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Abstract. Normalization layers play an important role in deep network
training. As one of the most popular normalization techniques, batch
normalization (BN) has shown its effectiveness in accelerating the model
training speed and improving model generalization capability. The suc-
cess of BN has been explained from different views, such as reducing
internal covariate shift, allowing the use of large learning rate, smooth-
ing optimization landscape, etc. To make a deeper understanding of BN,
in this work we prove that BN actually introduces a certain level of noise
into the sample mean and variance during the training process, while
the noise level depends only on the batch size. Such a noise generation
mechanism of BN regularizes the training process, and we present an
explicit regularizer formulation of BN. Since the regularization strength
of BN is determined by the batch size, a small batch size may cause the
under-fitting problem, resulting in a less effective model. To reduce the
dependency of BN on batch size, we propose a momentum BN (MBN)
scheme by averaging the mean and variance of current mini-batch with
the historical means and variances. With a dynamic momentum param-
eter, we can automatically control the noise level in the training process.
As a result, MBN works very well even when the batch size is very small
(e.g., 2), which is hard to achieve by traditional BN.
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1 Introduction

During the past decade, deep neural networks(DNNs) have achieved remarkable
success in a variety of applications, such as image classification [14], object de-
tection [31, 13], speech recognition [1] , natural language processing [28] and
computer games [29, 36], etc. The success of DNNs comes from the advances
in higher computing power (e.g., GPUs), large scale datasets [10], and learn-
ing algorithms [20, 37, 11]. In particular, advanced network architecture [14, 15]
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and optimization techniques [20, 22] have been developed, making the training
of very deep networks from a large amount of training data possible.

One of the key issues in DNN training is how to normalize the training da-
ta and intermediate features. It is well-known that normalizing the input data
makes training faster [22]. The widely used batch normalization (BN) technique
[19] naturally extends this idea to the intermediate layers within a deep net-
work by normalizing the samples in a mini-batch during the training process. It
has been validated that BN can accelerate the training speed, enable a bigger
learning rate, and improve the model generalization accuracy [14, 15]. BN has
been adopted as a basic unit in most of the popular network architectures such
as ResNet [14] and DenseNet [15]. Though BN has achieved a great success in
DNN training, how BN works remains not very clear. Researchers have tried to
explain the underlying working mechanism of BN from different perspectives.
For example, it is argued in [19] that BN can reduce internal covariate shift
(ICS). However, it is indicated in [33] that there is no clear link between the
performance gain of BN and the reduction of ICS. Instead, it is found that BN
makes the landscape of the corresponding optimization problem smoother so
that it allows larger learning rates, while stochastic gradient decent (SGD) with
a larger learning rate could yield faster convergence along the flat direction of the
optimization landscape so that it is less likely to get stuck in sharp minima [5].

Apart from better convergence speed, another advantage of BN is its reg-
ularization capability. Because the sample mean and variance are updated on
mini-batches during training, their values are not accurate. Consequently, BN
will introduce a certain amount of noise, whose function is similar to dropout.
It will, however, increase the generalization capability of the trained model.
This phenomenon has been empirically observed from some experimental results
in [43, 44]. Teye et al. [38, 27] tried to give a theoretical explanation of the gen-
eralization gain of BN from a Bayesian perspective; however, it needs additional
assumptions and priors, and the explanation is rather complex to understand.

In this paper, we present a simple noise generation model to clearly explain
the regularization nature of BN. Our explanation only assumes that the training
samples are independent and identically distributed (i.i.d.), which holds well for
the randomly sampled mini-batches in the DNN training process. We prove that
BN actually introduces a certain level of noise into the sample mean and variance,
and the noise level only depends on the batch size. When the training batch
size is small, the noise level becomes high, increasing the training difficulty. We
consequently propose a momentum BN (MBN) scheme, which can automatically
control the noise level in the training process. MBN can work stably for different
mini-batch sizes, as validated in our experiments on benchmark datasets.

2 Related Work

Batch Normalization: BN [19] was introduced to address the internal covari-
ate shift (ICS) problem by performing normalization along the batch dimension.
For a layer with d-dimensional input x = (x(1), x(2), ..., x(d)) in a mini-batch XB
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with size m, BN normalizes each dimension of the input samples as:

x̂(k) =
x(k) − µkB√
σkB

2
+ ε

(1)

where µkB = 1
m

∑m
i=1 x

(k)
i , σkB = 1

m

∑N
i=1(x

(k)
i − µkB)2, and ε is a small posi-

tive constant. And for inference step, the mean and variance of mini-batch are
replaced with that of population, often estimated by moving average.

BN has achieved remarkable performance in terms of improving training
speed and model generalization ability for many applications [14, 45]. In the
case of small batch size, unfortunately, the sample mean and variance can be
very different from those of the population. Consequently, BN may not perform
well with a small batch size. To address this problem, batch renormalization
(BReN) [18] was proposed by constraining the range of estimated mean and
variance of a batch. However, it is very hard to tune the hyper-parameters in
BReN, which limits its application to different tasks.

Other Normalization Methods: Besides BN, other normalization meth-
ods [23, 32, 39, 43, 3, 30] have been proposed to normalize data along other di-
mensions. For example, layer normalization (LN) [23] normalizes all activations
or feature maps along feature dimension, instance normalization (IN) [39] per-
forms normalization for each feature map of each sample and group normal-
ization (GN) [43] normalizes feature maps for each input sample in a divided
group. Although these methods depend less on training batch size, BN still out-
performs them in many visual recognition tasks. Switchable normalization [26,
34, 25] uses a weighted combination of BN, LN and IN, which introduces more
parameters and costs more computation. There are also some variants of BN,
such as Batch Kalman Norm (BKN) [41], L1 BN [42], Decorrelated BN (DBN)
[16], Riemannian BN [8], Iterative BN [17], Memorized BN [12] etc. Instead of
operating on features, Weight Normalization (WN) [32] normalizes the filter
weights. WN can also accelerate training but cannot outperform BN.

3 The Regularization Nature of BN

3.1 Noise Generation of BN

Several previous works [43, 44] have indicated that the BN layer can enhance
the generalization capability of DNNs experimentally; however, little work has
been done on the theoretical analysis about why BN has this capability. The
only work we can find is [38], where Teye et al. tried to give a theoretical
illustration for the generalization gain of BN from a Bayesian perspective with
some additional priors. In the work [27], Luo et al. presented a regularization
term based on the result of [38]. Shekhovtsov et al. [35] gave an interpretation
of BN from the perspective of noise generation. However, it is assumed that
the input activations follows strictly i.i.d. Gaussian distribution and there is
no further theoretical analysis on how the noise affects the training process. In
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Fig. 1. The mean and variance of mini-batches vs. iterations. The mean (green points)
and variance (blue points) are from one channel of the first BN layer of ResNet18
in the last epoch when training with batch size 16 on CIFAR100. The histograms of
batch mean and variance are plotted on the right, which can be well fitted by Gaussian
distribution and Chi-square distribution, respectively.

this section, we theoretically shows that BN can be modeled as process of noise
generation.

Let’s first assume that one activation input in a layer follows the Gaussian
distribution N (x|µ, σ2), where µ and σ2 can be simply estimated by population
mean µP and variance σP of training data. This assumption can be extended
to more general cases other than Gaussian distribution, as we will explain later.
In stochastic optimization [7, 6], randomly choosing a mini-batch of training
samples can be considered as a sample drawing process, where all samples xi in
a mini-batch Xb = {xi}mi=1 are i.i.d., and follows N (x|µ, σ2). For the mini-batch
Xb with mean µB = 1

m

∑m
i=1 xi and variance σ2

B = 1
m

∑m
i=1(xi − µB)2, we can

define two random variables ξµ and ξσ as follows [9]:

ξµ =
µ− µB
σ

∼ N (0,
1

m
), ξσ =

σ2
B

σ2
∼ 1

m
χ2(m− 1) (2)

where χ2 denotes the Chi-squared distribution and ξσ follows a Scaled-Chi-

squared distribution with E(ξσ) = m−1
m and V ar(ξσ) = 2(m−1)

m2 .
In Fig. 1 we plot the means and variances of mini-batches computed at the

first BN layer of ResNet18 in the last training epoch when training with batch
size 16 on CIFAR100 dataset. One can see that these means and variances are
distributed like biased random noise. Specifically, the histogram of mean values
can be well modeled as a Gaussian distribution, while the histogram of variances
can be well modeled as a scaled Chi-Square distribution. By neglecting the small
constant ε in Eq.(1), the BN in training process can be rewritten as

x̂ =
x− µB
σB

=
x− µ+ (µ− µB)

σ σBσ
=

x−µ
σ + ξµ√
ξσ

=
x̃+ ξµ√

ξσ
(3)

where x̃ = x−µ
σ is the population normalized formula.
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From Eq.(3), we can see that BN actually first adds Gaussian noise ξµ
(additive noise) to the sample after population normalization, and then mul-
tiplies with a Scaled-Inverse-Chi noise 1√

ξσ
(multiplicative noise). That is,

training with BN is actually introducing a mixture of additive and multiplica-
tive noise. With the introduced additive noise ξµ and multiplicative noise ξσ,
the output variable x̂ follows Nt(x̃,m− 1), which is a noncentral t-distribution
[24], and its probability density function is very complex. Fortunately, we can
still get the mean and variance of x̂ as follows:

E[x̂] = x̃

√
m− 1

2

Γ ((m− 2)/2)

Γ ((m− 1)/2)
, V ar[x̂] =

1

m
(
m− 1

m− 3
(1 + x̃2)− E[x̂]2) (4)

When m is very large, E[x̂] ≈ x̃ and V ar[x̂] ≈ 0. However, when m is small, the
noise generated by BN depends on not only the statistics of entire training data
X (e.g., mean µ and variance σ2) but also the batch size m.

With the above analyses, we can partition BN into three parts: a normalizer

part (i.e., x̃ = x−µ
σ ); a noise generator part (i.e., x̂ =

x̃+ξµ√
ξσ

) ; and an affine

transformation part (i.e., y = γx̂ + β). In the training stage, only the noise
generator part is related to batch size m. In the inference stage, the batch mean
and variance are replaced with population mean and variance, and thus BN
only has the normalizer part and the affine transformation part. It should be
emphasized that µ and σ are unknown in training, and they also vary during
the training process. At the end of training and when statistics for activations
of all samples are stable, they can be viewed as fixed.

Now we have shown that the BN process actually introduces noises ξµ and
ξσ into the BN layer in the training process. When the batch size is small, the
variances of both additive noise ξµ and multiplicative noise ξσ become relatively
large, making the training process less stable. In our above derivation, it is
assumed that the activation input follows the Gaussian distribution. However,
in practical applications the activations may not follow exactly the Gaussian
distribution. Fortunately, we have the following theorem.

Theorem 1: Suppose samples xi for i = 1, 2, ...,m are i.i.d. with E[x] = µ
and V ar[x] = σ2, ξµ and ξσ are defined in Eq.(2), we have:

lim
m→∞

p(ξµ)→ N (0,
1

m
), lim

m→∞
p(ξσ)→ 1

m
χ2(m− 1).

Theorem 1 can be easily proved by the central limit theorem. Please refer
to the Supplementary Materials for the detailed proof. In particular, when
m is larger than 5, ξµ and ξσ nearly meet the distribution assumptions. As for
the i.i.d. assumption on the activations of samples in a mini-batch, it generally
holds because the samples are randomly drawn from the pool in training.

3.2 Explicit regularization formulation

It has been verified in previous works [43, 44] that introducing a certain amount
of noise into training data can increase the generalization capability of the neural
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network. However, there lacks a solid theoretical analysis on how this noise
injection operation works. In this section, we aim to give a clear formulation.

Additive Noise: We first take additive noise ξµ into consideration. Let
l(t, f(x)) (abbreviate as l(x) in the following development) denote the loss w.r.t.
one activation input x, where t is the target, f(·) represents the network and l(·)
is the loss function. When additive noise ξµ is added to the activation, the loss
becomes l(x+ ξµ). By Taylor expansion [4], we have

Eξµ [l(x+ ξµ)] = l(x) +Radd(x), Radd(x) =

∞∑
n=1

E[ξnµ ]

n!

dnl(x)

dxn
. (5)

where E(·) is the expectation and Radd is the additive noise residual term, which
is related to the n-th order derivative of loss function w.r.t. activation input and
the n-th order moment of noise distribution.

According to [2], by considering only the major term in Radd, it can be

shown that Radd(x) ≈ E[ξ2µ]

2

∣∣∣∂f(x)∂x

∣∣∣2 for mean square-error loss; and Radd(x) ≈
E[ξ2µ]

2
f(x)2−2tf(x)+t
f(x)2(1−f(x))2

∣∣∣∂f(x)∂x

∣∣∣2 for cross-entropy loss. This indicates that Radd regu-

larizes the smoothness of the network function, while the strength of smoothness
is mainly controlled by the second order moment of the distribution of noise ξµ
(i.e., 1

m ), which is only related to training batch size m. In Fig. 2, we illustrate
the influence of additive noise on learning a classification hyperplane with differ-
ent noise levels. The yellow points and blue points represent samples from two
classes, and the Gaussian noise is added to the samples for data augmentation.
By increasing the noise level σ to a proper level (e.g., σ = 0.5), the learned
classification hyperplane becomes smoother and thus has better generalization
capability. However, a too big noise level (e.g., σ = 1) will over-smooth the
classification boundary and decrease the discrimination ability.

Multiplicative Noise: For multiplicative noise ξσ, we can use a simple
logarithmic transformation l( x√

ξσ
) = l(elog |x|−

1
2 log ξσsign(x)) to transform it into

the form of additive noise. Then according to our analyses of additive noise:

Eξσ [l(
x√
ξσ

)] = l(x) +Rmul(x), Rmul(x) =
∞∑
n=1

d∑
k=1

I(x 6= 0)
E[logn ξσ]

(−2)nn!

dnl(x)

(d log |x|)n
.

(6)
where I(x 6= 0) is an indicator function and Rmul(x) is the residual term of Tay-
lor expansion for multiplicative noise. Similar to the residual term of addictive
noise Radd(x), the major term of Rmul(x) can also be viewed as a regularizer to∣∣∣ ∂f(x)∂ log |x|

∣∣∣2 , which controls the smoothness of network on log-scale, and E[log2 ξσ]

is related to the strength of the regularizer.
Compound Noise: In Section 3.1 we have shown that BN will introduce

both addictive noise and multiplicative noise into the normalized activation in-

put, i.e., x̂ =
x̃+ξµ√
ξσ

. In the following theorem, we present the joint residual

formulation for the compound of addictive noise and multiplicative noise.
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Fig. 2. The influence of noise injection on classification hyperplane (shown as red
curve) learning with different noise levels. The yellow points and blue points represent
samples from two classes, and the Gaussian noise with variance σ2 is added to the
samples for data augmentation. We can see that by increasing the noise level σ to a
proper level (e.g., σ = 0.5), the learned classification hyperplane becomes smoother and
thus has better generalization capability. However, a too big noise level (e.g., σ = 1)
will over-smooth the classification boundary and decrease the discrimination ability.

Theorem 2: If the infinite derivative of l(x) exists for any x, given two

random variables ξµ and ξσ (> 0), then we have the Taylor expansion for l(
x+ξµ√
ξσ

):

Eξµ,ξσ [l(
x+ ξµ√

ξσ
)] = l(x) +Radd(x) +Rmul(x) +R(x), R(x) =

∞∑
n=1

E[ξµ
n]

n!

dnRmul(x)

dxn

(7)
where Radd(x) and Rmul(x) are defined in Eq.(5) and (6), respectively.

The proof of Theorem 2 can be found in the Supplementary Material.
From Theorem 2, we can see the Taylor expansion residual can be divided into
three parts: a residual term Radd(x) for addictive noise , a residual term Rmul(x)
for multiplicative noise and a cross residual term R(x). When the noise level is
small, R(x) can be ignored. Particularly, the distributions of ξµ and ξσ are give
in Eq.(2) so that the regularizer strength parameters E[ξ2µ] and E[log2 ξσ] can be
easily calculated, which are only determined by training batch size m. The noise
is injected into the normalized data x̃ = x−µ

σ . If the introduced noise by BN is
strong (e.g., when batch size is small), the training forward propagation through
the DNN may accumulate and amplify noise, which leads to undesirable model
performance. Therefore, it is crucial to choose a suitable batch size for training to
make BN keep a proper noise level and ensure a favorable regularization function.
However, in some situations of limited memory and computing resources, we can
only use a small batch size for training. It is hence important to find an approach
to control the noise level of BN with small batch size, which will be investigated
in the next section.

4 Momentum Batch Normalization

As proved in Section 3, the batch size m directly controls the strength of the
regularizer in BN so that BN is sensitive to batch size. In most previous litera-
ture [43, 18], the batch size m is set around 64 by experience. However, in some
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applications the batch size may not be set big enough due to the limited memory
and large size of input. How to stably train a network with small batch size in
BN remains an open problem. Owe to our theoretical analyses in Section 3, we
propose a simple solution to alleviate this problem by introducing a parameter
to control the strength of regularizer in BN. Specifically, we replace the batch
means and variances in BN by their momentum or moving average:

µ
(n)
M = λµ

(n−1)
M + (1− λ)µB , (σ

(n)
M )

2
= λ(σ

(n−1)
M )

2
+ (1− λ)σ2

B , (8)

where λ is the momentum parameter to controls the regularizer strength, and n
refers to the number of batches (or iterations). We name our new BN method
as Momentum Batch Normalization (MBN), which can make the noise level
generated by using a small batch size almost the same as that by using a large
batch size when the training stage ends.

4.1 Noise Estimation

At the end of the training process, all statistics of variables tend to be converged.
According to Eq. (8), it can be derived that

µ
(n)
M = (1− λ)

n∑
i=1

λn−iµB , (σ
(n)
M )

2
= (1− λ)

n∑
i=1

λn−iσ2
B (9)

When n is very large, let µM and σM denote the final momentum mean and
variance, we can derive that

ξµ =
µ− µM

σ
∼ N (0,

1− λ
m

) (10)

ξσ =
σ2
M

σ2 follows Generalized-Chi-Squared distribution, whose expectation is

E[ξσ] = m−1
m and variance is V ar[ξσ] = 1−λ

1+λ
2(m−1)
m2 .

We can see that the variances of ξµ and ξσ approach to zero when λ is close
to 1, MBN degenerates into standard BN when λ is zero. This implies that the
noise level can be controlled by momentum parameter λ. A larger value λ will
weaken the regularization function of MBN, and vice versa. Even when the batch
size m is very small, we are still able to reduce the noise level through adjusting
λ. This is an important advantage of MBN over conventional BN. For instance,
if we want to make MBN with batch size 4 have similar noise level with batch
size 16, the momentum parameter λ can be set as 3/4 to make their variances

of ξµ similar, (
1− 3

4

4 = 1
16 ), and the multiplicative noise ξσ will also be reduced.

4.2 Momentum Parameter Setting

Dynamic Momentum Parameter for Training: Since the momentum pa-
rameter λ controls the final noise level, we need to set a proper momentum
parameter to endow the network a certain generalization ability. Please note
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Algorithm 1 [MBN] Momentum Batch Normalization

Input: Values of x over a training
mini-batch Xb; parameters γ, β; cur-
rent training moving mean µ and
variance σ2; current inference mov-
ing mean µinf and variance σ2

inf ;
momentum parameters λ for train-
ing and τ for inference.

Output: {yi = MBN(xi)}; updated µ
and σ2;

updated µinf and σ2
inf

Training step:
µB = 1

m

∑m
i=1 xi

σ2
B = 1

m

∑m
i=1 (xi − µb)2

µ← λµ+ (1− λ)µB
σ2 ← λσ2 + (1− λ)σ2

B

x̂i = xi−µ√
σ2+ε

yi = γx̂i + β
µinf ← τµinf + (1− τ)µB
σ2
inf ← τσ2

inf + (1− τ)σ2
B

Inference step: yi = γ
xi−µinf√
σ2
inf+ε

+ β

that our noise analysis in Section 4.1 holds only when network statistics are sta-
ble at the end of training. In the beginning of training, we cannot directly use
the moving average of batch mean and variance, because the population mean
and variance also change significantly. Therefore, we hope that in the beginning
of training the normalization is close to BN, while at the end of it tends to be
MBN. To this end, we propose a dynamic momentum parameter as follows:

λ(t) = ρ
T
T−1 max(T−t,0) − ρT , ρ = min(

m

m0
, 1)

1
T (11)

where t refers to the t-th iteration epoch, T is the number of the total epochs,
m is the actual batch size and m0 is a large enough batch size (e.g., 64).

We use the same momentum parameter within one epoch. λ(t) starts from
zero. When m

m0
is small, λ(t) tends to be a number close to 1 at the end of the

training. If m is equal to or larger than m0, λ(t) is always equal to zero, and
then MBN degenerates into BN. The dynamic setting of momentum parameter
ensures that at the beginning of training process, the normalization is similar to
standard BN, while at the end of the training the normalization approaches to
MBN with a noise level similar to that of BN with batch size m0.
Momentum Parameter for Inference: For inference step, we also need to set
a momentum parameter. For the clarity of description, here we use τ to denote
this momentum parameter to differentiate it from the momentum parameter λ
in the training stage. One can straightforwardly set τ as a constant, e.g. τ = 0.9,
which is independent of batch size. However, this setting is not very reasonable
because it cannot reflect the final noise level when training is ended, which is
related to batch size m. Therefore, we should set τ to be adaptive to batch size
m. Denote by τ0 the desired momentum value for an ideal batch size m0, to
make the inference momentum have the same influence on the last sample, we
take τ

N
m as a reference to determine the value of τ for batch size m as follows:

τ
N
m = τ

N
m0
0 ⇒ τ = τ

m
m0
0

(12)
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where N is the number of samples, m0 is an ideal batch size and τ0 is its cor-
responding momentum parameter. In most of our experiments, we set m0 = 64
and τ0 = 0.9 for the inference step. One can see that when the training batch
size m is small, a larger inference momentum parameter τ will be used, and
consequently the noise in momentum mean and variance will be suppressed.

4.3 Algorithm

The back-propagation (BP) process of MBN is similar to that of traditional BN.
During training, the gradients of loss w.r.t. to activations and model parameters
are calculated and back-propagated. The formulas of BP are listed as follows:

∂L

∂x̂i
=
∂L

∂ŷi
γ,

∂L

∂γ
=

m∑
i=1

∂L

∂ŷi
x̂i,

∂L

∂β
=

m∑
i=1

∂L

∂ŷi

∂L

∂σB2
=

m∑
i=1

∂L

∂x̂i
(x̂i − µM )

−1

2
(σM

2 + ε)
− 3

2 (1− λ)

∂L

∂µB
= (

m∑
i=1

∂L

∂x̂i

λ− 1√
σM 2 + ε

) +
∂L

∂σB2

∑m
i=1−2(xi − µB)

m

∂L

∂xi
=
∂L

∂x̂i

1√
σM 2 + ε

+
∂L

∂σB2

2(xi − µB)

m
+
∂L

µB

1

m

(13)

Since the current moving averages of µM and σM
2 are related to the mean µB

and variance σB
2 of the current mini-batch, they also contribute to the gradient,

while the previous µM and σM
2 can be viewed as two constants for the current

mini-batch. The training and inference of MBN are summarized in Algorithm 1.

5 Experimental Results

5.1 Datasets and Experimental Setting

To evaluate MBN, we apply it to image classification tasks and conduct experi-
ments on CIFAR10, CIFAR100 [21] and Mini-ImageNet100 datasets [40].
Datasets. CIFAR10 consists of 50k training images from 10 classes, while CI-
FAR100 consists of 50k training and 10k testing images from 100 classes. The
resolution of sample images in CIFAR10/100 is 32 × 32. Mini-ImageNet is a
subset of the well-known ImageNet dataset. It consists of 100 classes with 600
images each class, and the image resolution is 84× 84. We use the first 500 im-
ages from each class as training data, and the rest 100 images for testing, i.e.,
50k images for training and 10k images for testing.
Experimental setting. We use SGD with momentum 0.9 and weight decay
0.0001, employ standard data augmentation and preprocessing techniques, and
nd decrease the learning rate when learning plateaus occur. The model is trained
for 200 epochs and 100 epochs for CIFAR and Mini-ImageNet-100, respectively.
We start with a learning rate of 0.1 ∗ m

64 both for CIFAR10 and CIFAR100
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(a) Recognition rates of MB-
N with different m0 on CI-
FAR100 by using different DNNs,
including ResNet18, ResNet34,
ResNet50, VGG11 and VGG16.

(b) Testing accuracy curves on CI-
FAR100 of BN and MBN with differ-
ent τ for inference and training batch
size 2 per GPU.

Fig. 3. Parameters tuning of MBN.

and 0.1 ∗ m
128 for Mini-ImageNet-100, and divide it by 10 for every 60 epochs

and 30 epochs, respectively. We mainly employ ResNet [14] as our backbone
network, and use similar experimental settings to the original ResNet paper. All
the experiments are conducted on Pytorch1.0 framework.

5.2 Parameters setting

There are two hyper-parameters in our proposed MBN, m0 and τ0, which are
used to determine the momentum parameters λ and τ for training and inference.

The setting for m0: We first fix τ0 (e.g., 0.9) to find a proper m0. We adopt
ResNet18 as the backbone and train it with batch size 8 and 16 on 4 GPUs, i.e.,
batch size 2 and 4 per GPU, to test the classification accuracy with different
m0. Particularly, we let m0 be 4, 8, 16, 32, 64, 128 in MBN. Fig. 3(a) shows the
accuracy curves on CIFAR100. We can see that if m0 is too small (e.g., 4), MBN
will be close to BN, and the performance is not very good. The accuracies of
MBN are very close for m0 from 16 to 128, which shows that MBN is not very
sensitive to parameter m0. Considering that if m0 is too large (e.g., 128), the
momentum parameter λ may change too quickly so that the training may not
converge, we set it to 32 in all the experiments.

The setting for τ0: We then fix m0 as 32 and find a proper τ0 based on Eq.(12).
Fig. 3(b) shows the testing accuracy curves for for MBN with different values of
τ . τ = 0.9 is the original BN setting, and τ = 0.99 is our setting based on Eq.(12)
with τ0 = 0.85. We can see that when τ is small the testing accuracy curves of
both BN and MBN have big fluctuations; while τ is large, the accuracy curves
become more stable and the final accuracies can be improved. We set τ0 = 0.85
in the following experiments.
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Fig. 4. Testing accuracy on CIFAR10 and CIFAR100 of ResNet18 with training batch
size (BS) 8, 4, and 2 per GPU.

Fig. 5. Comparison of accuracy curves for different normalization methods with a batch
size of 2 per GPU. We show the test accuracies vs. the epoches on CIFAR10 (left) and
CIFAR100 (right). The ResNet18 is used.

5.3 Results on CIFAR10/100

We first conduct experiments on the CIFAR10 and CIFAR100 datasets [21].
We first use ResNet18 as the backbone network to evaluate MBN with different
batch sizes, and then test the performance of MBN with more networks.
Training with Different Batch Size: To testify whether MBN is more robust
than BN with small batch size, we train Resnet18 on CIFAR10 and CIFAR100
by setting the batch size m as 8, 4, 2 per GPU, respectively. We also compare
the behaviors of other normalization methods, including IN [39], LN [23] and
GN [43], by replacing the BN layer with them. For GN, we use 32 groups as set
in [43]. And we set T = 180 in Eq.(11) for MBN.

Fig. 4 shows the results for different normalization methods. We can see that
on both CIFAR10 and CIFAR100, when the batch size is relatively large (e.g.,
8), the accuracy of MBN is similar to BN. This is in accordance to our theoretical
analysis in Sections 3 and 4. However, when training batch size becomes small
(e.g., 2), the accuracy of BN drops largely, while the accuracy of MBN decreases
slightly. This shows that MBN is more robust than BN for training with small
batch size. Meanwhile, MBN works much better than IN, LN and GN.

Fig. 5 shows the training and testing accuracy curves vs. epoch of ResNet18
with batch size 2. We can see that at the last stage of training when all statistics
become stable, MBN can still achieve certain performance gain. This is because
with MBN the momentum mean and variance approach to the population mean
and variance, and hence the noise becomes small. Consequently, MBN can still
keep improving though other methods are saturated.
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(a) Testing accuracy curves on CI-
FAR100 for different network architec-
tures with training batch size 2 (top)
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(b) Testing accuracy on CIFAR100 for differ-
ent network architectures with training batch
size 2 per GPU.

Fig. 6. Training with different DNN models with BN and MBN on CIFAR100.

On More Network Architectures: We further test MBN with different net-
work architectures, including ResNet34, ResNet50, VGG11 and VGG16, by using
batch size 2 per GPU on CIFAR100. Fig. 6(a) shows the training and testing
accuracy curves vs. epochs, and Fig. 6(b) shows the final testing accuracies. We
can have the following observations. First, on all the four networks, MBN always
outperforms BN. Second, under such a small batch size, the accuracy of deeper
network ResNet50 can be lower than its shallower counterpart ResNet34. That
is because the deeper networks have more BN layers, and each BN layer would
introduce relatively large noise when batch size is small. The noise is accumu-
lated so that the benefit of more layers can be diluted by the accumulated noise.
However, with MBN the performance drop from ResNet50 to ResNet34 is very
minor, where the drop by BN is significant. This again validates that MBN can
suppress the noise effectively in training.

5.4 Results on Mini-ImageNet-100

On Small Batch Size: On Mini-imageNet, we use ResNet50 as our backbone
network. The input size is the same as image size 84×84. The settings for MBN
are the same as Section 5.3. Fig. 7(a) compares the testing accuracies of IN, LN,
GN, BN and MBN with batch sizes 16, 8, 4 and 2 per GPU. Fig. 7(b) shows their
testing accuracy curves with training batch size 2 per GPU. We can see that BN
and MBN achieve better results than other normalization methods when batch
size is larger than 2, while other normalization methods, such as IN, LN and GN,
usually work not very well on Mini-imageNet. But the performance of BN drops
significantly when batch size is 2, even worse that IN, while MBN still works
well when batch size is 2. This clearly demonstrates the effectiveness of MBN.
Furthermore, we also compare MBN with BN on full ImageNet using ResNet50
with 64 GPUs and 4 batch size per GPU. It is found that find MBN outperforms
BN by 2.5% in accuracy on the validation set.
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Fig. 7. Comparison of different normalization methods on Mini-ImageNet.

Comparison with BreN: BreN [18] was also proposed to make BN work for
training with small batch size. It adopts a heuristic clipping strategy to control
the influence of current moving average on the normalizer. Though BreN and
our proposed MBN have similar goals, they are very different in theoretical
development and methodology design. First, the dynamic momentum setting
in MBN makes it easy to analyze the noise level in the final training stage,
while in BreN it is hard to know the noise level with the heuristic clipping
strategy. Second, the hyper-parameters m0 and τ0 are very easy to be tuned and
fixed in MBN (we fixed them in all our experiments on all datasets), while the
hyper-parameters (clipping bounds) in BreN are very difficult to set. Although
a strategy to set the clipping bound was given in [18], we found that this setting
usually leads unsatisfactory performance when the dataset or training batch size
changes. We have tried various parameter settings for BreN on Mini-ImageNet
when training batch size is 2, but found that in most cases the results are even
worse. So we report the best result of BreN on Mini-ImageNet with rmax = 1.5
and dmax = 0.5, which is 55.47%, lower than the performance of MBN (56.50%)

6 Conclusion

Batch normalization (BN) is a milestone technique in deep learning and it large-
ly improves the effectiveness and efficiency in optimizing various deep networks.
However, the working mechanism of BN is not fully revealed yet, while the per-
formance of BN drops much when the training batch size is small because of the
inaccurate batch statistics estimation. In this work, we first revealed that the
generalization capability of BN comes from its noise generation mechanism in
training, and then presented the explicit regularization formulation of BN. We
consequently presented an improved version of BN, namely momentum batch
normalization (MBN), which uses the moving average of sample mean and vari-
ance in a mini-batch for training. By adjusting a dynamic momentum parameter,
the noise level in the estimated mean and variance can be well controlled in MBN.
The experimental results demonstrated that MBN can work stably for differen-
t batch sizes. In particular, it works much better than BN and other popular
normalization methods when the batch size is small.
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