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In this supplementary material, we provide more details about:
1. Experimental settings;
2. The LST-Net structures w.r.t. existing CNN architectures (e.g., ResNet,
VGG, AlexNet) on different datasets;

3. Extra experimental results of LST-Net for large-scale scene recognition.

1 Experimental settings

All experiments are conducted using an 8-way NVIDIA Tesla P100 GPU server
with 2 Intel Xeon Gold 6136 CPUs and 128G RAM. CIFAR-10 and CIFAR-
100 datasets. Standard data augmentation strategies [I3] were adopted in
training, including random horizontal flip, padding of four extra pixels on each
side, random crop, etc. Each model was trained for 160 epochs. We used SGD
with a mini-batch of 128 samples for optimization. Weight decay and momentum
were set to 5 x 1074 and 0.9, respectively. Learning rate started at 0.1, and was
reduced by a factor of 10 after 32K and 48K iterations. One GPU card was used
to train LST-Nets constructed w.r.t. ResNet-20 and ResNet-56 architectures; two
GPU cards were employed for 110- and 164-layer LST-Nets; four GPU cards were
adopted to train LST-Nets built regarding to other architectures. We did not
use any SyncBN layers.

ImageNet LSVRC2012 dataset. By default, we follow the settings in [41]
to compare different methods on the validation set (no test labels are released).
SGD with a mini-batch of 256 samples was used for optimization. Weight decay
was set to 1 x 107* and momentum to 0.9. We trained each model from scratch
for 90 epochs. Learning rate started at 0.1, and was reduced by a factor of 10
for every 30 epochs. We employed four GPU cards to train LST-Net constructed
w.r.t. ResNet-18, ResNet-34, ShiftNet, AlexNet and MobileNet V2. Eight GPU
cards were all used to train other models.

* The first two authors contribute equally in this work.
** Corresponding author. This work is supported by HK RGC General Research Fund
(PolyU 152216/18E).
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ImageNet-C dataset. We used the ImageNet-C dataset to study the robust-
ness of those models trained on ImageNet. No fine-tuning was conducted for test
on ImageNet-C.
Places365-Standard dataset. We reused the same training settings on Ima-
geNet. We report the best Top-5 test accuracy achieved by ten-crop estimation
for each model.

2 Detailed structures of LST-Net

We can construct our LST-Nets w.r.t. existing CNN architectures (e.g., ResNet,
VGG and AlexNet, etc.) by replacing their main building blocks, such as con-
ventional Conv2d layers or featured bottlenecks, with our proposed LST-I or
LST-II bottleneck. For each existing CNN architecture, we closely followed its
instantiation on different datasets to construct our corresponding LST-Net.

LST-Net w.r.t. ResNet on CIFAR-10/100. Tableshows the structures
of LST-Net w.r.t. ResNet on CIFAR-10/100. We substituted each basic bottle-
neck of ResNet with a pair of LST-I or LST-II bottlenecks as there are two
Conv2d operations in each original bottleneck. To keep the same classifier (the
last FC layer), we inserted a PWConv before GAP (please refer to the third last
row of Table so that C;, of FC remains 64.

LST-Net w.r.t. ResNet on ImageNet. Table [[I| shows the architectures
of LST-Net w.r.t. ResNet on ImageNet. For shallow models, such as ResNet-18
and ResNet-34, we built up LST-Net for ImageNet in the same way as that for
CIFAR-10/100. For deep models, such as ResNet-50 and ResNet-101, we did not
introduce extra PWConv before the GAP layer. We employed LST-II bottlenecks
at each stage of conv2_x~convh_x with comparable number of parameters and
computational cost.

LST-Net w.r.t. WRN on CIFAR-10/100. Table [[TI] presents the details
of LST-Net constructed w.r.t. WRN on CIFAR-10/100. We adopted LST-II
bottlenecks for construction. Following WRN, we enlarged the core channels of
each LST-II bottleneck, i.e., Cy_oy¢, for a few times according to the pre-defined
width multiplier.

LST-Net w.r.t. WRN on ImageNet. LST-II bottlenecks are adopted to
construct LST-Net w.r.t. WRN on ImageNet. Following WRN, we enlarged the
core channels of each LST-II bottleneck, i.e., Cy_oy¢, for a few times according
to the pre-defined width multiplier. Thus, it has very similar structure to the
one built up w.r.t. ResNet on ImageNet.

LST-Net w.rt. VGG on ImageNet. Table [[V] presents the LST-Nets
constructed w.r.t. VGG on ImageNet using two distinct classifiers. As VGG has
a larger spatial size at various layers than that of the corresponding layers in
ResNet, we adopt LST-I bottleneck for VGG to save overhead. LST-Net (FC)
adopts the same classifier as the standard VGG, i.e. three FC layers. In contrast,
classifier of LST-Net (GAP) is similar to that of ResNet.

LST-Net w.r.t. AlexNet on ImageNet. Table [V] presents the LST-Net
constructed w.r.t. AlexNet on ImageNet. For the same reason as that of VGG,
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we employed LST-I bottleneck. LST-Net (FC) has the same classifier as the
original AlexNet. In contrast, LST-Net (GAP) takes the same classifier structure
as ResNet.

LST-Net w.r.t. ShiftNet on ImageNet. Table [VI] shows the LST-Net
constructed w.r.t. ShiftNet on ImageNet. We employ LST-I bottleneck for the
same reason as VGG and AlexNet. Besides, we set a = 2 for all bottlenecks.
Following ShiftNet, we set the base width to 32 for LST-Net (A) and half the
number for LST-Net (B) and LST-Net (C). We reduced a few bottlenecks at
each stage to match its original expansion rate.

LST-Net w.r.t. MobileNet V2 on ImageNet. Table[VI]|shows the struc-
ture of LST-Net built up w.r.t. MobileNet V2. To adapt LST-I bottleneck to the
Inverted Residual bottleneck, we replaced the Inverted Residual bottlenecks in
MobileNet V2 with modified LST-I bottlenecks and reused the original settings,
including kernel size, stride, expansion rate £, number of bottlenecks, etc. We
made three changes for the modified version of LST-I bottlenecks: (1) we re-
placed each ReLU in the original LST-I bottleneck by ReLU6 and the ReLU-ST
activation scheme was adapted to ReLU6-ST, where we set 7 =1 x 1078 in ST
to take care of the need for a linear transform; (2) we removed PWConv and BN
in channel-wise transform 7, when the expansion rate £ = 1; (3) we removed the
downsample operator D and element-wise plus when £ > 1 while stride>1 or
Cin # Cout- Fig. |3illustrates the LST-I bottlenecks corresponding to MobileNet
V2 bottlenecks. Batch size, initial learning rate and weight decay are set to 256,
0.05 and 5 x 1074, respectively. We adopted a cosine learning rate decay strategy
and trained our model for 150 epochs.

Finally, we present the convergence curves of LST-Net on ImageNet in terms
of Top-1 and Top-5 error rates. Figs. [[] and 2] compare the convergence curves of
ResNet-18, ResNet-50 and their corresponding LST-Nets. One can see that our
LST-Nets achieve lower error rates during the entire training process.

3 Extra experimental results of LST-Net for large-scale
scene recognition

We evaluate LST-Net for large-scale scene recognition on Places365-Standard
dataset [10]. We build up LST-Nets w.r.t. ResNet [I], AlexNet [6] and 11-layer
VGG [§] for fair comparison. We compare LST-Net with its counterpart net-
works. Table [VITI| presents Top-5 accuracies obtained using ten-crop estimation.

One can see that LST-Net surpasses its counterparts. This validates that
LST-Net is also effective for the large-scale scene recognition task. In particular,
an 18-layer LST-Net can even surpass ResNet-50 by 1.27% while saving nearly
70% of the total parameters and 64% of the total FLOPs. Meanwhile, LST-
Net under ResNet-50 architecture achieves the best performance on Places365-
Standard dataset, 0.96% higher than its closest follower, CBAM-50. Besides, by
replacing the last linear layers of AlexNet by GAP, the accuracy drops signifi-
cantly, while LST-Net(GAP) is robust in this case. AlexNet (BN) only slightly
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improves AlexNet [5], while LST-Net (FC) built up w.r.t. AlexNet, also depict-
ing BN and FC, improves much AlexNet (BN). Similarly, the accuracy drops by
nearly 1% when the last linear layers of VGG is replaced by GAP, while LST-
NET (GAP) constructed regarding to VGG is also robust in the same case. And
LST-Net (FC) built up w.r.t. VGG improves VGG (BN) by 0.24%.
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Table I: LST-Net constructed w.r.t. ResNet on CIFAR-10/100. Please refer to
Table 1 and Table 2(a) in our paper.

(a) LST-I (b) LST-II (by default)
Type/Stride  Cin  a® x C, Cout 2 5§Cpfit) 164 Type/Stride  Cin  Crout Cout 2 S(I)_{epf% 164
Conv3x3/1 3 N.A. 16 1 Conv3x3/1 3 N.A. 16 1
LST-I/1 16 64 16 5 17 35 53 LST-I/1 16 16 64 1‘
T2 1 - I 64 5 17 35 53
LST-I/1 32 5 17 35 53 LST-11/2 64 3 128 1
LST-1/2 32 956 o1 1 LST-1I/1 128 5 17 35 53
LST-I/I 64 5 17 35 53 LSz 18 . 1
GAP 64 N.A. 64 1 LST-1I/1 256 5 17 35 53
FC 64 N.A. 10/100 1 Convix1l/1 256 N.A. 64 1
GAP 64 N.A. 64 1

FC 64 N.A.  10/100 1
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Table II: LST-Net constructed w.r.t. ResNet on ImageNet and Places365-

Standard. Please refer to Table 3(a), Table 4 and Table 5(a) in our paper.

(a) 18 and 34 layers.

(b) 50 and 101 layers.

o . . Y . Repeat o . . . Repeat
Name Type/Stride Cin Croout Cout 18 34 Name Type/Stride Cin Crout Cout 50 101
convl Conv7x7/2 3 N.A. 64 1 1 convl Conv7x7/2 3 N.A. 64 1 1

MaxPool3x3/2 64 N.A. 64 1 1 MaxPool3x3/2 64 N.A. 64 1 1

conv2 x LST-I1/2 64 . 101 conv2.x LST-11/2 64 . 11

- 64 256

LST-II/1 256 O 256 LST-I1/1 256 g 0 9

) LST-I1/2 256 . . 11 . LST-11/2 256 i . 11
comv3X e 512 1% 512 com3X penr sz 1% 812 g g
. LST-11/2 512 - o1 convd LST-11/2 512 e gpe L1
conv4_x LST-II/1 1024 256 1024 11 veax LST-II/1 1024 20 77
LST-11/2 1024 11 - LST-11/2 1024, o1

convhx LSTI1 sois P12 2048 o COMEX peTr/1 048 P12 2048 40
Convixl/1 2048 N.A 512 101 GAP 2048 N.A. 2048 1 1

GAP 512 N.A 512 11 FC 2048 N.A.  365/1K 1 1

FC 512 N.A. 365/1K 1 1

Table III: LST-Net constructed w.r.t.

Table 2(b) in our paper.

WRN on CIFAR-10/100. Please refer

(a) width multiplier = 8 (b) width multiplier = 10

s . y . Repeat . y Y y R t
Type/Stride  Cin  Crout  Cout 16 ZZCPCSS 40 Type/Stride  Cin  Crout  Cout 16 2201.)038 40
Conv3x3/1 3 N.A. 16 Conv3x3/1 3 N.A. 16
LsTa/1 28 1 512 LST-T1/1 16 460 640

- 512 ° 1 2 3 5 - 640 ’ 12 3 5
LST-II/2 512 LST-II/2 640
LST-I/1 1024 P8 10, 5 LsTa/1 10 00 10, g
LST-TI/2 1024 . LST-TI/2 1280 .
LST-I/1 2048 0120 208 5,5 LST-/1 2560 010 2604, g g
Convixl/l 2048 N.A. 512 Convixl/l 2560 N.A. 640

GAP 512 NA. 512 GAP 640 N.A. 640

FC 512 N.A.  10/100 FC 640 N.A.  10/100
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Table IV: LST-Net constructed w.r.t. VGG on ImageNet and Places365-
Standard. Please refer to Table 3(c) and Table 5(b) in our paper.

(a) LST-Net (FC) (b) LST-Net (GAP)
Type/Stride Cin  a®>xCs Cout Repeat Type/Stride Cin  a®>xCs Cout Repeat
Conv3x3/1 3 N.A. 64 1 Conv3x3/1 3 N.A. 64 1
MaxPool2x2/2 64 N.A. 64 1 MaxPool2x2/2 64  N.A. 64 1
LST-1/1 64 512 128 LST-I/1 64 512 128
MaxPool2x2/2 128 N.A. 128 MaxPool2x2/2 128  N.A. 128
LST-1/1 128 5 1 LST-1/1 128 1
LST-1/1 256 ' 20 LST—I?l 256 102 256
MaxPool2x2/2 256 NA. 256 MaxPool2x2/2 256  N.A. 256
LST-1/1 256 ) . 1 LST-I/1 256 1
LST-I/1 519 2048 512 LST_I% NPT 512
Va 5 A 5
M”f;"TO_]IZ /X1 2/2 o 1;04A8 o ) MaxPool2x2/2 512 N.A. 512 1
LST-1/1 512 2048 512 2
FC 25088  N.A. 4096
PO 4096 NA. 1096 1 GAP 512 N.A. 512 1
FC 4096  N.A.  365/1K FC 512 N.A.  365/1K 1

Table V: LST-Net constructed w.r.t. AlexNet on ImageNet and Places365-
Standard. Please refer to Table 3(c) and Table 5(b) in our paper.

(a) LST-Net (FC) (b) LST-Net (GAP)
Type/Stride Cin  a®>x Oy Clout Repeat Type/Stride Cin  a? x Cs Cout Repeat
Convllx11/4 3 N.A. 64 1 Conv11x11/4 3 N.A. 64 1
MaxPool3x3/2 64 N.A. 64 1 MaxPool3x3/2 64 N.A. 64 1
LST-1/1 64 768 192 LST-1/1 64 768 192
MaxPool3x3/2 192 N.A. 192 1 MaxPool3x3/2 192 N.A. 192 1
LST-1/1 192 1536 384 LST-1/1 192 1536 384
MaxPool3x3/2 384 N.A. 384 MaxPool3x3/2 384 N.A. 384
LST-I/1 384 . 1 LST-1/1 384 1
> C 1024 256
LST-1/1 256 LSTI/1 256 02 %56
FC 9216  N.A. 4096 GAP 512  N.A. 512 1
FC 4096 N.A. 4096 1
FC 4096 N.A. 365/1K FC 512 N.A. 365/1K 1

Table VI: LST-Net constructed w.r.t. ShiftNet on ImageNet. Please refer to
Table 3(c) in our paper.

(a) LST-Net (A) (b) LST-Net (B) (c) LST-Net (C)
Type/Stride  Cin  a”*x Ci  Cow Repeat Type/Stride  Cin  a®x Cs  Cow Repeat Type/Stride  Cin @’ x Cs  Cou Repeat
Conv7x7/2 3 N.A. 32 1 Conv7x7/2 3 N.A. 16 1 Conv7x7/2 3 N.A. 16 1
LST15x5/2 ) N 1 LSTI5x5/2 § : 1 LST15x5/2 ) :
LSTI5x51 2 128 32 4 LSTI5x51 0 0% 16 4 LSTI5x51 0 04 16 !
LSTI5x5/2 32 } 1 LST15x5/2 16 . N 1 LST15x5/2 16 . N
LSTI5x5/1 64 200 6 2 LSTI5x5/1 32 28 32 2 LSTI5x5/1 32 28 32 !
LST-13x3/2 64 ) ) LST-13x3/2 32 . LST-13x3/2 32 [
LST-I3x3/1 128 012 1281 LST-13x3/1 64 20 64 ! LST-13x3/1 64 20 64 !
LST13x3/2 128 L LST-13x3/2 64 ) LST13x3/2 64 . )
LST-I3x3/1 236 1024 26 1 LST-I3x3/1 128 °2 128 1 LST-I3x3/1 128 02 1281

GAP 256 N.A. 256 1 GAP 128 N.A. 128 1 GAP 128 N.A. 128 1

FC 256 N.A. 1K 1 FC 128 N.A. 1K 1 FC 128 N.A. 1K 1
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Table VII: LST-Net constructed w.r.t. MobileNet V2 on ImageNet. Please refer
to Table 3(c) in our paper.

Type/Stride Cin  a*xCs (E) Cow Repeat
Conv3x3/1 3 N.A. 16 1
Modified LST-I/1 16 16 (1) 16 1
Modified LST-I/2 16 96 (6) 04 1
Modified LST-I/1 24 144 (6) 1
Modified LST-I/2 24 144 (6) 3 1
Modified LST-I/1 32 192 (6) 2
o 32 192 (6) 1
Modified LST-1/1 64 384 (6) 64 3
Modified LST-1/2 64 384 (6) 96 1
Modified LST-I/1 96 576 (6) 2
Modified LST-I/2 96 576 (6) 160 1
Modified LST-I/1 160 960 (6) 2
Modified LST-I/1 160 960 (6) 320 1
PWConv 320 N.A 1280 1
GAP 1280 N.A 1280 1
FC 1280 N.A. 1K 1

Table VIII: Results on Places365-Standard dataset.

(a) ResNet family.

(b) AlexNet and VGG.

Model Param/FLOPs  Top-5 Acc. (%)
ResNet-50 [T] 25.24M/4.09G 85.08
SENet-50 [2] 26.77M/4.09G 85.86
CBAM-50 26.79M/4.09G 86.22

LST-Net (ResNet-18)  7.71M/1.48G 86.35
LST-Net (ResNet-34) 13.50M/2.56G 86.94
LST-Net (ResNet-50)  23.01M/4.05G 87.18
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Model Param/FLOPs ~ Top-5 Acc. (%)
AlexNet 58.50M/0.71G 82.89
AlexNet (BN)  58.50M/0.71G 82.98
AlexNet (GAP) 2.56M/0.66G 77.89
LST-Net (FC)  57.70M/0.64G 83.99
LST-Net (GAP)  2.09M/0.62G 82.95
VGG 130.26M/7.61G 84.91
VGG (BN) 130.26M/7.61G 85.09
VGG (GAP) 9.73M/7.49G 83.95
LST-Net (FC)  127.15M/6.01G 85.33
LST-Net (GAP) 6.30M/5.89G 85.12
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Fig.1: Convergence curves of ResNet-18 and our
Top-1 error rates, and (b) Top-5 error rates.
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Fig.2: Convergence curves of ResNet-50 and our LST-Net on ImageNet: (a)
Top-1 error rates, and (b) Top-5 error rates.

Hin X Win X Cin . Hin X Win X Cour DWConv, | _Hout XWour X Cour_ | PWConv, |Hout X Wour X Couc| EWPIus, | Hout X Wout X Cou

I ST BN, ReLU6 BN ST o
TC TS Tr

Hin X Win X (€ X Cin)

DWConv,
BN, ReLU6

Hout X Wout X (€ X Cin)l - pwCony, | Hout X Wout X Cour_ o
BN, ST

T, T, T,

T Hin X Wi X Cin, PWConv, | Hin X Win X (€XCin) | DWConv, |Hout X Woue X (€ X Cin)|  pwConv, |Hout X Wour X Couc|  EWPIus, | Hout X Woue X Cout o
> BN > ST

| BN,ST ?| BN, ReLU6

T, T, T,

(c)

Fig. 3: Illustration of LST-I bottleneck w.r.t. the Inverted Residual bottleneck
in MobileNet V2. (a): &€ = 1; (b): £ > 1 while stride>1 or Cj;, # Cout; (€):
&€ > 1 while stride=1 and C;,, = C,y:. EWPlus means element-wise plus. PW-
Conv/DWConv in red font indicates initialization with 2D-DCT while blue font
suggests random initialization.
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