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Abstract—Certain gases in the breath are known to be indi-
cators of the presence of diseases and clinical conditions. These
gases have been identified as biomarkers using equipments such
as gas chromatography (GC) and electronic nose (e-nose). GC is
very accurate but is expensive, time consuming, and non-portable.
E-nose has the advantages of low-cost and easy operation, but is
not particular for analyzing breath odor and hence has a limited
application in diseases diagnosis. This article proposes a novel
system that is special for breath analysis. We selected chemical
sensors that are sensitive to the biomarkers and compositions in
human breath, developed the system, and introduced the odor
signal preprocessing and classification method. To evaluate the
system performance, we captured breath samples from healthy
persons and patients known to be afflicted with diabetes, renal
disease, and airway inflammation repectively and conducted
experiments on medical treatment evaluation and disease iden-
tification. The results show that the system is not only able to
distinguish between breath samples from subjects suffering from
various diseases or conditions (diabetes, renal disease, and airway
inflammation) and breath samples from healthy subjects, but in
the case of renal failure is also helpful in evaluating the efficacy
of hemodialysis (treatment for renal failure).

Index Terms—Breath analysis, electronic olfaction, therapy
monitoring, chemical sensor, disease identification.

I. INTRODUCTION

N recent years, there were increasing concerns about the

applications of breath analysis in medicine and clinical
pathology both as a diagnostic tool and as a way to monitor the
progress of therapies [1], [2]. Comparing with other traditional
methods such as blood and urine test, breath analysis is
non-invasive, real-time, and least harmless to not only the
subjects but also the personnel who collect the samples [3].
The measurement of breath air is usually performed by gas
chromatography (GC) [4] or electronic nose (e-nose) [5]. GC
is very accurate but is expensive and not portable, its sampling
and assaying processes are complicated and time consuming
(about one hour for one sample), and its results require
expert interpretation [6]. A less expensive and more portable
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alternative is e-nose. It is cheaper and faster (requiring only 30
minutes for one sample) and is often used outside of medicine,
in fields related to food, chemistry, fragrances, security, and
environment [7]. Recently, e-nose has gradually been used in
medicine for the diagnosis of renal disease [8], diabetes [9],
lung cancer [10], and asthma [11]. While all of these methods
work satisfactorily, they can each identify only one particular
disease. One reason for the limited applications of e-noses in
breath analysis might be the design of commercial e-noses for
broad applications rather than for breath analysis specifically.
We thus propose a new specific breath analysis system in this
paper in order to extend the applications in medicine.

The system makes use of chemical sensors that are partic-
ularly sensitive to the biomarkers and compositions in human
breath to trigger responses to a patient’s breath sample. In
contrast to the broad panel of nonspecific sensors used in
commercial e-noses, the sensors of our system were specif-
ically selected for their responses to known components of
human breath. The sample is injected into the system using
an auto-sampler at a fixed injection rate to guarantee all
samples are sampled under the same criterion. The chemical
sensors sense the sample and accordingly form a kind of
‘odorprint’ that is typically associated with a given disease or
condition. The ‘odorprint’ is then sent to computer for signal
processing and pattern recognition. We evaluated the system in
two experiments. In the first we classified subjects with renal
failure before and after hemodialysis. In the second we applied
the system to distinguish between healthy subjects and subjects
suffering from three types of diseases/conditions (diabetes,
renal disease, and airway inflammation). The experimental
results show that our system can fairly accurately measure
whether hemodialysis has been effective and can identify the
three conditions/diseases with quite a high level of accuracy.

The remainder of this paper is organized as follows. Section
IT describes the composition of the human breath and the
certain diseases that may be associated with certain gaseous
compounds. Section III describes how a subject’s breath is
sampled, the setup of the sensor array, and how data is pro-
cessed. Section IV explains the experimental details. Section
V gives the experimental results and discussion. Section VI
offers our conclusion.

II. BREATH ANALYSIS

Human breath is largely composed of oxygen, carbon diox-
ide, water vapor, nitric oxide, and numerous volatile organize
compounds (VOCs) [12]. The type and number of the VOCs
in the breath of any particular individual will vary but there



TABLE 1
TYPICAL COMPOSITIONS FROM THE ENDOGENOUS BREATH OF THE
HEALTHY PERSONS

Concentration(v/v) Molecule

percentage oxygen, water, carbon dioxide

parts-per-million acetone, carbon monoxide, methane, hydrogen, iso-
prene, benzenemethanol

parts-per-billion formaldehyde, acetaldehyde, 1-pentane, ethane,
ethylene, other hydrocarbons, nitric oxide, carbon
disulfide, methanol, carbonyl sulfide, methanethiol,
ammonia, methylamine, dimethyl sulfide, benzene,

naphthalene, benzothiazole, ethane, acetic aide

is nonetheless a comparatively small common core of breath
which are present in all humans [13]. The molecules in an
individual’s breath may be exogenous or endogenous [14]. Ex-
ogenous molecules are those that have been inhaled or ingested
from the environment or other sources such as air or food and
hence no diagnostic value [15]. Endogenous molecules are
produced by metabolic processes and partition from blood via
the alveolar pulmonary membrane into the alveolar air. These
endogenous molecules are present in breath relative to their
types, concentrations, volatilities, lipid solubility, and rates of
diffusion as they circulate in the blood and cross the alveolar
membrane [16]. Changes in the concentration of the molecules
in VOCs could suggest various diseases or at least changes in
the metabolism. Table I summarizes the typical compositions
found in the endogenous breath of healthy persons [13], [15].

Some molecules such as nitric oxide, isoprene, pentane,
benzene, acetone, and ammonia may indicate specific patholo-
gies [17]-[19]. To take a few examples, nitric oxide can be
measured as an indicator of asthma or other conditions char-
acterized by airway inflammation [20]. Breath isoprene is sig-
nificantly lower in patients with acute respiratory exacerbation
of cystic fibrosis [21]. Increased pentane and carbon disulfide
have been observed in the breath of patients with schizophrenia
[22]. The concentration of VOCs such as cyclododecatriene,
benzoic acid, and benzene are much higher in lung cancer
patients than in control groups [23]. Acetone has been found
to be more abundant in the breath of diabetics [24]. Ammonia
is significantly elevated in patients with renal disease [25].
Table II lists some breath compounds and the conditions that
research has found to be associated with them. The compounds
and conditions listed in Tables I and II were the focus of the
work being described in this paper.

III. DESCRIPTION OF THE SYSTEM

The proposed system operates in three phases (Fig. 1),
gas collection, sampling, and data analysis, with a subject
first breathing into a Tedlar gas sampling bag. This gas is
then injected into a chamber containing a sensor array where
a measurement circuit measures the interaction between the
breath and the array. The signals are then filtered and amplified
and sent to computer for further analysis. Fig. 2 shows our
system (left) and its laptop interface.
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TABLE I
SOME BREATH COMPOUNDS AND ASSOCIATED CONDITIONS

Associated conditions
diabetes [24]
liver diseases [16]

Breath compounds

acetone

carbonyl sulphide, carbon disulphide,
isoprene

naphthalene,1-methyl-, 3-heptanone,
methylcyclododecane, etc.

pulmonary tuberculosis [26]

nonane, tridecane, 5-methyl, unde-
cane, 3-methyl, etc.

breast cancer [27]

benzene,1,1-oxybis-, 1,1-biphenyl,2,2
-diethyl, furan,2,5-dimethyl-, etc.

ammonia

lung cancer [28]

renal disease [25]

octane,4-methyl,
hexane, etc.

decane, 4-methyl, unstable angina [29]

propane,2-methyl, octadecane, oc-

tane, 5-methyl, etc.

heart transplant rejection [30]

pentane, carbon disulfide schizophrenia [22]

pentane acute myocardial infarction [31]
pentane acute asthma [32]

pentane rheumatoid arthritis [33]

ethane active ulcerative colitis [34]

nitric oxide asthmatic inflammation [35]
bronchiectasis [36], [37]
COPD [38]

cystic fibrosis [39]

nitric oxide, carbon monoxide
nitric oxide

ethane, propane, pentane, etc.

Breath Gas Signal Class
— ] Gas sampling Sensor : Eignal pro:‘esstip g
) « Feature extraction >
bag array » Classification
Gas collection Sampling Data analysis

Fig. 1. The working flow defined in our system.

A. Breath Gas Collecting

Fig. 3 shows how the subject’s breath is collected using
a 600ml Tedlar gas sampling bag (A), an airtight box (B)
filled with disposable hygroscopic material to absorb the
water vapor from the breath, and, the last component, a
disposable mouthpiece (C). The hygroscopic material is silica
gel. It is stable and only reacts with several components,
such as fluoride, strong bases, and oxidizers. None of them
is involved in the breath components showed in Table I and
II. Our previous experiments had shown there was no obvious
effect on the disease identification by using silica gel as a
hygroscopic material. In any case, the mouthpiece is equipped

Fig. 2. Breath analysis system and the working interface.
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Fig. 3. [Exhaled air is collected with a gas sampling bag.

TABLE III
DETAILED INFORMATION WITH RESPECT TO COLLECTED DISEASES

Breath sampling

Compounds . Conditions
locations
acetone alveolar air diabetes
ammonia dead-space air renal disease

airway

nitric oxide . .
inflammation

dead-space air

with an anti-siphon valve that prevents inhalation of the gel.

Subjects are required to give their breath sample in one of
two different ways depending on whether the condition under
consideration typically exhibits its biomarkers (compounds)
in what are known as, dead-space air from the upper airway,
or alveolar air from the lungs. Depending on the type of
biomarkers and on the breath test tracks, dead-space air may
be either a necessity or a contaminant [12]. Alveolar air is
required where a condition is typified by biomarkers that are
found when there is an exchange from circulating blood. In
contrast, dead-space air is required when the biomarkers are
released into the airways, and thus into the dead-space air.
Table III lists some of the compounds, conditions, and breath
sampling locations used in this work [25], [40].

Alveolar and dead-space airs are collected in different ways.
Alveolar air is collected by having the subject take a deep
breath before breathing into the bag. The first 150 ml of the
collected breath is discarded because it may be contaminated
[17]. This method would be applied to a subject with, for
example diabetes. Dead space air is collected with a pump
that draws the breath from the subject’s mouth into a sampling
bag. The pump is shown as component (B) of the apparatus
in Fig. 3. This method would be applied with subjects with,
for example, airway inflammation and renal disease. There is
no need for the subject to exhale in this process.

B. Signal Sampling

The second phase is signal sampling, which involves acquir-
ing dynamic responses to the interactions between a breath
sample and the sensing elements, chemical sensors which
form a sensor array in the signal measurement module in the
hardware framework. These sensors sense gas particles and
generate measurable electronic signals. The signals are then
filtered, amplified, and digitized, and then sent to the computer
for feature extraction, pattern analysis and classification.

1) Chemical Sensors: The function and the performance of
our system highly depend on the capabilities of the chemical
sensors. In our system, each sensor in the array has a unique
‘odorprint’ corresponding to the compounds listed in Tables

TABLE IV
COMPOUNDS DETECTED AND SENSORS REQUIRED

Main compounds in human breath Requisite sensors

acetone, isoprene, pentane, benzene etc. VOC sensor
ammonia NH3 sensor
nitric oxide NO sensor

carbonyl sulphide, carbon disulphide sulphide sensor

hydrogen H2 sensor

CO and CO2 sensor

carbon monoxide, carbon dioxide

TABLE V
TYPE OF SENSORS AND CORRESPONDING SENSITIVE GAS

’ No. ‘ Sensors Gases Sensitivities (ppm) ‘

1 TGS2600 Ha, CO and VOCs 1-30

2 TGS2602 VOCs 1-30

3 TGS2611-C00 VOCs 500 - 10000
4 TGS2610-C00 VOCs 500 - 10000
5 TGS2610-D0O0 VOCs 500 - 10000
6 TGS2620 VOCs and CO 50 - 5000
7 TGS825 HaS 5-100

8 TGS4161 CO2 350 - 10000
9 TGS826 NH3 30 - 300
10 TGS2201 NO and NO2 0.1 -10
11 TGS822 VOCs 50 - 5000
12 TGS821 Ho 10 - 1000

I and II. Most of the compounds are VOCs but some are
inorganic compounds such as ammonia, nitric oxide, carbon
dioxide, and hydrogen. Table IV summarizes the main disease
biomarkers and compositions in human breath and the type of
sensor required. Table V lists the types of sensors used in our
system, the gases they are sensitive to and at what sensitivity.
These sensors used in our work are metal oxide semiconductor
gas sensors from FIGARO Engineering Inc. This kind of
sensors is very sensitive, robust, and resistant to humidity
and ageing [40]. Seven of the sensors are each sensitive to
VOC:s. One sensor detects only carbon dioxide. One sensor is
sensitive to ammonia, which is associated with renal disease.
One sensor is sensitive to nitric oxide which is associated with
bronchiectasis, airway inflammation, and COPD. One sensor is
sensitive to sulphides, what are associated with liver diseases.
Finally, one sensor is sensitive to hydrogen. These sensors are
able to sensitive to most of biomakers and compositions in
human breath, therefore they have better responses than those
commercial e-noses.

2) Signal Measurement: The framework of the system
consists of three modules: signal measurement, signal condi-
tioning, and signal acquisition. The signal measurement mod-
ule contains a sensor array, temperature control circuit, and
measurement circuit (Fig. 4). The temperature control circuit
provides negative feedback voltage to the heater of sensors
so as to guarantee that the sensors are at stable temperature.
The measurement circuit is responsible for transforming odor
signals into electronic signals.

The sensor array is composed of 12 sensors set in a 600
ml stainless steel chamber. Breath samples from subjects are
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Fig. 4. Basic structure of sensor array used in our system.

TABLE VI
FUNDAMENTAL PERFORMANCE PARAMETERS OF PROPOSED SYSTEM

System parameters Specifications
Working temperature 25 + 10°C
Carrier flow 10 ml/s
Chamber volume 600 ml
Sampling injection rate 120 ml/s
Sampling frequency 9 Hz

Sampling time 100 seconds

collected with a 600 ml Tedlar gas sampling bag and then
injected into the chamber through an auto-sampler at 120 ml/s.
Since the capacity of the sampling bag is 600 ml, the total
injection time for one sample is ¢ = 600/120 = 5s. The
resistances of the sensors change from R, to R, when they
are exposed to sampled gas. The output voltage is

Ry

) (M

1
Vout = §Voc(1 -

where V¢ is the transient voltage crossing the sensor and Vo
is the transient output voltages of the measurement circuits.

The signal measurement module measures these voltages
and converts them into analog electrical signals. The analog
signals are subsequently conditioned by signal filtering and
amplifying. Finally, the signals are sampled at a 9 Hz sampling
frequency and transmitted through a USB interface to a com-
puter. This component is controlled by a 16 bit microprocessor.
After data collection, a pump works at a rate of 10 ml/s
to purge the chamber. Table VI summarizes the fundamental
performance parameters of the proposed system.

3) Sampling Procedure: The sampling procedure, program
controlled by the system to ensure all samples are sampled
under the same criterion, involves two sub-procedures, a purge
cycle and a sampling cycle. In the purge cycle, a pump pulls
and purges the air over the sensor array, supplying background
air to the array for the baseline measurement as well as
refreshing it after sampling. In the sample cycle, the analyte is
injected into the chamber. When the sensor array is exposed to
the analyte, changes in resistances are measured and recorded.
The action of the system is different in each time-slice (Fig.
5). The following explains this in detail.

1) —10 ~ Os (baseline stage): The chamber is purged and
the sensor returns to a steady state. The baseline value
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Fig. 5. A typical sensor response curve which undergoes three stages.

is measured and recorded for data manipulation and
normalization;

2) 1 ~ bs (injection stage): Sampled gas is injected into the
chamber at an invariable rate. Particles of sampled gas
inside the chamber accrue during injection, producing
a changing of resistance of the sensor and causing the
amplitude of the signal to rise;

3) 6 ~ 10s (reaction stage): Particles in the chamber
continue to accumulate on the sensors but the accumu-
lation rate is decreasing. The resistance of the sensor
monotonically increases at a decreasing rate, as does
the amplitude of the signals;

4) 15 ~ 90s (purge stage): The chamber is purged again.
The pump quickly draws out the remaining analyte,
thereby shortening the sampling time as well as refresh-
ing the air for the next use.

In our database, the characteristic curve of one sample is
taken from the data for the period from 1 s to 90 s. Since the
sampling frequency is 9 Hz, one sensor in one sample creates
a 90 x 9 = 810-dimension feature vector.

C. Data Analysis

The system measures changes in voltage across each sensor
and converts the raw signal into a digital value that can be
applied to future analysis. This analysis involves three steps:
signal preprocessing, feature extraction, and classification.

1) Signal Preprocessing: The purpose of signal prepro-
cessing is to compensate for drift and eliminate irrelevant
information so to improve the performance of the subsequent
pattern recognition and classification. It involves baseline
manipulation and normalization. Baseline manipulation is im-
plemented for drift compensation, contrast enhancement, and
scaling. Its basic idea is to subtract the baseline of each sensor
from the sensor response. We assume that one data set has
e samples, where e = 1,..., N.. Each sample consists of s
sensor transients, where s = 1, ..., N;5. There are k£ dimensions
per transient, where k¥ = 1, ..., N;. The dynamic response of
one sample at time t; is denoted as R (tx). There are b
dimensions in baseline stage, where b = 1, ..., N,. The baseline
response of this sample is B. (). The relative change for a
particular sensor is defined as the preprocessed response
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Ny,
1
RP. (tr) = Re,s(tr) — MZ B.s(ty), Ve, s, k,b. (2)

ty=1

Normalization is used to compensate for sample-to-sample
variations caused by analyte concentration and pressure of
oxygen (PO3). RE, ,(t) is the response of the sensor N; to the
N. sample in data set, which has been processed by baseline
manipulation. The normalized response is defined as

RBe,s(tk)

BN =
R™ e s(ts) = maz(RBc s (tk))’

Ve, m. 3)

2) Feature Extraction: The purpose of feature extraction
is to find a low-dimensional mapping f : = € RY — y €
RM(M < N) that preserves most of information in the
original feature vector x. In this paper, we employed principal
components analysis (PCA) to extract characteristic features
of samples from m classes. We calculated the eigenvectors
and eigenvalues of the training set and sort the eigenvectors,
i.e., principal components of PCA, by descendant eigenvalues,
then projected both test data and training data onto the
PCA subspace spanned by selected principal components. The
criteria for principal component selection is

“:ZS:M > i, @
k=1 k=1

where r; is the eigenvalue, s is the number of selected principal
components, and 7 is the total number of eigenvalues. Assume
ra > 99% counts for enough variability in the dataset, s = 10
eigenvectors as features. We hence formed a s-dimensional
training vector space and test vector space respectively for
data classification.

3) Classification: K nearest neighbor voting rule (KNN)
was used as a classifier for the features that extracted by PCA.
Basically, it classifies an unlabeled test sample by finding
the K nearest neighbors in the training set using Euclidean
distance and assigning the label of that class represented by a
majority among the K neighbors [41]. There are many voting
rule to decide which class the unlabeled sample belongs to.
In our experiment, we used the following vote rule: assum-
ing there are m classes and one sample has Ki, Ko, ..., K,
nearest neighbors for the m classes, where Z:’;l K; = K, the
classification result is given by

K;
c= ?iglf}if{ 7ak )
where c is the label of the predicted class. The training vectors
were classified in advance into m classes, labeled as either
healthy or diseased. The test vector was then predicted using
Equation 5.

IV. EXPERIMENTS

In the first experiment, we used our system to distinguish
between pre- and post-treatment breath samples from 52 sub-
jects with end-stage renal failure, a kind of condition associates
with the accumulation of urinary waste products in the blood
because the kidneys are not working effectively (Table VII).

TABLE VII
COMPOSITION OF THE RENAL FAILURE DATABASE

‘ Number ‘ Male/Female ‘ Age ‘
3319 [34-70 |

’ Type of subjects

’ Subjects with renal failure ‘ 52 ‘

TABLE VIII
COMPOSITION OF THE SUBJECT DATABASE

’ Type of subjects Number | Male/Female ‘ Age ‘
Healthy subjects 108 58/50 23-60
Subjects with diabetes 117 65/52 32-70
Subjects with renal disease 110 63/47 28-70
Subjects with airway 110 54/56 16-62
inflammation

A standard treatment for the condition is hemodialysis to help
patient remove more urea and creatinine from the blood. There
is a reduction in the ammonia concentration in expired breath
of patients as hemodialysis proceeds [42]. The results for these
experiments are given in Section IV-A.

In the second set of experiments, we tested the ability of
the system to distinguish between subjects assumed to be
healthy on the basis of recent health check and subjects known
to be afflicted with either diabetes, renal disease, or airway
inflammation. Totally, We collected 108 healthy samples, 117
diabetes samples, 110 renal disease samples, and 110 airway
inflammation samples using the gas collection and signal
sampling procedures described in Sections III-A and III-B.
Table VIII details the composition of the subject database. All
patients were inpatient volunteers from the Harbin Hospital.
Their conditions were confirmed and correlated by comparing
their levels with standard clinical blood markers for the
relevant diseases and conditions. In each case, these diseases
and conditions are associated with characteristic molecules in
the breath. Diabetes arises when the glucose produced by the
body cannot enter cells and so cells have to use fat as an
energy source. One of the by-products of metabolizing fat
for energy is ketones. When ketones accumulate in the blood,
there is ketoacidosis, which is characterized by the smell of
acetone on the patient’s breath [43]. Renal disease arise from
the inability of the kidneys to effectively filter the blood. This
results in an accumulation of nitrogen-bearing waste products
(urea), which accounts for the odor of ammonia on the breath
of patients [44]. As for airway inflammation, it has been shown
that exhaled nitric oxide levels are higher when there is airway
inflammation, especially asthmatic airway inflammation [45].

A. Evaluating Outcomes of Hemodialysis

Fig. 6 shows the responses of the twelve different sensors
(S1-S12) to the samples of renal failure patients over the
90 s sampling period. Fig. 6(a) shows a typical response
of one patient before hemodialysis and Fig. 6(b) shows a
response of the same patient after hemodialysis. The curves
represent the output of each sensor, S1-S12. These curves have
been preprocessed by baseline manipulation and normalization
according to Equations 2 and 3. As shown in Table II, the
dominant compound marking renal disease is ammonia. From
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Fig. 6. Typical responses from the same patient: (a) before treatment, (b) after treatment. The horizontal axis stands for the sampling time (0-90 s) and the

vertical axis shows the amplitude of the sensor output in volts.
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Fig. 7. Mean response of twelve sensors to two cases: before treatment and
after treatment. The error bar represents the standard deviation (only the upper
bar is drawn). The horizontal axis denotes the twelve sensors and the vertical
axis stands for the mean value of each normalized response.

these figures, it is very clear that before hemodialysis (Fig.
6(a)), the amplitude of the ninth sensor (red solid line) is very
high, which indicates that the concentration of ammonia in the
breath is quite large. However, after treatment (Fig. 6(b)), the
amplitude of the ninth sensor clearly decreases, indicating the
concentration of ammonia in the subject’s breath has fallen.

Fig. 7 presents the mean responses of the twelve sensors
showing the response of each sensor to two kinds of samples.
The error bar represents the standard deviation, showing the
difference between the responses of all samples in one classes
and their mean. The mean response is defined as

Ny,
1
MeanR, s = o D> Re(tr), Ve,s,k. (6)
tk:].

The definitions of these variables are the same as Section
III-C1. For each sensor, the left bar presents the class before
hemodialysis and the right bar is the class after hemodialysis.
After the treatment, the values of several responses clearly fall,
especially the ninth sensor, which is sensitive to ammonia.

B. Distinguishing between Subject Breath Samples

Fig. 8 shows the responses of twelve different sensors (S1-
S12) to the four different air samples over the 90 s sampling
period. Fig. 8(a) is a typical response to a healthy sample. Fig.
8(b) is to a diabetes sample. Fig. 8(c) is to a renal disease
sample. And Fig. 8(d) is to an airway inflammation sample.
The curves represent the output of each sensor.

Fig. 9 gives the mean responses of the twelve sensors
in the four types of air samples as defined by Equation 6.
The definition of error bar is the same as that in Section
IV-A. In each of the four categories it is possible to find the
combinations of sensors which could unambiguously identify
each of the four conditions. Thus, the strongest responses
to healthy samples came from the sixth, seventh, and eighth
sensors while the strongest response to diabetes came from the
second, fourth, fifth and twelfth sensors. It is worth mentioning
that the twelfth sensor gave a very significant response, though
it is not used for VOCs detection. In China, the special
diet recommended for diabetics features large amounts of
fermentable dietary fiber, which leads to colonic fermentation
of indigestible carbohydrates [46]. One product of colonic
fermentation is hydrogen [47], which is absorbed into the
bloodstream and excreted through the breath. Therefore, the
breath air of diabetics we have collected would include hydro-
gen. The strong response to the renal disease samples came
from the first, third, ninth and eleventh sensors, especially the
ninth sensor, which is particularly sensitive to ammonia. The
largest response to airway inflammation came from the tenth
sensor, which is used to detect nitric oxide.

V. RESULTS AND DISCUSSION

The outcomes of both sets of experiments were evaluated
using PCA coupled with KNN, as introduced in Sections
MI-C2 and III-C3.

A. Results Evaluating Outcomes of Hemodialysis

Fig. 10 shows a two-dimensional PCA analysis of the
responses with the first principal component (PC1) plotted
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response.

against the second (PC2). greenx stands for the samples
before treatment and blue+ for the samples after treatment.
The two dimensions explained 73.01% of the variation in the
data, 53.4% for PC1 and 19.61% for PC2. The two classes

1 ‘ ‘ ;
+ before treatment
e after treatment
0.5- + ! 5
n *fibfi =
Jr
ol e : 1
R + T A
©
g 051 + 1
g + +
a L + 1
- | + + +
+ o +
-1.5} i
+ +
_2 I + L L
=2 -1 0 1 2
PC1(53.40%)

Fig. 10. PCA two-dimensional plot of the sensor signals corresponding
to two classes: (a) renal failure samples before treatment(greensx), (b) renal
failure samples after treatment(blue+).

are discriminative even though some samples overlap.

To measure the classification accuracy of system, we ran-
domly selected a training set of 26 samples from each disease
class of 52 samples. The remainder was used as the test set.
PCA was used to extract characteristic features of the samples.
We calculated the eigenvectors and eigenvalues of the training



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING

TABLE IX
CLASSIFICATION RESULTS OF TWO CLASSES: RENAL FAILURE SAMPLES BEFORE TREATMENT AND AFTER TREATMENT

Number of samples Predicted group member (average)
Actual group member - Accuracy
Training set | Test set | Before treatment ‘ After treatment
Before treatment 26 26 20.84 5.16 80.15%
After treatment 26 26 21.32 4.68 82%
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PCA two-dimensional plot of the sensor signals corresponding to two classes: (a) healthy samples (blue+) and diabetes samples (greenx), (b)

healthy samples (blue+) and renal disease samples (greenx), and (c) healthy samples (blue+) and airway inflammation samples (greenx).

TABLE X
THE DEFINITION OF SENSITIVITY AND SPECIFICITY

Test outcome . [P
— - Sensitivity | Specificity
Positive ‘ Negative
Actual | Positive tp fp tp tn
condition | Negative fn tn tp+fn tn+fp

set and sorted the eigenvectors by descendant eigenvalues.
We then used Equation 4 and the condition 7y > 99% to
select the first 12 eigenvectors as principle components. Next,
we projected all samples onto the PCA subspace spanned by
principal components. Then, KNN (K = 5) classifier defined
by Equation 5 predicted the class that a test sample belonged
to. We ran this procedure 50 times and computed the average
classification rate over all 50 runs.

Table IX shows the classification results. In the 26-sample
pre-treatment test set, an average of 20.84 samples were
classified correctly and 5.16 samples were classified incor-
rectly, an overall accuracy of 80.15%. In the 26-sample post-
treatment test set, an average of 21.32 samples were classified
correctly and 4.68 samples were classified incorrectly, an
overall accuracy of 82%. Clearly, the proposed system would
have some value in evaluating the efficacy of hemiodialysis,
and may take the place in some cases of blood tests, given
that it is simple, low-cost, and non-invasive.

B. Results Distinguishing between Subject Breath Samples

The classifications of the four types of breath samples were
evaluated with PCA coupled with KNN and the results were
measured by sensitivity and specificity. The samples from
patients with diabetes, renal disease, and airway inflammation
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TABLE XI
THE CLASSIFICATION RESULTS DEFINED BY SENSITIVITY AND SPECIFICITY

ini Test out
Training Test set o 'o‘u corme (avera.ge) Sensitivity | Specificity
set Positive ‘ Negative
Diabetes Positive 57 60 526 74 86.97% 87.57%
Negative 48 60 7.88 52.12
Renal failure | oSi0ve 50 60 S1.94 8.06 83.96% 86.14%
Negative 48 60 9.92 50.08
Airway Positive 50 60 42.12 17.88 3.79% 1.58%
inflammation | Negative 48 60 14.96 45.04

and the healthy samples were formed three groups. One group
contained healthy subjects and subjects with diabetes, the
second contained healthy subjects and subjects with renal
disease, and the third group contained healthy subjects and
subjects with airway inflammation.

Fig. 11 shows the PCA two-dimensional plot of the re-
sponses from the two classes with the first principal component
(PC1) plotted against the second (PC2). The greenx stands
for the samples classified as being from patients and blue+
for healthy subjects. In the PCA plot of diabetes samples
and healthy samples, the two dimensions explained 79.96%
of the variation in the data, 65.29% for PC1 and 14.67% for
PC2. In the PCA plot of renal disease samples and healthy
samples, the two dimensions explained 72.45% of the variation
in the data, 55.56% for PC1 and 16.89% for PC2. In the PCA
plot of airway inflammation samples and healthy samples, the
two dimensions explained 77.4% of the variation in the data,
52.49% for PC1 and 24.91% for PC2.

To compare the test results, we randomly selected 60
samples from each class as the test set and the remainder
formed the training set. PCA was used to extract characteristic
features of samples. Equation 4 and the condition ) > 99%
were used to select the first 10 eigenvectors in all classes
in every group. The KNN (K = 5) classifier as defined by
Equation 5 was then used to determine which class each test
sample belonged to.

In medicine, the reliability of a diagnosis is measured in
terms of sensitivity and specificity, with the outcome being
either positive (unhealthy) or negative (healthy). In the clas-
sification, the number of genuine sick subjects is denoted tp;
misidentified healthy subjects is fp; genuine healthy subjects
is tn; the misdiagnosed sick subjects is denoted as tn [10].
Sensitivity and specificity are thus defined as in Table X. Table
XI shows the classification results of all groups.

In the diabetes experiment, out of 60 samples in the test
set, the system correctly diagnosed an average of 52.6 samples
as diabetes and incorrectly diagnosed 7.4 samples as healthy.
In the 60 healthy samples in the test set, an average of
52.12 samples were correctly diagnosed as healthy and 7.88
were incorrectly diagnosed as diabetes. The sensitivity of this
diagnosis was thus 86.97% and the specificity was 87.57%.

In the renal disease experiment, an average of 51.94 disease
samples were correctly diagnosed as renal disease and 8.06
disease samples were incorrectly diagnosed as healthy. In the
60 healthy samples in the test set, an average of 50.08 healthy

samples were correctly diagnosed as healthy; while an average
of 9.92 healthy samples were incorrectly diagnosed as renal
disease. Consequently, the sensitivity and specificity of this
diagnosis were 83.96% and 86.14% respectively.

Same as above, in the experiment of airway inflamma-
tion diagnosis, there were averagely 42.12 disease samples
diagnosed correctly as airway inflammation and 17.88 disease
samples diagnosed incorrectly as healthy, and there were aver-
agely 14.96 healthy samples diagnosed incorrectly as airway
inflammation and 45.04 healthy samples diagnosed correctly
as healthy. The sensitivity of this diagnosis was thus 73.79%
and the specificity was 71.58%.

VI. CONCLUSION

This article proposed a breath analysis system that has
a broad application in medicine, such as detecting diseases
and monitoring the progress of related therapies. The system
structure, working procedure, odor signal preprocessing, and
pattern recognition method were introduced. To evaluate the
system performance, breath samples were captured and two
experiments were conducted on medical treatment evaluation
and disease identification. The results showed that the system
was not only able to distinguish between breath samples
from subjects suffering from various diseases or conditions
(diabetes, renal disease, and airway inflammation) and breath
samples from healthy subjects, but in the case of renal failure
was also helpful in evaluating the efficacy of hemodialysis.

Although the current pattern recognition method produced
satisfactory results when we used integral data, it should still
be possible to further improve the classification accuracy and
speed by selecting proper features. Typically, the performance
of an electronic olfaction system depends heavily on the
features being provided to the odor classification algorithm.
Therefore, in future work we will investigate how to select
the most proper features for effective pattern classification.
We also intend to extend the number of diseases/conditions
that the system can analyze.
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