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1. Summary
The Supplementary Material will include:
1) The analysis of the corresponding anchor generation

methods in Section 2. One is the estimation with a two-
layer Multi-layer Perceptron (MLP) based on the attention
mechanism. The other one set the {αi,l} to be a constant
value and make anchorcorr,l be the centroid.

2) Report the performance on CALFW [9], CPLFW [8],
SLLFW [1], and YTF [6] datasets in Section 3. Besides, the
TopK accuracy and TAR under varying FAR on IJB-A [3],
IJB-B [5], IJB-C [4] datasets are reported on this section.

3) Table 4 in the submitted paper did not report the per-
formance on MegaFace [2] because of the paper width lim-
itation. We report it in Section 4 of this material.

2. Analysis of the Corresponding Anchor Gen-
eration methods

We propose the corresponding anchor estimated by a
weighted average function, as Equation 2 in the submitted
paper shows. We copy the equation in the following:

anchorcorr,l =

∑K
i=1 αi,lfi,l∑K

i αi,l

(1)

fi,l is the feature of i-th image which belongs to the
group l. Because we hypothesize there is no anchor con-
flict in this section, the {fi,l}(i = 1, 2, ...,K) belongs to a
single identity. αi,l is the attention estimation to weight the
fi,l. {αi,l} can be estimated by the attention mechanism or
set to be a constant value. If {αi,l}(i = 1, 2, ..., k) equal to
a constant value, the anchorcorr,l is the centroid of {fi,l}.

In this section, we analyze two methods of the {αi,l}
generation: 1) Constant value. 2) Prediction of an atten-
tion module. We build the attention module as a two-layer
Multi-layer Perceptron (MLP). The structure of MLP is in-
spired by the MetaCleaner [7] and illustrated in Figure 1.
The comparison of their performance is shown in Table 1.
Besides, we sample 10,000 images from the training dataset
randomly to get the histograms of {αi,l}. The histograms
are shown in the Figure 2.

Figure 1. Weight Estimation Function based on Attention mech-
anism (MetaCleaner). K is the number of sampling images per
identity in a mini-batch.

Figure 2. Histogram of {αi,l}

Table 1 shows that the performance of two correspond-
ing anchor generation methods is comparable in all three
backbones. The histograms in Figure 2 proves that the
{αi,l} estimated by an attention module tend to be a con-
stant value (0.5). Based on the discovery, we use the cen-
troid directly in our submitted paper. One of the advantages
of using the centroid is that the centroid calculation is flexi-
ble because it does not require a fixed K.

3. Performance on Several Evaluation Dataset

In this section, we report:
1) The performance on CALFW [9], CPLFW [8],

SLLFW [1], and YTF [6] datasets in Table 2
2) The TopK accuracy and TAR under varying FAR on
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Network Strategy LFW CFP-FF CFP-FP IJB-A IJB-B IJB-C MegaFace

CASIA-Net
Average (Centroid) 98.75±0.27 99.07±0.30 93.04±1.84 91.77 90.78 92.21 81.44

Weighted Average (Attention Mechanism) 98.77±0.75 99.26±0.39 93.19±1.63 92.37 91.82 91.82 82.72

ResNet-50
Average (Centroid) 99.32±0.27 99.73±0.33 95.77±1.11 92.83 93.21 94.53 93.18

Weighted Average (Attention Mechanism) 98.33±0.60 99.74±0.29 95.66±1.15 92.79 93.46 94.77 93.47

ResNet-101
Average (Centroid) 99.38±0.38 99.61±0.31 95.55±1.42 93.69 94.05 95.30 94.04

Weighted Average (Attention Mechanism) 98.70±0.95 99.66±0.30 95.91±1.22 93.11 93.85 95.19 93.45

Table 1. Performance Comparison of Corresponding Anchor Generation Methods.

IJB-A, IJB-B, IJB-C datasets in Table 3, Table 4, and Ta-
ble 5

We can get all the conclusions that are derived in the
submitted paper, again: 1) Our Virtual FC surpasses the
lower boundary and all other candidate solutions consis-
tently and significantly. It also achieves comparable per-
formance to the upper boundary with 1% computational re-
source of the FC layer. 2) The superiority of our Virtual
FC is more significant in complex neural network struc-
ture (e.g., ResNet50 and ResNet101) than in a simple one
(CASIA-Net).

Furthermore, we find the superiority of our Virtual FC is
more significant in the tough evaluation datasets/protocols
(e.g., CALFW, CPLFW, SLLFW) than the simple ones
(e.g., YTF).

Evalutation Dataset

CALFW CPLFW SLLFW YTF

CASIA-Net

lower boundary 86.77 73.60 92.97 93.34

upper boundary 90.78 77.9 96.57 94.02

N-pair 88.50 74.48 94.00 92.84

Multi-similarity 88.08 74.25 94.02 93.00

TCP 88.9 0 76.32 94.47 93.50

ours:VFC 89.35 76.78 94.48 93.92

ResNet-50

lower boundary 87.43 75.45 93.52 93.78

upper boundary 94.46 85.03 98.72 95.88

N-pair 87.32 72.80 92.28 92.62

Multi-similarity 85.4 0 73.60 91.03 92.76

TCP 88.05 76.00 93.23 93.92

ours:VFC 91.93 79.00 96.23 95.08

ResNet-101

lower boundary 88.78 76.72 94.00 93.86

upper boundary 94.88 86.23 98.97 96.16

N-pair 85.27 74.22 90.97 93.02

Multi-similarity 85.52 73.07 90.33 92.66

TCP 91.45 78.33 95.55 95.14

ours:VFC 92.27 79.03 96.67 95.32
Table 2. Performance On CALFW, CPLFW, SLLFW, YTF

4. performance of MegaFace on submitted Ta-
ble 4

IJB-A 10−1 10−2 10−3 10−4

CASIA-Net

lower boundary 96.82 89.90 77.61 67.61

upper boundary 98.04 93.89 83.71 66.17

N-pair 95.47 85.65 54.54 17.04

Multi-similarity 96.33 85.53 47.18 13.50

TCP 97.35 89.75 72.22 46.35

ours:VFC 97.69 91.77 79.41 61.65

ResNet-50

lower boundary 97.11 90.59 78.13 61.53

upper boundary 98.89 97.33 94.57 90.65

N-pair 95.95 85.32 70.30 55.03

Multi-similarity 96.36 83.49 62.81 47.3

TCP 96.97 85.53 62.71 37.43

ours:VFC 97.84 92.83 78.72 64.43

ResNet-101

lower boundary 97.24 90.33 78.38 64.05

upper boundary 99.00 97.81 95.95 93.29

N-pair 96.72 83.55 62.32 48.06

Multi-similarity 95.92 82.02 57.53 36.84

TCP 97.77 89.23 66.23 40.76

ours:VFC 98.35 93.69 84.33 73.37
Table 3. Performance On IJB-A

IJB-B
1 vs 1 1 vs N

10−1 10−2 10−3 10−4 top 1 top 5 top 10

CASIA-Net

lower boundary 96.61 88.40 76.98 55.41 82.3 88.7 90.86

upper boundary 98.21 93.54 84.25 59.95 85.16 90.45 92.50

N-pair 97.00 87.25 62.48 15.02 76.71 81.84 83.69

Multi-similarity 96.95 85.21 55.14 9.33 74.19 80.19 82.96

TCP 97.41 90.32 76.67 42.5 82.85 88.32 90.41

ours:VFC 97.68 90.78 78.47 56.55 83.80 89.88 91.77

ResNet-50

lower boundary 97.43 91.26 80.75 59.17 83.91 90.40 92.32

upper boundary 98.78 96.71 92.16 82.41 90.49 94.04 95.32

N-pair 97.24 88.46 73.93 55.46 78.01 85.57 88.20

Multi-similarity 97.47 88.30 72.32 52.94 75.65 84.53 87.75

TCP 97.95 90.35 68.17 36.71 82.55 89.51 91.83

ours:VFC 98.29 93.21 80.92 64.78 86.79 91.95 93.95

ResNet-101

lower boundary 97.32 91.19 80.7 65.56 85.51 91.26 92.97

upper boundary 98.82 97.01 93.22 83.74 91.91 95.03 96.10

N-pair 97.47 86.57 69.05 43.65 77.44 86.75 89.57

Multi-similarity 96.56 85.65 60.50 32.79 79.37 87.51 89.89

TCP 98.44 92.67 74.52 46.68 86.06 92.57 94.22

ours:VFC 98.57 94.05 83.26 67.44 86.94 92.82 94.52
Table 4. Performance On IJB-B
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IJB-C
1 vs 1 1 vs N

10−1 10−2 10−3 10−4 top 1 top 5 top 10

CASIA-Net

lower boundary 97.07 89.94 79.13 56.74 83.64 88.72 90.65
upper boundary 98.41 94.37 85.59 64.03 86.05 90.4 91.94

N-pair 97.19 88.69 64.42 14.62 76.71 81.84 83.69
Multi-similarity 97.11 85.90 53.06 10.01 74.29 79.72 81.48

TCP 97.75 91.86 79.15 48.61 83.53 88.21 89.87
ours:VFC 97.79 92.21 80.51 60.69 84.58 89.66 91.37

ResNet-50

lower boundary 97.89 92.78 83.4 65.19 84.66 90.20 92.33
upper boundary 98.94 97.19 93.25 83.94 91.43 94.07 94.98

N-pair 97.44 90.08 77.54 61.75 83.60 88.87 90.85
Multi-similarity 97.73 90.06 75.97 57.82 75.74 83.39 86.32

TCP 98.16 92.08 74.86 43.58 83.03 89.02 90.91
ours:VFC 98.48 94.53 84.81 70.12 87.38 91.7 93.39

ResNet-101

lower boundary 97.75 92.38 83.79 71.02 86.51 91.31 92.90
upper boundary 98.98 97.61 94.25 85.60 92.90 95.02 95.80

N-pair 97.75 88.72 74.71 51.13 77.75 86.10 88.85
Multi-similarity 97.09 87.50 65.95 38.87 80.27 87.53 89.83

TCP 98.76 94.22 79.66 52.71 86.87 91.92 93.72
ours:VFC 98.84 95.30 86.44 71.47 87.84 92.3 94.27

Table 5. Performance On IJB-C

Network Strategy MegaFace

CASIA-Net
Sampling 78.15

Re-grouping 81.44

ResNet-50
Sampling 84.12

Re-grouping 93.18

ResNet-101
Sampling 74.94

Re-grouping 94.04
Table 6. The MegaFace Performance which is ignored in Table 4
of the submitted paper.
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