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A. Sinkhorn Iteration
The transport solver involves the resolution of a linear

program in polynomial time. In our OT-based approach, the
dimension of pixel samples can be as high as the square of
hundreds. To efficiently tackle such a large-scale transport
problem, we adopt the Sinkhorn Iteration method [2, 4],
which computes the OT problem through the Sinkhorn’s
matrix scaling algorithm.

The Sinkhorn Iteration converts the OT optimization tar-
get into a non-linear but convex form with an entropic reg-
ularization term R, which can be formulated as below:

min
Γij∈Γ
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Γijcij + λR(Γij), (1)

where R(Γij) = Γij(log Γij − 1), and λ is a regulariza-
tion coefficient. According to the Sinkhorn-Knopp Itera-
tion method [2, 13], vi and uj are introduced for updating
the solution:
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where Kij = e(−cij/λ). After performing the iteration for
T times, the optimal plan Γ can be obtained as:

Γ = diag(u)Kdiag(v). (3)

B. Semantic Map Learning
The local LAB affinity and the long-range RGB affinity

are integrated to generate the accurate semantic map P s for
the unlabeled regions. In the following, we introduce the
two loss terms in detail.

Local LAB Loss. As in [14], the local LAB loss LLAB
sem

explores the color similarity SLAB in LAB color space of
the input image with the local kernel. SLAB is defined as
follows:

SLAB = S(ri, rj)
j∈N8(i)

= exp

(
−∥ri − rj∥

θ1

)
, (4)
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where ri is the LAB color value of pixel i and N8(i) denotes
its eight local neighbors. θ1 is the constant parameter. The
LLAB
sem loss term is formulated as follows:

LLAB
sem = − 1

z1

n∑
i=1

∑
j∈N8(i)

1{SLAB
i,j ≥τ}logP

s
i
TP s

j , (5)

where z1 =
∑n

i=1

∑
j∈N8(i)

1{SLAB
i,j ≥τ}. 1{SLAB

i,j ≥τ} is
the indicator function, being 1 if SLAB

i,j ≥ τ and 0 other-
wise. As in [14], τ is set to 0.3 and θ1 is set to 2 by default.

Long-range RGB Loss. Similar to [12], the long-range
RGB loss LRGB

sem absorbs the global pixel affinity in RGB
space. Each pixel in the input image can be constructed by
the global RGB pixel similarity SRGB through the mini-
mum spanning tree (MST) algorithm. The pixel similarity
SRGB in each tree-connected edge E is defined as follows:

SRGB = S(ri, rj)
(l,k)∈E(i,j)

= exp
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)
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where ri is the RGB pixel value of pixel i. l and k are the
adjacent pixels in the tree-connected edge Ei,j . Like θ1, θ2
is a constant value, which is set to 0.02 by default. The
Lsem
RGB loss term is defined as:
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where z2 =
∑

j SRGB
i,j , and Ω denotes the set of pixels in

P s.

C. Additional Results
C.1. Performance on Multiple Point Labels

To further investigate the effectiveness of our approach
with multiple point labels, we conduct the experiments
with ten-points annotation per target. The results of fully
mask-supervised and single point-supervised methods are
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Method Backbone Supervision VOC 2012 COCO

PQ PQth PQst PQ PQth PQst

Panoptic FPN [5] ResNet-50 M 65.7 64.5 90.8 41.5 48.3 31.2
Panoptic FCN [10] ResNet-50 M 67.9 66.6 92.9 43.6 49.3 35.0
Panoptic SegFormer [11] ResNet-50 M 67.9 66.6 92.7 48.0 52.3 41.5
PSPS [3] ResNet-50 P 49.8 47.8 89.5 29.3 29.3 29.4
Point2Mask (Ours) ResNet-50 P 54.2 52.4 90.3 32.4 32.6 32.2
Panoptic FCN [10] ResNet-50 P10 48.0 46.2 85.2 31.2 35.7 24.3
PSPS [3] ResNet-50 P10 56.6 54.8 91.4 33.1 33.6 32.2
Point2Mask (Ours) ResNet-50 P10 59.1 57.5 91.8 35.2 36.1 34.0
Point2Mask (Ours) ResNet-101 P10 60.2 58.6 92.1 36.7 37.3 35.7

Table A1: Performance comparison on Pascal VOC val and COCO val2017. M is pixel-wise mask label. P and P10

denote 1 and 10 point labels per target, respectively. The results with M and P supervision are listed as reference to illustrate
the performance with 10 point labels.

Iter. Num. PQ PQth PQst

40 53.0 51.2 90.1
60 53.5 51.7 90.1
80 53.8 51.9 90.5

100 52.7 50.8 90.1
120 52.2 50.3 90.2

Table A2: The results with different number of iterations in
the Sinkhorn Iteration.

also listed as reference. As shown in Table A1, we com-
pare Point2Mask with the state-of-the-art methods, includ-
ing Panoptic FCN [10] and PSPS [3] with ten-points la-
bels on Pascal VOC and COCO datasets. With ResNet-50
backbone, Point2Mask outperforms Panoptic FCN [10] by
11.1% PQ (59.1% vs. 48.0%) on Pascal VOC and 4.0% PQ
(31.2% vs. 35.2%) on COCO. Compared with PSPS [3],
Point2Mask surpasses PSPS [3] by 2.5% PQ and 2.1%
PQ on Pascal VOC and COCO, respectively. Furthermore,
Point2Mask achieves more competitive performance with
60.2% PQ on Pascal VOC and 36.7% PQ on COCO using
ResNet-101 backbone.

C.2. Hyper-parameter Selection in OT

We perform the following experiments to examine the
impact of hyper-parameters in our proposed OT-based
method.

Different Number of Sinkhorn Iterations. We per-
form Sinkhorn Iteration with different number of iterations
to solve the OT problem. Table A2 reports the panoptic seg-
mentation results. When the iteration number is set to 80,
Point2Mask achieves the best performance with 53.8% PQ.

Impact of β. In our paper, β in Eq. 3 indicates the impor-
tance of boundary map P b to calculate the pixel-to-gt cost
ci,j . Table A3 shows the results with different values of β.
When β = 0.1, Point2Mask obtains the best performance.

β PQ PQth PQst

1.0 52.3 50.4 90.2
0.5 52.4 50.5 90.2
0.2 52.8 50.9 90.3
0.1 53.8 51.9 90.5
0.05 53.1 51.2 90.1
0.01 51.9 50.0 89.6

Table A3: Results with different values of β in Eq. 3 of the
main paper.

Figure A1: Visual examples of high-level boundary map.
The accurate boundary for thing-based objects can be learnt.

This indicates that the cost from instance-wise boundary
map P b plays a complementary role to the main cost term
based on the category-wise semantic map P s. Furthermore,
the visual examples of learnt high-level boundary P b

high are
shown in Fig. A1.

C.3. More Visualization Results

To further illustrate the performance of our single point-
supervised approach, we give more visualization results.

Fig. A2 shows the qualitative comparison with the state-
of-the-art method PSPS [3]. It can be seen that our proposed
Point2Mask approach is able to find the ambiguous loca-
tions of nearby instances precisely. This demonstrates that
our OT-based approach can discriminate the thing-based
targets with the accurate boundaries. In addition, Fig. A3



provides the panoptic segmentation results of Point2Mask
on general COCO and Pascal VOC datasets.

D. Discussion
Differences against the existing works. Like previous

weakly-supervised methods [3, 14, 9, 8], our method aims
to achieve high-quality segmentation with the label-efficient
sparse labels, which is different from the existing prompt-
able segmentation model [6] with a large amount of data
and the corresponding mask labels.

We adopt the same base architecture as PSPS [3], i.e.,
generating pseudo labels firstly and then training the panop-
tic segmentation branch. To generate the panoptic pseudo
labels, both our method and PSPS [3] employ the category-
wise and instance-wise representations. For category-wise
representation, we firstly employ the local LAB and long-
range RGB pixel similarities (Sec.3.4.1), instead of the lo-
cal LAB semantic parsing only as in [3]. Secondly, for
instance-wise representation, we adopt the boundary map
and define different distance functions. Compared with
the high-level manifold cues in [3], the boundary map is
more suitable for the shortest path-based implementation to
calculate the instance-wise differences. More importantly,
the key difference lies in the presented OT formulation for
global assignment to generate more accurate mask labels.

Limitations. For the dense objects with the same cat-
egories, such as in autonomous driving and remote sens-
ing scenarios, the proposed method may not perform well
with the supervision of only a single point label. Bet-
ter performance can be obtained by adopting the more
powerful segmentation network, like Mask2Former [1] and
MaskDINO [7], into our method.
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Figure A2: Qualitative comparisons on Pascal VOC. The left two columns show that Point2Mask can precisely discriminate
the nearby instances of the same category. The right two columns indicate that Point2Mask can obtain more fine-grained
boundaries.



Figure A3: Visual examples of panoptic segmentation by our Point2Mask with single point label per target on COCO and
Pascal VOC datasets.


