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Noise Reduction for Magnetic Resonance Images via
Adaptive Multiscale Products Thresholding

Paul Bao* and Lei Zhang

Abstract—Edge-preserving denoising is of great interest in noise was proposed by Nowak [8]. He squared the magnitude
medical image processing. This paper presents a wavelet-based\iRI image and modeled the square of Rigianrandom vari-
multiscale products thresholding scheme for noise suppression of able by a scaled noncentral chi-square distribution. Although

magnetic resonance images. A Canny edge detector-like dyadic .. . - . .
wavelet transform is employed. This results in the significant the noise in magnitude MRI images aRécian the additive

features in images evolving with high magnitude across wavelet Gaussian white noise assumption holds for each component of
scales, while noise decays rapidly. To exploit the wavelet interscalethe complex MRI data ik-space. Denoising can be applied to

dependencies we multiply the adjacent wavelet subbands to the real and imaginary channels, respectively, rather than to the
enhance edge structures while weakening noise. In the multiscale magnitude images. This technique has proved to be effective

products, edges can be effectively distinguished from noise. . . o - . .
Thereafter, an adaptive threshold is calculated and imposed [11]-[13]. In view of this, the additive Gaussian white noise

on the products, instead of on the wavelet coefficients, to iden- model is adopted in this paper.
tify important features. Experiments show that the proposed Among the wavelet-based noise reduction techniques, non-

scheme better suppresses noise and preserves edges than othginear thresholding is simple yet very effective. In his innova-

wavelet-thresholding denoising methods. tive work [19], Donoho showed that theniversal threshold
Index Terms—Denoising, magnetic resonance image, multiscale t = o+/2log N is asymptotically optimal in theninimaxsense,
products, thresholding, wavelet transform. whereo is the standard deviation of additive white noise and

N is the sample length. However, it is well known that tha-
versalthreshold over-smoothes images. Donoho improved his
. . ) work [20] using theSUREthreshold. It is subband adaptive and
M AGNETIC resonance imaging (MRI) is a powerfulis derived by minimizing Stein's unbiased risk estimator. Re-
diagnostic technique. However, the incorporated noig@ntly, by modeling the wavelet coefficients within each sub-
during image acquisition degrades the human interpretatigfyng ag.i.d random variables with generalized Gaussian dis-
or computer-aided analysis of the images. Time averagifghtion (GGD), Chancgt al. [23] proposed théBayesShrink
of image sequences aimed at improving the signal-to-noiggneme. Th@ayesShrinkthreshold is also subband dependent
ratio (SNR) would result in additional acquisition time angnq yields better results than tB&REthreshold. The thresh-
reduce the temporal resolution. Therefore, denoising shogfs mentioned above are based on orthogonal wavelets and are
be performed to improve the image quality for more accuraggfy implying that the inputy is shrunk to zero by an amount of
diagnosis. ) ~ threshold:. In [22], Panet al. presented &ard threshold with a
Many wavelet transform- [1]-[5] based noise reductiofonorthogonal wavelet expansion. Denoting the standard devi-
schemes have appeared in literature [18]-[23] during the Iagfon of noise at thgth wavelet scale by;, Panet al.imposed
two decades, most of which consider the incorporated noise;as- ., wheres; is the standard deviation of noise at tfta
additive Gaussian white. MRI magnitude images are usuali¥ale and: € [3,4] is a constant, to identify significant struc-
modeled by aRician distribution [9], [10] and the so-called yres. The wordhardimplies that the inputs is preserved if it is
Riciannoise (the error between the underlying image intensitiggeater than the threshold; otherwise it is set to zero. The factor
and the measurement data) is locally signal dependent. Thg a constant and Paet al. set it around 3 since the values of
Rician noise distribution is well approximated by a Gaussiagayssian distributed noise are, in high probability, within three
in bright (high SNR) regions while a Rayleigh distribution igjmes its standard deviation. Tkeft BayesShrinand thehard
more appropriate in dark (low SNR) regions. A wavelet-basggresholdingof Pan are used for comparison in the sequel.
Wiener-filter-like denoising method accounting for tR&ian  There exist dependencies between wavelet coefficients. In
[7], Crouseet al. used the hidden Markov tree (HMT) models

, _ , _to characterize the joint statistics of wavelet coefficients across
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coefficient produced by a true signal is of large magnitude ahd square-integrable functigiiz), f € L?(R), at scales and

a finer scale, its parents at coarser scales are likely to be lapgssitionz is defined as

as well. However, for those coefficients caused by noise, the

magnitudes will decay rapidly along the scales. With this obser- Wisf(z) = f*9s(z) (2.2)

vation, Xuet al.[18] multiplied the adjacent wavelet scales to ) )

sharpen the important structures while weakening noise. THE{)€re the symbot denotes the convolution operation.

developed a spatially selective filtering technique by iteratively 1€ wavelet transform can be designed as a multiscale edge

selecting edge pixels in the multiscale products. Sadler aﬁgtectorto enhance the signal’s instantaneous features [4]. Sup-

Swami [24] analyzed the multiscale products and applied thé?AS€ thatl(x) is ad|ffere_nt|able smooth funct_|0r_1 Whose mtegral

to step detection and estimation. Both of Xu's and Sadler €qual to 1 and that it converges to 0 at infinity. Lets define

works are implemented with a dyadic wavelet constructed Bt*) @s the first-order derivative @)

Mallat and Zhong [4]. The so-called MZ wavelet is a compactly dé(x)

supported quadratic spline function that approximates the first P(z) = s (2.3)

derivative of Gaussian. The corresponding dyadic wavelet v

transform (DWT) is equivalent to the Canny edge detectiofhen, W, f(z) can be written as

[17] and characterizes the instantaneous features in a signal

well. The MZ WaveIeF is glso .employed in thi§ paper. W, f(z) = fx* (S ‘?S) (z) = Si(f 5 0,) (). (2.4)
Wavelet thresholding is simple and efficient but takes no z dx

advantage of the dependency information between waveleh can be seen that the wavelet transfoify f(z) is the
scales. In this paper, we present a multiscale thresholdi

scheme to incorporate the merits of interscale dependenclg]r%st derivative of(x) smoothed by, (). In particular, when

) ) . L : Z) is a Gaussian function, the local extrema determination in
into the thresholding technique for denoising. Two adjace #() is equivalent to the well-known Canny edge detection
wavelet subbands are multiplied to amplify the significagg;'
features and dilute noise. In contrast to other schemes, we appl He Canny edge detector-like wavelet transform can be ex-
thresholding to the multiscale products instead of the Wavelg1

. . ) ded to two-dimensional (2-D) images. Suppé&e y) is a
coefficients. As we will show, the presented multiscale producED differentiable smooth function whose integral is equal to

thresholding can distinguish edge structures from noise mar nd converges to O at infinity. For exampler, y) could be

effectively. The variance of noise needs to be estimated t}?e tensor product of one-dimensional (1-D) smooth functions:

implement the denoising scheme. A new noise level estimatéigv‘y) — 0(x) - 6(y). We define the two wavelets® («, y) and

'S alslo propo;ed n th|§ paper. . . i;[{”(@ y) at horizontal and vertical directions as
This paper is organized as follows. Section Il discusses the

wavelet multiscale products. Section Il describes the thresh- . M (x,y) 90(z,y)

olding scheme. An image adaptive threshold imposed on the P (a,y) = “or P¥(a,y) = Tay (2.5)
multiscale products is calculated to identify the significant struc-

tures. Experiments are given in Section IV in comparison withhe dilation of any 2-D functiod(z, y) by scales can be, there-

some wavelet thresholding schemes. The paper is concludeéoii¢, denoted by

Section V.
€(x,y) =5 2 (f 3). (2.6)

s’s

Supposef(z,y) is a 2-D measurable and square-integrable
Il. WAVELET MULTISCALE PRODUCTS function such thatf € L%(R?). The wavelet transform of
f(z,y) at scales and position £, ) has two components
A. Dyadic Wavelet Transform as a Multiscale Edge Detector
A wavelet transform represents a sigrfabs a linear com- Wi (w,y) =f *¥5(@,y)
bination of elementary atoms that appear at different resolu- and WY f(z,y) =f = ¢¥(z,y). (2.7)

tions. It is computed by convoluting the input signal with di-_. ilarly to (2.4) th i i b it
lated wavelet filters recursively. More details about the theog}m' arly to (2.4) these two components can be rewritten as

of wavelets and their applications in signal processing can be . 9
found in Daubechies [1], Meyer [2], Mallat [3], [4], and Vetterli W f(z,y) :3%(10 *0s)(x,y)
[3]. , d
We denote by, (z) the dilation of a functior () by a scale and W' f(z,y) :sa_y(f *0s)(2,y). (2.8)
factor s

In the case whef(z, y) is a Gaussian function, detecting the
Wi f(z,y)

W f(z,y)
edge detection.
Suppose functiony(z) satisfies the requirements to be a For the purpose of fast numerical implementation, we restrict
wavelet. The continuous wavelet transform of any measuralthe scales to vary along the dyadic sequen) . _, . For sim-

® |8
N—

£, (x) = 5 . 2.1) local extrema for

> is equivalent to the Canny

Jj€
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Fig. 1. (a) DWT of a test signal at the first four scales. (b) The DWT of a sequenc&afissiarwhite noise: at the first four scales.

plicity, we denote by ;(z) (no confusion with¢,(z) in (2.1) the Meyer [2] presented a theorem to relate the evolution of the

dilation of functioné(z) by 27, then wavelet transform magnitude with the signal’s Lipschitz regu-
- larity. A function f(z) is uniformly Lipschitza (0 < « < 1)
&i(z) = 5(2_7'). (2.9) over interval[a, ] if and only if there exists a constaht > 0
2 such that for all: € [a, b], the wavelet transform satisfies
The DWT of f(x) at dyadic scale’ and position: is .
(W; f(z)] < K(27)*. (2.13)
W.f(z)=f*1:(x). 2.10
i (@) = Frdi) ( ) The above equation implies that the wavelet transform magni-
The functionf(z) can be recovered from its DWT by tudes increase for positive with increasing scales. Contrarily,
oo wavelet transform magnitudes decrease for negative Lipschitz
flz) = Z W, f * x;(z) (2.11) regularities with increasing scales. InFig. 1, the DWT at the first

four scales of a test signa) and a sequence of Gaussian white
) ) ) noises, are illustrated. Notice that the signal singularities evolve
wherex(x) is any reconstructing wavelet whose Fourier tranggross scales with observable peaks while noise decays rapidly

j=—o0

form (FT) satisfies [4] along scales. As illustrated in Fig. 1(b), Mallat and Hwang [3]
o observed that, for Gaussian white noise, the average number of
> P(RIw)R(Pw) = 1. (2.12) local maxima at scalg’*! is half of that at scale’.
j=—o0 With the observation of Fig. 1, we can imagine that multi-

B/ing the DWT at adjacent scales would amplify edge struc-
ures and dilute noise. This favorite property has been exploited
i)e( Xu et al.[18] and Sadler [24] in noise reduction and step de-
ection. In this paper, we define the multiscale productd’of

The wavelet used in this paper is the MZ wavelet construct
by Mallat and Zhong [4]. The associated smooth function)
is a cubic spline, which closely approximates a Gaussian fu
tion. The wavelet)(z) is a quadratic spline that approximate
the first derivative of Gaussian. Thus, the DWT behaves like

Canny edge detector. Appendix A shows the functiéag and k2
¥ (z), and illustrates the discrete decomposition algorithms of Pif(x)= ] Wisif(x) (2.14)
the 1-D and 2-D DWT. Details about the derivation of the MZ i=—kl

wavelet can be found in [4]. wherek1 andk2 are nonnegative integers.

The support of an isolated edge will increase by a factor of

two across scale and the neighboring edges will interfere with

Signals and noise behave very differently in the wavelet trangs o, other at coarse scales (Fig. 1). So in practice it is sufficient
form domain. The evolution of singularities and noise aCrog§ implement the multiplication at two adjacent scales Alet

wavelet scales were analyzed by Mata®l. [3], [4] using the ( anqro — 1, then we calculate the DWT scale products as
mathematical concept of the Lipschitz regularity. Singularities

are more regular than noise and have higher Lipschitz regulari- Pif(x) = W;f(x) Wi f(x). (2.15)
ties. For example, the Lipschitz regularity of a step edge is 0. If

a structure is smoother than the step, it will have positive Lip§imilarly for 2-D images, the multiscale products have two
chitz regularity. Otherwise it can be considered having negativemponents

Lipschitz regularity. The Lipschitz regularity of the Dirac func-

tion is equal to—1. White noise is almost singular everywhere Py f(@,y) =W7 f(z,y) - Wi f(z,y)

and has a uniform Lipschitz regularity that is equal-to/2. and P} f(x,y) =W} f(z,y) - W}, f(z,y). (2.16)

B. Multiscale Products
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/‘k " ol ] structures may be suppressed as noise. Otherwise,isf
! [‘L‘N‘/\M MV\WW“ Mwlrw,w o Wk il M W’Wwww relatively small, many noisy pixels would be undesirably pre-
' ‘ served. However, in the multiscale produgtsf it can be seen
T | o o b e g that the significant structures are strengthened while the noise
mf f1"‘V’“A“’m'/ww"ﬁ‘*“ﬁ‘(‘wm‘i”'"v’)“‘”"-"J”\\r"w*‘"'"W“*"*”{?(‘W"‘I“{UM“f’}'ﬂ'ww,wlﬁw‘@#”\" W\* is weakened.P; f results in a more effective discrimination
] between edges and noise thHf f. With such observations
w,f \"/\I\/\'LN\W/\/\\;\‘(VW,W"\/‘N\Nﬁ\/\,/LVVM/V\/"\?\MJW\[V{\‘VUMWV\NM\/M\/W/W\/]/» Xu et al. [18] and Sadleet al. [24] have exploited multiscale
‘[\ y products in denoising and step estimation.
, N _ In this paper, we propose a new de-noising schemedhp-
W. M WV M N “ . . . .
o e T \/MJN\ AN TV tive multiscale products thresholdintgp merge the merits of
the thresholding technique and wavelet interscale dependencies.

Pf . Y \ A significant wavelet coefficienW]‘.lf(x, y), whered = z,y
indicatesz or y dimension, is identified if its corresponding
Pf oo h,,,JLAMM. o multiscale products vaIuB;if(a;y) is greater than an adaptive

threshold:? (). The algorithm is summarized as follows.
Bf NN A N

1) Compute the DWT of input image f up to
Fig.2. The DWT and multiscale products of a noisy test signal at the first three gcales.

scales. 2) Calculate the multiscale products
P{f and preset the thresholds td(4). Then

In Fig. 2, the DWT and multiscale products of a noisy teghreshold the wavelet coefficients by
signalf = g + ¢ are illustrated. Though the wavelet transform Wi pd > gd(s
coefficients of the original signal are immersed into noise at W]‘»lf(z./y) = { Iy By flwy) 2 607)

d d(s
fine scales, they are enhanced in the scale prodiigfs The . 0 Pif(a,y) <t,(7)
significant features of are more distinguishable ifi; f than in j=1...,Jid==zy. (3.1)

Wif. 3) Recover the image from the thresh-
olded wavelet coefficients W f(z,y) and
[ll. ADAPTIVE MULTISCALE PRODUCTSTHRESHOLDING W?’f(x y)
J 17

A. The Thresholding Scheme

Wavelet-based thresholding techniques have proved to belf-
fective in denoising [18]-[23]. Nonsignificant wavelet coeffi- Since a wavelet transform is a linear transform, the DWT of
cients below a preset threshold value are discarded as noiseandisy imagef = g + ¢ can be written as
the image is reconstructed from the remaining significant coef-
ficients. Compared with the linear denoising methods that blur
images as well as smoothing noise, the nonlinear wavelet threﬁﬁfere
olding schemes preserve image singularities better.

In general, thresholds are classified istft and hard. The
soft thresholds shrink the input wavelet coefficientto zero Z¢=Plf=WIf Wi,f. (3.3)
by an amount, i.e.,n:(w) = sgn(w) - max(0, |w| — t). Con- ) ] o
trarily, the hard thresholds preserve the input coefficient if iPu€ to the high dependencies existing bEtW‘Wﬁ_f_ and
is greater than the threshold, i.g,(w) = w - 1{jw| > t}. W41/, the histograms oZ{ will have a heavy positive tail
Naturally, the determination of the threshold value is extreme{ee Fig. 4). A proper threshold(;j) can be determined and
critical to the threshold-based algorithms. We denotefby  imposed onZ¢ to eliminate the highly noise corrupted pixels
g+ ¢ the measurements of imageorrupted by Gaussian whiteand identify the significant image structures.
noises ~ N(0,02). Donohoet al.[19] presented thelniversal ~ Suppose that the input image is Gaussian white nogsel it
thresholdt = o/2Tog NV in his well-knownWavelet Shrinkage iS an ergodic stationary process. For the convenience of expres-
scheme. Changt al.[23] presented thBayesShrinkhreshold sion, we denote the DWT af by
t = o2 ow, 4, Whereoyy, , is the image standard deviation at N - _ N _
the jth <Naveglet scale. Thge above three thresholdssafeand Uj(w.y) =Wje(w,y) =exyj(zy), x =2y (34)
are derived from orthogonal wavelet baseshard threshold 7+ is a Gaussian colored noise process and its standard devia-
that could be applied to nonorthogonal wavelet transforms wggn is
proposed by Past al. [22].

All the above wavelet thresholding schemes impose the oj = |l¥jllo (3.5)
threshold directly on wavelet coefficients. They do not exploit
the dependencies that exist between adjacent wavelet scatd€re normy;ll =/ [[ 43 (=, y)dzdy. We do not use the su-
From Fig. 2, it can be noticed that, at finer scales, if theerscript ‘" in (3.5) because the norm valu#g? || and||y! ||
thresholdt applied toW, f is relatively sizeable, some edgeare the same.

Determination of the Threshold

Wif=wig+Wie (3.2)

Wiyg is the DWT of original imagey and W/'e is the
DWT of additive noises. For convenience, we denote
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Fig. 3. The theoretical pdf of the multiscale produtisfor Gaussiarwhite noise ¢ = 10). (a) At the first scalg = 1. (b) At the second scalg= 2.

Uf andUJ‘-i+1 are jointly Gaussian distributed with probabilityZ} = W?re - W7, €). In Fig. 4(c), the histograms aof?,
density function (pdf) [26] where the input is the noidyena(c = 30, SNR = 12.93 dB),
1 are shown (i.e.Zz7 = W7 f- W2 f). Itis noticeable that at

p(uj, ujy1) = scales2! and 22, the correspojnding histograms in Fig. 4(b)
2mojojr14/1 — p§+17j and (c) are very similar. This is because the energy of noise in
these subbands is relatively high. At coarse scales the energy
of the image increases, but that of noise decreases rapidly. The
(3.6) histograms ofz? = W7 f - W?,, f will be close to those of
Zy = Wrg-Wr g step by step.

,6*1/2(1*9';)-“,]')[Uf/af*(2Pj+1.jujuj+1/0j0j+1)+uf+1/ﬁf+1]

, o d P
where the correlation coefficiept .. ; of Uf andUY, ; is The standard deviation of is [26]
ST Yi(@y) - djsa(e,y)dudy
Pi+1,j = - BN k= JE[W] = JE w22 ] = 14202, 0011
I T2 y)dedy - [ [ 43, (e,y)dedy e e " (310)

The values of; andp;1_; in the discrete implementation are'™ T@ble Il, we compute the values of probability

listed in Table | by setting: = 1.
Pri(c) = P{v; < c- kK, .
We denote the scale productsiéf andU?, ; by r3(¢) {vj <e-nj) (3.11)
v — pd. i 38 where constant varies from 1 to 5 by step length 1. Notice that
i =Ui Ui, (38) \whenc > 5, the probabilityPr; (¢) — 1, implying that5s; will
Then the pdf oft/ will have the following form [25, pp. 42]:  SUPPTESS most of the data if).
We denote
1
p(v;) = pi(i) = E[Z]], ul(5) = E [V}
ol (%) 001 /1 — p?-i-l,j A [ J] [ J ]
( J0=2 1 )7s0540) [0 an
elPivrvi/(1=pip oioi) | J ) (3.9
((1 — P341,))050j41 ul(j) = E [Wig- Wi g]. (3.12)

wherel'(¢) = [;° e"u'~"du is the Gamma function ankly is ~ Since the noise is independent of the noiseless imagét can
the modified Bessel function of the second kind with order zerbe derived that
Whenp; 1 ; is positive,p(v;) is right skewed. In Fig. 3, the
theoretical pdf’)(v,) andp(v,) are plotted by setting = 10. py(3) = () — nl () (3.13)
Notice thatp(vs) is more positively tailed thap(v;) because
p3,2 is higher tharps ;.

In applications, the wavelet coefficient obtainedVIs]fif,
which is the sum of noiseless coefficieW;ig and noise

Wie. Sinice white noise is singular aln’;ost everywhere, at finghe ratio u2(j)/ul(j) is a measurement for the intensity of
scalesWje will be predominant inW7f except for some noise against signal in the multiscale produgts This ratio

significant features to be preserved (see Fig. 2). In Fig. 4(&hn be used to adjust the threshif)dlj) imposed oan’»’. We set
the histograms o}’ at the first three scales are plotted for thene multiscale products threshold as

noiseless imagéena(i.e., Z7 = Wrg - W7 g). Fig. 4(b)
shows the histograms &f¢ when the input is Gaussian white () = 5, (1 1z () (3.15)
noise with zero mean and standard deviation= 30 (i.e., P = 00 wi(i) ) '

and

Mg(j) = Pj+1,;0505+1. (3.14)
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Fig. 4. The Histograms of the multiscale produtsf at the first three scales whehis (a) Noiseless imageeng (b) Gaussian white noise; (c) Noisy image
Lena

The adaptive threshold!(;) is intuitive and effective. When TABLE |

noise is much stronger Compared with the image (i e. at ﬁnéIOISESFANDARD DEVIATION AND CORRELATION COEFFICIENT VALUES OF
U THE MZ WAVELET IN DISCRETEIMPLEMENTATION AT SCALE 27. INPUT NOISE

scales), the fati@?(j)/uﬁ(j) is high. Therefore, the threshold Is ASSUMED TOBE UNIT GAUSSIANWHITE
tg(j) becomes sufficiently large to suppress the overwhelming i

noise. When the image is dominative (i.e., at coarse scales or J 1 2 3 4
when additive noise is low), the ratjd )/ (j) is small and o; | 2.8284 | 0.7395 | 03173 | 0.1531
the thresholdtg(j) is at an appropriate level to preserve the Pia, | 03586 | 05504 | 0.5957 | 0.6063

image instantaneous features while removing noise. In Table Ill,
we give some values ¢f¢(j)/ () forimage Lena with noise

levelso = 10, 20, 30, and 40, respectively. TABLE I

THE VALUES OF PROBABILITY Pr;(c¢) = P{v; < ¢ k;} FOR
Jj=1ANDj =2

C. Noise Level Estimation

c 1 2 3 4 5

The Standa..rd deViatipn of additive GaUS.Si.an white anse, PI'[ (C) 0.8445 0.9456 | 0.9799 | 0.9927 0.9976
should be estimated to implement the denoising scheme. A pop-
ular noise level estimator has been proposed by Donoho [19].
The median absolute value (MAV) of the wavelet coefficients at
the finest scale is first calculated and the standard deviation of - )= () TABI,EE i < | .

. . . . I HE RATIOS OF/L: 7)/ 1 (7) AT THE FIRST TWO SCALES FORIMAGE LENA ON
noise is then est|mat_ed as MAV/O._6?45. The .MA\_/ estimator ig’ DI ERENT NOISE LEVELS o
inaccurate for those images containing massive fine structures.

We propose a new noise level estimation method here. We o 10 20 30 40
compute the orthogonal wavelet transform (OWT) of the noisy () (1) 0.27 1.18 320 733
image at the finest scale and denoteWythe wavelet coeffi-
cients in the diagonal direction. Because OWT is a unitary trans-

Pr,(c) | 0.8291 | 0.9396 | 0.9774 | 0.9915 | 0.9971

1 (2)/ 1, (2) 0.02 0.10 0.22 0.40
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TABLE IV
NOISE LEVEL ESTIMATION RESULTS GAUSSIANWHITE NOISE WITH STANDARD DEVIATION o |S ADDED TO FIVE TESTIMAGES. 64 |S THE ESTIMATION BY
DONOHO' S MEDIAN METHOD AND & |S THE ESTIMATION BY OUR SCHEME

o 5 10 15 20 25 30 35 40
Lena o, | 6.15 | 11.02 | 1587 | 20.82 | 25.68 | 30.56 | 35.54 | 40.52
o 3.20 8.37 14.30 | 19.66 | 24.13 | 30.21 | 35.31 | 40.56
. Gy, 7.84 | 12.16 | 16.78 | 21.47 | 26.20 | 31.13 | 35.94 | 40.86
Sailboat
G 4.06 | 8.78 | 14.57 | 19.88 | 25.14 | 30.71 | 35.83 | 40.80
Goldhill o:d 749 | 11.79 | 16.46 | 21.18 | 25.94 | 30.84 | 35.69 | 40.67
G 422 | 9.02 | 1470 | 20.13 | 25.34 | 30.42 | 35.21 | 40.78
. G, 846 | 1273 | 17.17 | 21.84 | 26.54 | 31.29 | 36.19 | 40.98
Bridge =
G 489 | 958 | 15.10 | 20.51 | 25.82 | 30.95 | 35.48 | 40.94
G, | 1458 | 18.17 | 22.29 | 26.65 | 30.93 | 35.34 | 39.90 | 44.51
Baboon -
o 7.05 9.66 13.61 | 18.66 | 24.01 | 29.53 | 35.25 | 41.37
form, at each wavelet scale the noise standard deviation is equal W‘DI
. . J J+
to o. Thus, the variance dfV is
2 2 2 2 '
o?=E[W) =040 (3.16) W

whereo, is the standard deviation of the wavelet coefficients of

the noiseless image. jot
SupposeN is a zero-mean Gaussian process with standard

deviationo . We divide it into two parts. The first pai{, con- Smf
sists of points thatN ()| > oy and the second paf¥, con- ‘

sists of points wheréN(-)| < on. Leto, = \/E[NZ] and Fig. 5. one stage transform structure of the 2-D overcomplete wavelet

op =/ E [Nb2], we have expansion (OWE). FilteF; is the27 scale dilation offy, (putting2’ — 1 zeros
between each of the coefficients Bf) and F; is the transpose of; . W]Hf,
0o 9 W].V f and I/VJ.D f are the wavelet coefficients at the horizontal, vertical, and
o2 :2/ o o=/ 20%) g (3.17) diagonal directions.
¢ on V2mon(1 — 2erf(1))
oN x2 2 2 1 H
o2 = x o=/ 20%) g (3.18) We denote the MAV noise estimator of Donoho by
Jo  V2woyerf(1) ) Median (|W])

01= "ggms (3:22)

whereerf(t) = 1/v/2x fg e="/2dz is the error function. The _ _ _
ratio of o, to o, is independent of y and we can calculate that The Monte Carlo experimental results using the two estima-
0a/oy & 2.945. tors are listed in Table IV. The test images employedLames,

Next, we splitW” into two parts W, such thaiiW, ()| > o; Sailboat Goldhill, Bridge, andBaboon We added the Gaussian

and W, such that|W,(-)| < o,. Leto? = /E[W?] and White noise with different standard deviatierto each of them.
ot = JE[WZ. Generallg, the noiseuénergy is coﬁcentrate-ﬂhe Daubechies wavelet [1] with four vanishing moments is
oﬁ W, and a”‘bcan be considered as an approximation of tf¢sed for the OWT. It can be observed that the proposed method

noise levelr. We define generally outperforms Donoho’s MAV estimation scheme. It
performs especially well for the imaggaboonthat contains
Gy = \/(Uz])z —2.92(b)2. (3.19) massive fine structures.
If W is produced totally by noise, obviousdy, will be equal IV. EXPERIMENTS

to zero. The more image details involvediin,, the greater the In this section, the performances by the proposed scheme
value ofg,. In this casegs, can be seen as an approximatedn some MRI images are compared with those of soé

estimation ofo,,. We then take thresholding schemBayesShrinlof Changet al. [23] and the
. hard thresholding scheme of Pat al. [22]. For convenience,
r=29 (3.20) we refer the two methods &TH and HTH, respectively. It

al is well observed that thresholding with the OWT produces

) . unpleasant Gibbs-like edge artifacts [21]. Thus, we implement
to be a measure of SNR at the finest scale. Finally, the NOf% two schemes with the over-complete wavelet expansion
level can be estimated as (OWE). The one stage transform of OWE is illustrated in Fig. 5.
The resultant denoising by thresholding with the OWE can be
interpreted as the average of the circularly shifted denoising

9f

Vitr?

o=

(3.21)
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(b)

(d)

Fig. 6. Experiments on MRI imagdsver. The DROI and UROI used to compute the MSR and CNR indexes (listed in Table V) are highlighted. (a) The noisy
image. (b) Estimated by tH8TH (c) Estimated by thélTH. (d) Estimated by the presentstPTH.

outcomes by the OWT. The residual noise is better smoothedn the k-space, the raw MRI data is denoted by [8]—-[10]
and the artifacts are attenuated. The wavelet employed in the
STHandHTH schemes is the compactly supported orthogonal F(p,v) = G(p,v) +&(pn,v) (4.3)
wavelet of Daubechies with four vanishing moments [1]. The
constantc appearing in the threshold of the schem&H is WhereG(u, v) is the underlying signal ang{ 1, v) is a complex
set at 3.1. The proposed scheme is referred®FH. The Gaussian white noise. By computing the FT/ofy, v) in the
MRI images in our experiments are 5%512 in size and the complex image domain, we have
decomposition level is four.

To evaluate the medical image quality, we compute the f(@y) = g(2,y) +e(2,y). (4.4)

mean-to-standard-deviation ratio (MSR) [14], [15] in a desired . . . . . .
region of interest (DROI) e(z,y) is again a complex Gaussian white noise due to the uni-

tarity of the FT. The denoising schemes could be applied to each
MSR = P (4.1) of the real and imaginary componentsfdfz, y). For visual in-
04 ' spection, the moduli of the complex datée, y) are shown as
_ the magnitude image.
wherepu andoy are the mean and the standard deviation com- Fig. 6(a) is a noisy MRI imageiver. The DROI and URO

E:J]t?n? Igrttgr?t Dszgilt. E:]:a(;?fr]griztniofonrorﬁs driigf)i&iNs)ir:tse?I?&?Ed for calculating the MSR and CNR indexes are highlighted.
tationplt i de?ined 3;3 9 P’8enoised images by the three schemes are illustrated in
: Fig. 6(b)—(d), respectively, and the MSR and CNR values are
lpta — pul @.2) listed in Table V. The presented algoritidPTH achieves the
0.5(02 + 02) ' highest quantity measurements. Notice that the denoised image
by the STH contains a few stains and the result by théH
where 1, and o, are the mean and the standard deviatiartains much noise. (If the threshold of tH&H is set higher to
computed in an undesired region of interest (UROI) such asappress noise, the estimated image would be over-smoothed.)
window or background. Both the MSR and CNR measuremerithe MPTH preserves edges better and yet effectively removes
are proportional to the medical image quality. noise. Zoom-in images of DROI 1 and DROI 2 are illustrated

CNR =
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Fig. 7. Zoom in of the DROI 1. (a) The noisy image. (b) Estimated bySTEl (c) Estimated by thélTH. (d) Estimated by the presentbtPTH.

Fig. 8. Zoom in of the DROI 2. (a) The noisy image. (b) Estimated by&Hhel (c) Estimated by thélTH. (d) Estimated by the present®tPTH.

Fig. 9. Experiments on MRI imaggpine The DROI and UROI used to compute the MSR and CNR indexes (listed in Table V1) are highlighted. (a) The noisy
image. (b) Estimated by tH8TH (c) Estimated by thélTH. (d) Estimated by the presentstPTH.

in Figs. 7 and 8. Another experiment on an MRI im&ggine V. CONCLUSION

is illustrated in Figs. 9-11. The MSR and CNR measurements

are listed in Table VI. The results showed in Fig. 9(b) and (c) This paper proposes an MRI image denoising scheme using
appear to be veiled by the residual noise. Zoom-in images af adaptive wavelet thresholding technique. Unlike many tradi-
the two DROI are illustrated in Figs. 10 and 11. Although sont@®nal schemes that directly threshold the wavelet coefficients,
stings(discontinuities) appeared in Figs. 10(d) and 11(d), thelie proposed scheme multiplies the adjacent wavelet subbands
are almost edge points detected from the multiscale produdtsamplify the significant features and then applies the thresh-
but discarded by the other two schemes. olding to the multiscale products to better differentiate edge
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Fig. 11.

MSR AND CNR ResuLTS OFMRI IMAGES LIVERBY THE THREE SCHEMES

TABLE V

Zoom in of the DROI 2. (a) The noisy image. (b) Estimated bySthi (c) Estimated by thelTH. (d) Estimated by the presentbtPTH.

w =12,..,2"" Wi =0,1,2,4,..,27

Mallat and Zhong [4] defined a class of wavelets that can be

Method DROI | DROI 2 Wi =0,1,2,4,..,2"7, wi" =1,2,..,2""
CNR MSR CNR CNR
Original 2.61 2.61 2.58 2.45
STH 4.08 5.53 4.55 6.12
HTH 4.10 5.58 4.60 6.20
MPTH 431 5.98 4.85 6.72
TABLE VI
MSRAND CNR REsULTS OFMRI | MAGES SPINE BY THE THREE SCHEMES
Method DROI 1 brorz e H e
CNR MSR CNR CNR
Original 2.26 1.79 2.82 2.34
STH 2.96 2.75 3.99 3.86
HTH 2.98 2.78 4.02 3.91
MPTH 3.10 291 4.17 4.06 (b)
Fig. 13. The discrete decomposition algorithms of (a) 1-D DWT and (b) 2-D
5 DWT. Where filter H;(G;) is the 27 dilation of Hy(Go) (putting 29 — 1
zeros between each of coefficients 86 (Go)) and H) (G is the transpose
@ 1 /\ of H,G,.
0-1 -0.5 0 0.5 1 APPENDIX
S ___,/ THE MZ WAVELET AND THE DISCRETEDECOMPOSITION
b O ‘\4,/"‘ ALGORITHM
5

Fig. 12.

(a) (dashed).

5 ) ; .
0 ! used in the implementation of DWT. The FT of the wavelét)

i =i (DY’

(a) The smooth functiofi(x) (solid) and aGaussianfunction IS
(dashed). (b) Wavelet(z) (solid) and the first derivative of th&aussianin

(A.1)

4

structures from noise. The distribution of the products was ariBherefore, the FT of its associated smooth function), the
lyzed and an adaptive threshold was formulated to remove mpsimitive of ¢)(z), is
of the noise. Experiments on the MRI images show that the pro-

posed scheme not only achieves high MSR and CNR measure-
ments but also preserves more edge features.

(A.2)
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Thed(x) is a cubic spline whose integral is equal to 1 aria) [4]
is a quadratic spline. In Fig. 12, they are plotted and compared
with a Gaussian function and its first derivative. Itis noticed that s,
the 6(x) approximates closely to th@aussianfunction. The

wavelet transform behaves like a Canny edge detector [17].  [©]
The discrete decomposition algorithms of 1-D and 2-D DWT

are illustrated in Fig. 13. FilteH; (G;) is the2’ scale dilation  [7]

of Hy (Go) (putting 2/ — 1 zeros between each of the coeffi-

cients of Hy (Go)). H}; (G7) is the transpose ofl; (G;). The (8]

coefficients of filtersH, and G, are available in [4]. Suppose

the input signalS, f has N samples, then at each scalethe ]

wavelet coefficientss; f andW f also havelV samples. There
are at mostog, NV scales and the complexity of the decompo-[10]
sition algorithm isO(N log, N).

It should be noted that in the discrete implementation, at eacHl]
scale the wavelet coefficients should be sampled with a constant
shift. For a 1-D signal, we denote the discrete sample sequen&el
by

(13]

dWJf(TL) = ij(’l’b + Wj) (A3)
(14]
where the shift variable; is
w;=1,2,...,2071 (A.4)  [19]

For a 2-D image, there are two sample sequences obtained ]
horizontal and vertical directions
[17]

AW f(n.m) =W f(n +w} " m 4+ wi™) s
Yy _TWY y,n y,m

AW/ f(n,m) =W/ f(n +wi™, m+w)™) (A5)
[19]
where the sample shifts are [20]
wh =1,2,. ., 27 Wt = 0,1,2,4,. ., 2072 [21]
wi™ =0,1,2,4,...,277% wl™ =1,2,...,277" . (A6) 22]
[23]
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