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Noise Reduction for Magnetic Resonance Images via
Adaptive Multiscale Products Thresholding

Paul Bao* and Lei Zhang

Abstract—Edge-preserving denoising is of great interest in
medical image processing. This paper presents a wavelet-based
multiscale products thresholding scheme for noise suppression of
magnetic resonance images. A Canny edge detector-like dyadic
wavelet transform is employed. This results in the significant
features in images evolving with high magnitude across wavelet
scales, while noise decays rapidly. To exploit the wavelet interscale
dependencies we multiply the adjacent wavelet subbands to
enhance edge structures while weakening noise. In the multiscale
products, edges can be effectively distinguished from noise.
Thereafter, an adaptive threshold is calculated and imposed
on the products, instead of on the wavelet coefficients, to iden-
tify important features. Experiments show that the proposed
scheme better suppresses noise and preserves edges than other
wavelet-thresholding denoising methods.

Index Terms—Denoising, magnetic resonance image, multiscale
products, thresholding, wavelet transform.

I. INTRODUCTION

M AGNETIC resonance imaging (MRI) is a powerful
diagnostic technique. However, the incorporated noise

during image acquisition degrades the human interpretation,
or computer-aided analysis of the images. Time averaging
of image sequences aimed at improving the signal-to-noise
ratio (SNR) would result in additional acquisition time and
reduce the temporal resolution. Therefore, denoising should
be performed to improve the image quality for more accurate
diagnosis.

Many wavelet transform- [1]–[5] based noise reduction
schemes have appeared in literature [18]–[23] during the last
two decades, most of which consider the incorporated noise as
additive Gaussian white. MRI magnitude images are usually
modeled by aRician distribution [9], [10] and the so-called
Riciannoise (the error between the underlying image intensities
and the measurement data) is locally signal dependent. The
Rician noise distribution is well approximated by a Gaussian
in bright (high SNR) regions while a Rayleigh distribution is
more appropriate in dark (low SNR) regions. A wavelet-based
Wiener-filter-like denoising method accounting for theRician
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noise was proposed by Nowak [8]. He squared the magnitude
MRI image and modeled the square of theRicianrandom vari-
able by a scaled noncentral chi-square distribution. Although
the noise in magnitude MRI images areRician, the additive
Gaussian white noise assumption holds for each component of
the complex MRI data in -space. Denoising can be applied to
the real and imaginary channels, respectively, rather than to the
magnitude images. This technique has proved to be effective
[11]–[13]. In view of this, the additive Gaussian white noise
model is adopted in this paper.

Among the wavelet-based noise reduction techniques, non-
linear thresholding is simple yet very effective. In his innova-
tive work [19], Donoho showed that theUniversal threshold

is asymptotically optimal in theminimaxsense,
where is the standard deviation of additive white noise and

is the sample length. However, it is well known that theUni-
versal threshold over-smoothes images. Donoho improved his
work [20] using theSUREthreshold. It is subband adaptive and
is derived by minimizing Stein’s unbiased risk estimator. Re-
cently, by modeling the wavelet coefficients within each sub-
band as random variables with generalized Gaussian dis-
tribution (GGD), Changet al. [23] proposed theBayesShrink
scheme. TheBayesShrinkthreshold is also subband dependent
and yields better results than theSUREthreshold. The thresh-
olds mentioned above are based on orthogonal wavelets and are
soft, implying that the input is shrunk to zero by an amount of
threshold . In [22], Panet al.presented ahard threshold with a
nonorthogonal wavelet expansion. Denoting the standard devi-
ation of noise at theth wavelet scale by , Panet al. imposed

where is the standard deviation of noise at theth
scale and is a constant, to identify significant struc-
tures. The wordhard implies that the input is preserved if it is
greater than the threshold; otherwise it is set to zero. The factor

is a constant and Panet al.set it around 3 since the values of
Gaussian distributed noise are, in high probability, within three
times its standard deviation. Thesoft BayesShrinkand thehard
thresholdingof Pan are used for comparison in the sequel.

There exist dependencies between wavelet coefficients. In
[7], Crouseet al. used the hidden Markov tree (HMT) models
to characterize the joint statistics of wavelet coefficients across
scales. In the noise reduction technique of Pizurica [16], the
interscale correlation information is exploited to classify the
wavelet coefficients. The preliminary classification is then used
to estimate the distribution of a coefficient to decide if it is a
feature. If a coefficient at a coarser scale has small magnitude,
its descendant coefficients at finer scales are likely to be small.
Shapiro exploited this property to develop the well-known
embedded zerotree wavelet coder [6]. Conversely, if a wavelet
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coefficient produced by a true signal is of large magnitude at
a finer scale, its parents at coarser scales are likely to be large
as well. However, for those coefficients caused by noise, the
magnitudes will decay rapidly along the scales. With this obser-
vation, Xuet al. [18] multiplied the adjacent wavelet scales to
sharpen the important structures while weakening noise. They
developed a spatially selective filtering technique by iteratively
selecting edge pixels in the multiscale products. Sadler and
Swami [24] analyzed the multiscale products and applied them
to step detection and estimation. Both of Xu’s and Sadler’s
works are implemented with a dyadic wavelet constructed by
Mallat and Zhong [4]. The so-called MZ wavelet is a compactly
supported quadratic spline function that approximates the first
derivative of Gaussian. The corresponding dyadic wavelet
transform (DWT) is equivalent to the Canny edge detection
[17] and characterizes the instantaneous features in a signal
well. The MZ wavelet is also employed in this paper.

Wavelet thresholding is simple and efficient but takes no
advantage of the dependency information between wavelet
scales. In this paper, we present a multiscale thresholding
scheme to incorporate the merits of interscale dependencies
into the thresholding technique for denoising. Two adjacent
wavelet subbands are multiplied to amplify the significant
features and dilute noise. In contrast to other schemes, we apply
thresholding to the multiscale products instead of the wavelet
coefficients. As we will show, the presented multiscale products
thresholding can distinguish edge structures from noise more
effectively. The variance of noise needs to be estimated to
implement the denoising scheme. A new noise level estimator
is also proposed in this paper.

This paper is organized as follows. Section II discusses the
wavelet multiscale products. Section III describes the thresh-
olding scheme. An image adaptive threshold imposed on the
multiscale products is calculated to identify the significant struc-
tures. Experiments are given in Section IV in comparison with
some wavelet thresholding schemes. The paper is concluded in
Section V.

II. WAVELET MULTISCALE PRODUCTS

A. Dyadic Wavelet Transform as a Multiscale Edge Detector

A wavelet transform represents a signalas a linear com-
bination of elementary atoms that appear at different resolu-
tions. It is computed by convoluting the input signal with di-
lated wavelet filters recursively. More details about the theory
of wavelets and their applications in signal processing can be
found in Daubechies [1], Meyer [2], Mallat [3], [4], and Vetterli
[5].

We denote by the dilation of a function by a scale
factor

(2.1)

Suppose function satisfies the requirements to be a
wavelet. The continuous wavelet transform of any measurable

and square-integrable function , , at scale and
position is defined as

(2.2)

where the symbol denotes the convolution operation.
The wavelet transform can be designed as a multiscale edge

detector to enhance the signal’s instantaneous features [4]. Sup-
pose that is a differentiable smooth function whose integral
is equal to 1 and that it converges to 0 at infinity. Lets define

as the first-order derivative of

(2.3)

Then, can be written as

(2.4)

It can be seen that the wavelet transform is the
first derivative of smoothed by . In particular, when

is a Gaussian function, the local extrema determination in
is equivalent to the well-known Canny edge detection

[17].
The Canny edge detector-like wavelet transform can be ex-

tended to two-dimensional (2-D) images. Suppose is a
2-D differentiable smooth function whose integral is equal to
1 and converges to 0 at infinity. For example could be
the tensor product of one-dimensional (1-D) smooth functions:

. We define the two wavelets and
at horizontal and vertical directions as

(2.5)

The dilation of any 2-D function by scale can be, there-
fore, denoted by

(2.6)

Suppose is a 2-D measurable and square-integrable
function such that . The wavelet transform of

at scale and position ( ) has two components

(2.7)

Similarly to (2.4) these two components can be rewritten as

(2.8)

In the case when is a Gaussian function, detecting the

local extrema form is equivalent to the Canny

edge detection.
For the purpose of fast numerical implementation, we restrict

the scale to vary along the dyadic sequence . For sim-
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Fig. 1. (a) DWT of a test signalg at the first four scales. (b) The DWT of a sequence ofGaussianwhite noise" at the first four scales.

plicity, we denote by (no confusion with in (2.1) the
dilation of function by , then

(2.9)

The DWT of at dyadic scale and position is

(2.10)

The function can be recovered from its DWT by

(2.11)

where is any reconstructing wavelet whose Fourier trans-
form (FT) satisfies [4]

(2.12)

The wavelet used in this paper is the MZ wavelet constructed
by Mallat and Zhong [4]. The associated smooth function
is a cubic spline, which closely approximates a Gaussian func-
tion. The wavelet is a quadratic spline that approximates
the first derivative of Gaussian. Thus, the DWT behaves like a
Canny edge detector. Appendix A shows the functions and

, and illustrates the discrete decomposition algorithms of
the 1-D and 2-D DWT. Details about the derivation of the MZ
wavelet can be found in [4].

B. Multiscale Products

Signals and noise behave very differently in the wavelet trans-
form domain. The evolution of singularities and noise across
wavelet scales were analyzed by Mallatet al. [3], [4] using the
mathematical concept of the Lipschitz regularity. Singularities
are more regular than noise and have higher Lipschitz regulari-
ties. For example, the Lipschitz regularity of a step edge is 0. If
a structure is smoother than the step, it will have positive Lips-
chitz regularity. Otherwise it can be considered having negative
Lipschitz regularity. The Lipschitz regularity of the Dirac func-
tion is equal to . White noise is almost singular everywhere
and has a uniform Lipschitz regularity that is equal to .

Meyer [2] presented a theorem to relate the evolution of the
wavelet transform magnitude with the signal’s Lipschitz regu-
larity. A function is uniformly Lipschitz ( )
over interval if and only if there exists a constant
such that for all , the wavelet transform satisfies

(2.13)

The above equation implies that the wavelet transform magni-
tudes increase for positivewith increasing scales. Contrarily,
wavelet transform magnitudes decrease for negative Lipschitz
regularities with increasing scales. In Fig. 1, the DWT at the first
four scales of a test signal, and a sequence of Gaussian white
noise , are illustrated. Notice that the signal singularities evolve
across scales with observable peaks while noise decays rapidly
along scales. As illustrated in Fig. 1(b), Mallat and Hwang [3]
observed that, for Gaussian white noise, the average number of
local maxima at scale is half of that at scale .

With the observation of Fig. 1, we can imagine that multi-
plying the DWT at adjacent scales would amplify edge struc-
tures and dilute noise. This favorite property has been exploited
by Xu et al.[18] and Sadler [24] in noise reduction and step de-
tection. In this paper, we define the multiscale products of
as

(2.14)

where and are nonnegative integers.
The support of an isolated edge will increase by a factor of

two across scale and the neighboring edges will interfere with
each other at coarse scales (Fig. 1). So in practice it is sufficient
to implement the multiplication at two adjacent scales. Let

and , then we calculate the DWT scale products as

(2.15)

Similarly for 2-D images, the multiscale products have two
components

(2.16)
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Fig. 2. The DWT and multiscale products of a noisy test signal at the first three
scales.

In Fig. 2, the DWT and multiscale products of a noisy test
signal are illustrated. Though the wavelet transform
coefficients of the original signal are immersed into noise at
fine scales, they are enhanced in the scale products. The
significant features of are more distinguishable in than in

.

III. A DAPTIVE MULTISCALE PRODUCTSTHRESHOLDING

A. The Thresholding Scheme

Wavelet-based thresholding techniques have proved to be ef-
fective in denoising [18]–[23]. Nonsignificant wavelet coeffi-
cients below a preset threshold value are discarded as noise and
the image is reconstructed from the remaining significant coef-
ficients. Compared with the linear denoising methods that blur
images as well as smoothing noise, the nonlinear wavelet thresh-
olding schemes preserve image singularities better.

In general, thresholds are classified intosoft andhard. The
soft thresholds shrink the input wavelet coefficientto zero
by an amount, i.e., . Con-
trarily, the hard thresholds preserve the input coefficient if it
is greater than the threshold, i.e., .
Naturally, the determination of the threshold value is extremely
critical to the threshold-based algorithms. We denote by

the measurements of imagecorrupted by Gaussian white
noise . Donohoet al.[19] presented theUniversal
threshold in his well-knownWavelet Shrinkage
scheme. Changet al. [23] presented theBayesShrinkthreshold

, where is the image standard deviation at
the th wavelet scale. The above three thresholds aresoft and
are derived from orthogonal wavelet bases. Ahard threshold
that could be applied to nonorthogonal wavelet transforms was
proposed by Panet al. [22].

All the above wavelet thresholding schemes impose the
threshold directly on wavelet coefficients. They do not exploit
the dependencies that exist between adjacent wavelet scales.
From Fig. 2, it can be noticed that, at finer scales, if the
threshold applied to is relatively sizeable, some edge

structures may be suppressed as noise. Otherwise, ifis
relatively small, many noisy pixels would be undesirably pre-
served. However, in the multiscale products it can be seen
that the significant structures are strengthened while the noise
is weakened. results in a more effective discrimination
between edges and noise than . With such observations
Xu et al. [18] and Sadleret al. [24] have exploited multiscale
products in denoising and step estimation.

In this paper, we propose a new de-noising scheme, theadap-
tive multiscale products thresholding, to merge the merits of
the thresholding technique and wavelet interscale dependencies.
A significant wavelet coefficient , where
indicates or dimension, is identified if its corresponding
multiscale products value is greater than an adaptive
threshold . The algorithm is summarized as follows.

1) Compute the DWT of input image up to
scales.

2) Calculate the multiscale products
and preset the thresholds . Then

threshold the wavelet coefficients by

(3.1)

3) Recover the image from the thresh-
olded wavelet coefficients and

.

B. Determination of the Threshold

Since a wavelet transform is a linear transform, the DWT of
a noisy image can be written as

(3.2)

where is the DWT of original image and is the
DWT of additive noise . For convenience, we denote

(3.3)

Due to the high dependencies existing between and
, the histograms of will have a heavy positive tail

(See Fig. 4). A proper threshold can be determined and
imposed on to eliminate the highly noise corrupted pixels
and identify the significant image structures.

Suppose that the input image is Gaussian white noiseand it
is an ergodic stationary process. For the convenience of expres-
sion, we denote the DWT of by

(3.4)

is a Gaussian colored noise process and its standard devia-
tion is

(3.5)

where norm . We do not use the su-

perscript “ ” in (3.5) because the norm values and
are the same.
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Fig. 3. The theoretical pdf of the multiscale productsV for Gaussianwhite noise (� = 10). (a) At the first scalej = 1. (b) At the second scalej = 2.

and are jointly Gaussian distributed with probability
density function (pdf) [26]

(3.6)

where the correlation coefficient of and is

(3.7)

The values of and in the discrete implementation are
listed in Table I by setting .

We denote the scale products of and by

(3.8)

Then the pdf of will have the following form [25, pp. 42]:

(3.9)

where is the Gamma function and is
the modified Bessel function of the second kind with order zero.
When is positive, is right skewed. In Fig. 3, the
theoretical pdf’s and are plotted by setting .
Notice that is more positively tailed than because

is higher than .
In applications, the wavelet coefficient obtained is ,

which is the sum of noiseless coefficient and noise
. Since white noise is singular almost everywhere, at fine

scales will be predominant in except for some
significant features to be preserved (see Fig. 2). In Fig. 4(a),
the histograms of at the first three scales are plotted for the
noiseless imageLena (i.e., ). Fig. 4(b)
shows the histograms of when the input is Gaussian white
noise with zero mean and standard deviation (i.e.,

). In Fig. 4(c), the histograms of ,
where the input is the noisyLena( , ),
are shown (i.e., ). It is noticeable that at
scales and , the corresponding histograms in Fig. 4(b)
and (c) are very similar. This is because the energy of noise in
these subbands is relatively high. At coarse scales the energy
of the image increases, but that of noise decreases rapidly. The
histograms of will be close to those of

step by step.
The standard deviation of is [26]

(3.10)
In Table II, we compute the values of probability

(3.11)

where constant varies from 1 to 5 by step length 1. Notice that
when , the probability , implying that will
suppress most of the data in.

We denote

and

(3.12)

Since the noise is independent of the noiseless image, it can
be derived that

(3.13)

and

(3.14)

The ratio is a measurement for the intensity of
noise against signal in the multiscale products. This ratio
can be used to adjust the threshold imposed on . We set
the multiscale products threshold as

(3.15)
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Fig. 4. The Histograms of the multiscale productsP f at the first three scales whenf is (a) Noiseless imageLena; (b) Gaussian white noise; (c) Noisy image
Lena.

The adaptive threshold is intuitive and effective. When
noise is much stronger compared with the image (i.e., at fine
scales), the ratio is high. Therefore, the threshold

becomes sufficiently large to suppress the overwhelming
noise. When the image is dominative (i.e., at coarse scales or
when additive noise is low), the ratio is small and
the threshold is at an appropriate level to preserve the
image instantaneous features while removing noise. In Table III,
we give some values of for image Lena with noise
levels 10, 20, 30, and 40, respectively.

C. Noise Level Estimation

The standard deviation of additive Gaussian white noise,,
should be estimated to implement the denoising scheme. A pop-
ular noise level estimator has been proposed by Donoho [19].
The median absolute value (MAV) of the wavelet coefficients at
the finest scale is first calculated and the standard deviation of
noise is then estimated as MAV/0.6745. The MAV estimator is
inaccurate for those images containing massive fine structures.

We propose a new noise level estimation method here. We
compute the orthogonal wavelet transform (OWT) of the noisy
image at the finest scale and denote bythe wavelet coeffi-
cients in the diagonal direction. Because OWT is a unitary trans-

TABLE I
NOISE STANDARD DEVIATION AND CORRELATION COEFFICIENTVALUES OF

THE MZ WAVELET IN DISCRETEIMPLEMENTATION AT SCALE 2 . INPUT NOISE

IS ASSUMED TOBE UNIT GAUSSIANWHITE

TABLE II
THE VALUES OF PROBABILITY Pr (c) = Pfv � c � � g FOR

j = 1 AND j = 2

TABLE III
THE RATIOS OF� (j)=� (j) AT THE FIRST TWOSCALES FORIMAGE LENA ON

DIFFERENTNOISE LEVELS �
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TABLE IV
NOISE LEVEL ESTIMATION RESULTS. GAUSSIANWHITE NOISE WITH STANDARD DEVIATION � IS ADDED TO FIVE TEST IMAGES. �̂ IS THE ESTIMATION BY

DONOHO’S MEDIAN METHOD AND �̂ IS THE ESTIMATION BY OUR SCHEME

form, at each wavelet scale the noise standard deviation is equal
to . Thus, the variance of is

(3.16)

where is the standard deviation of the wavelet coefficients of
the noiseless image.

Suppose is a zero-mean Gaussian process with standard
deviation . We divide it into two parts. The first part con-
sists of points that and the second part con-
sists of points where . Let and

, we have

(3.17)

(3.18)

where is the error function. The
ratio of to is independent of and we can calculate that

.
Next, we split into two parts, such that

and such that . Let and
. Generally, the noise energy is concentrated

on and can be considered as an approximation of the
noise level . We define

(3.19)

If is produced totally by noise, obviously will be equal
to zero. The more image details involved in , the greater the
value of . In this case, can be seen as an approximated
estimation of . We then take

(3.20)

to be a measure of SNR at the finest scale. Finally, the noise
level can be estimated as

(3.21)

Fig. 5. One stage transform structure of the 2-D overcomplete wavelet
expansion (OWE). FilterF is the2 scale dilation ofF (putting2 � 1 zeros
between each of the coefficients ofF ) andF is the transpose ofF . W f ,
W f andW f are the wavelet coefficients at the horizontal, vertical, and
diagonal directions.

We denote the MAV noise estimator of Donoho by

(3.22)

The Monte Carlo experimental results using the two estima-
tors are listed in Table IV. The test images employed areLena,
Sailboat, Goldhill, Bridge, andBaboon. We added the Gaussian
white noise with different standard deviationto each of them.
The Daubechies wavelet [1] with four vanishing moments is
used for the OWT. It can be observed that the proposed method
generally outperforms Donoho’s MAV estimation scheme. It
performs especially well for the imageBaboonthat contains
massive fine structures.

IV. EXPERIMENTS

In this section, the performances by the proposed scheme
on some MRI images are compared with those of thesoft
thresholding schemeBayesShrinkof Changet al. [23] and the
hard thresholding scheme of Panet al. [22]. For convenience,
we refer the two methods asSTH and HTH, respectively. It
is well observed that thresholding with the OWT produces
unpleasant Gibbs-like edge artifacts [21]. Thus, we implement
the two schemes with the over-complete wavelet expansion
(OWE). The one stage transform of OWE is illustrated in Fig. 5.
The resultant denoising by thresholding with the OWE can be
interpreted as the average of the circularly shifted denoising
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(a) (b)

(c) (d)

Fig. 6. Experiments on MRI imageLiver. The DROI and UROI used to compute the MSR and CNR indexes (listed in Table V) are highlighted. (a) The noisy
image. (b) Estimated by theSTH. (c) Estimated by theHTH. (d) Estimated by the presentedMPTH.

outcomes by the OWT. The residual noise is better smoothed
and the artifacts are attenuated. The wavelet employed in the
STHandHTH schemes is the compactly supported orthogonal
wavelet of Daubechies with four vanishing moments [1]. The
constant appearing in the threshold of the schemeHTH is
set at 3.1. The proposed scheme is referred asMPTH. The
MRI images in our experiments are 512512 in size and the
decomposition level is four.

To evaluate the medical image quality, we compute the
mean-to-standard-deviation ratio (MSR) [14], [15] in a desired
region of interest (DROI)

(4.1)

where and are the mean and the standard deviation com-
puted in the DROI. The contrast to noise ratio (CNR) is also
an important quality measurement for medical image interpre-
tation. It is defined as

(4.2)

where and are the mean and the standard deviation
computed in an undesired region of interest (UROI) such as a
window or background. Both the MSR and CNR measurements
are proportional to the medical image quality.

In the -space, the raw MRI data is denoted by [8]–[10]

(4.3)

where is the underlying signal and is a complex
Gaussian white noise. By computing the FT of in the
complex image domain, we have

(4.4)

is again a complex Gaussian white noise due to the uni-
tarity of the FT. The denoising schemes could be applied to each
of the real and imaginary components of . For visual in-
spection, the moduli of the complex data are shown as
the magnitude image.

Fig. 6(a) is a noisy MRI imageLiver. The DROI and UROI
used for calculating the MSR and CNR indexes are highlighted.
Denoised images by the three schemes are illustrated in
Fig. 6(b)–(d), respectively, and the MSR and CNR values are
listed in Table V. The presented algorithmMPTH achieves the
highest quantity measurements. Notice that the denoised image
by the STH contains a few stains and the result by theHTH
retains much noise. (If the threshold of theHTH is set higher to
suppress noise, the estimated image would be over-smoothed.)
TheMPTH preserves edges better and yet effectively removes
noise. Zoom-in images of DROI 1 and DROI 2 are illustrated
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Fig. 7. Zoom in of the DROI 1. (a) The noisy image. (b) Estimated by theSTH. (c) Estimated by theHTH. (d) Estimated by the presentedMPTH.

Fig. 8. Zoom in of the DROI 2. (a) The noisy image. (b) Estimated by theSTH. (c) Estimated by theHTH. (d) Estimated by the presentedMPTH.

(a) (b)

(c) (d)

Fig. 9. Experiments on MRI imageSpine. The DROI and UROI used to compute the MSR and CNR indexes (listed in Table VI) are highlighted. (a) The noisy
image. (b) Estimated by theSTH. (c) Estimated by theHTH. (d) Estimated by the presentedMPTH.

in Figs. 7 and 8. Another experiment on an MRI imageSpine
is illustrated in Figs. 9–11. The MSR and CNR measurements
are listed in Table VI. The results showed in Fig. 9(b) and (c)
appear to be veiled by the residual noise. Zoom-in images of
the two DROI are illustrated in Figs. 10 and 11. Although some
stings(discontinuities) appeared in Figs. 10(d) and 11(d), they
are almost edge points detected from the multiscale products,
but discarded by the other two schemes.

V. CONCLUSION

This paper proposes an MRI image denoising scheme using
an adaptive wavelet thresholding technique. Unlike many tradi-
tional schemes that directly threshold the wavelet coefficients,
the proposed scheme multiplies the adjacent wavelet subbands
to amplify the significant features and then applies the thresh-
olding to the multiscale products to better differentiate edge
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Fig. 10. Zoom in of the DROI 1. (a) The noisy image. (b) Estimated by theSTH. (c) Estimated by theHTH. (d) Estimated by the presentedMPTH.

Fig. 11. Zoom in of the DROI 2. (a) The noisy image. (b) Estimated by theSTH. (c) Estimated by theHTH. (d) Estimated by the presentedMPTH.

TABLE V
MSR AND CNR RESULTS OFMRI IMAGES LIVER BY THE THREESCHEMES

TABLE VI
MSR AND CNR RESULTS OFMRI IMAGES SPINE BY THE THREESCHEMES

Fig. 12. (a) The smooth function�(x) (solid) and aGaussianfunction
(dashed). (b) Wavelet (x) (solid) and the first derivative of theGaussianin
(a) (dashed).

structures from noise. The distribution of the products was ana-
lyzed and an adaptive threshold was formulated to remove most
of the noise. Experiments on the MRI images show that the pro-
posed scheme not only achieves high MSR and CNR measure-
ments but also preserves more edge features.

Fig. 13. The discrete decomposition algorithms of (a) 1-D DWT and (b) 2-D
DWT. Where filterH (G ) is the 2 dilation of H (G ) (putting 2 � 1
zeros between each of coefficients ofH (G )) andH (G ) is the transpose
of H G .

APPENDIX

THE MZ WAVELET AND THE DISCRETEDECOMPOSITION

ALGORITHM

Mallat and Zhong [4] defined a class of wavelets that can be
used in the implementation of DWT. The FT of the wavelet
is

(A.1)

Therefore, the FT of its associated smooth function , the
primitive of , is

(A.2)
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The is a cubic spline whose integral is equal to 1 and
is a quadratic spline. In Fig. 12, they are plotted and compared
with a Gaussian function and its first derivative. It is noticed that
the approximates closely to theGaussianfunction. The
wavelet transform behaves like a Canny edge detector [17].

The discrete decomposition algorithms of 1-D and 2-D DWT
are illustrated in Fig. 13. Filter ( ) is the scale dilation
of ( ) (putting zeros between each of the coeffi-
cients of ( )). ( ) is the transpose of ( ). The
coefficients of filters and are available in [4]. Suppose
the input signal has samples, then at each scalethe
wavelet coefficients and also have samples. There
are at most scales and the complexity of the decompo-
sition algorithm is .

It should be noted that in the discrete implementation, at each
scale the wavelet coefficients should be sampled with a constant
shift. For a 1-D signal, we denote the discrete sample sequence
by

(A.3)

where the shift variable is

(A.4)

For a 2-D image, there are two sample sequences obtained in
horizontal and vertical directions

(A.5)

where the sample shifts are

(A.6)
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