 128

GAP 128 N.A. 128 1

FC 128 N.A. 1K 1



LST-Net: Learning a CNN with a Learnable Sparse Transform 7

Table VII: LST-Net constructed w.r.t. MobileNet V2 on ImageNet. Please refer
to Table 3(c) in our paper.

Type/Stride Cin a2 × Cs (E) Cout Repeat

Conv3x3/1 3 N.A. 16 1

Modified LST-I/1 16 16 (1) 16 1

Modified LST-I/2 16 96 (6)
24

1
Modified LST-I/1 24 144 (6) 1

Modified LST-I/2 24 144 (6)
32

1
Modified LST-I/1 32 192 (6) 2

Modified LST-I/1
32 192 (6)

64
1

64 384 (6) 3

Modified LST-I/2 64 384 (6)
96

1
Modified LST-I/1 96 576 (6) 2

Modified LST-I/2 96 576 (6)
160

1
Modified LST-I/1 160 960 (6) 2

Modified LST-I/1 160 960 (6) 320 1

PWConv 320 N.A. 1280 1

GAP 1280 N.A. 1280 1

FC 1280 N.A. 1K 1

Table VIII: Results on Places365-Standard dataset.

(a) ResNet family.

Model Param/FLOPs Top-5 Acc. (%)

ResNet-50 [1] 25.24M/4.09G 85.08
SENet-50 [2] 26.77M/4.09G 85.86
CBAM-50 [9] 26.79M/4.09G 86.22

LST-Net (ResNet-18) 7.71M/1.48G 86.35
LST-Net (ResNet-34) 13.50M/2.56G 86.94
LST-Net (ResNet-50) 23.01M/4.05G 87.18

(b) AlexNet and VGG.

Model Param/FLOPs Top-5 Acc. (%)

AlexNet [6] 58.50M/0.71G 82.89
AlexNet (BN) 58.50M/0.71G 82.98

AlexNet (GAP) 2.56M/0.66G 77.89
LST-Net (FC) 57.70M/0.64G 83.99

LST-Net (GAP) 2.09M/0.62G 82.95

VGG [8] 130.26M/7.61G 84.91
VGG (BN) 130.26M/7.61G 85.09

VGG (GAP) 9.73M/7.49G 83.95
LST-Net (FC) 127.15M/6.01G 85.33

LST-Net (GAP) 6.30M/5.89G 85.12

0 10 20 30 40 50 60 70 80 90

Epochs

20

30

40

50

60

70

80

90

T
o

p
1

 E
rr

o
rs

(%
)

train:ResNet-18

train:LST-Net-18

val:ResNet-18

val:LST-Net-18

(a)

0 10 20 30 40 50 60 70 80 90

Epochs

0

10

20

30

40

50

60

70

80

T
o

p
5

 E
rr

o
rs

(%
)

train:ResNet-18

train:LST-Net-18

val:ResNet-18

val:LST-Net-18

(b)

Fig. 1: Convergence curves of ResNet-18 and our LST-Net on ImageNet: (a)
Top-1 error rates, and (b) Top-5 error rates.



8 L. Li et al.

0 10 20 30 40 50 60 70 80 90

Epochs

10

20

30

40

50

60

70

80

90

100
T

o
p

1
 E

rr
o

rs
(%

)

train:ResNet-50

train:LST-Net-50

val:ResNet-50

val:LST-Net-50

(a)

0 10 20 30 40 50 60 70 80 90

Epochs

0

10

20

30

40

50

60

70

80

90

T
o

p
5

 E
rr

o
rs

(%
)

train:ResNet-50

train:LST-Net-50

val:ResNet-50

val:LST-Net-50

(b)

Fig. 2: Convergence curves of ResNet-50 and our LST-Net on ImageNet: (a)
Top-1 error rates, and (b) Top-5 error rates.

��� ���� � ��� ��� ���� � ���� EWPlus,

ST

���� ����� � ���� ���� ����� � ����
I OST

�
�

PWConv,

BN

�
�

���� ����� � ����

�
�

DWConv,

BN, ReLU6

(a)
��� ���� � ��� ��� ���� � ℰ � ��� ���� ����� � ����

I O
PWConv,

BN, ST

�
�

PWConv,

BN, ST

�
�

���� ����� � ℰ � ���

�
�

DWConv,

BN, ReLU6

(b)

��� ���� � ��� ��� ���� � ℰ � ��� EWPlus,

ST

���� ����� � ���� ���� ����� � ����
I O

PWConv,

BN, ST

�
�

PWConv,

BN

�
�

���� ����� � ℰ � ���

�
�

DWConv,

BN, ReLU6

(c)

Fig. 3: Illustration of LST-I bottleneck w.r.t. the Inverted Residual bottleneck
in MobileNet V2. (a): E = 1; (b): E > 1 while stride>1 or Cin 6= Cout; (c):
E > 1 while stride=1 and Cin = Cout. EWPlus means element-wise plus. PW-
Conv/DWConv in red font indicates initialization with 2D-DCT while blue font
suggests random initialization.


	LST-Net: Learning a Convolutional Neural Network with a Learnable Sparse Transform

