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This paper presents a simple yet efficient image retrieval approach by proposing a new image feature

detector and descriptor, namely the micro-structure descriptor (MSD). The micro-structures are defined

based on an edge orientation similarity, and the MSD is built based on the underlying colors in micro-

structures with similar edge orientation. With micro-structures serving as a bridge, the MSD extracts

features by simulating human early visual processing and it effectively integrates color, texture, shape

and color layout information as a whole for image retrieval. The proposed MSD algorithm has high

indexing performance and low dimensionality. Specifically, it has only 72 dimensions for full color

images, and hence it is very efficient for image retrieval. The proposed method is extensively tested on

Corel datasets with 15,000 natural images. The results demonstrate that it is much more efficient and

effective than representative feature descriptors, such as Gabor features and multi-textons histogram,

for image retrieval.

Crown Copyright & 2011 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Images and graphics are among the most important media
formats for human communication and they provide a rich
amount of information for people to understand the world. With
the rapid development of digital imaging techniques and internet,
more and more images are available to public. Consequently,
there is an increasingly high demand for effective and efficient
image indexing and retrieval methods, and image retrieval has
become one of the most popular topics in the field of pattern
recognition and artificial intelligence. An image retrieval system
is a computer system for browsing, searching and retrieving
images from a large volume of digital images. Generally speaking,
there are three categories of image retrieval methods, i.e., text-
based, content-based and semantic-based methods.

The origin of text-based approaches for image retrieval can be
traced back to 1970s. However with the widely spread digital
imaging devices, textual annotation of images becomes imprac-
tical and inefficient for image representation and retrieval. Con-
tent-based image retrieval (CBIR) was then emerging in 1980s [1].
In the past three decades, researchers have successfully devel-
oped many CBIR systems, including QIBC, MARS, Virage, Photo-
book, FIDS, Web Seek, Netra and SIMPLIcity. Since color, texture
011 Published by Elsevier Ltd. All
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and shape features cannot sufficiently represent image semantics,
recently semantic-based image retrieval techniques have been
explored [1]. Nonetheless, due to the limitations of current
artificial intelligence and related techniques, semantic-based
image retrieval is still an open problem. So far, CBIR is the most
important and effective image retrieval method and CBIR systems
are being widely studied in both academia and industry.

It is known that human visual attention is enhanced through a
process of competing interactions among neurons, which selects a
few elements of attention and suppresses irrelevant materials [2].
There are close relationships between low-level visual features
and human visual attention system, and hence the research on
how to use visual perception mechanism for image retrieval is an
important yet challenging problem. In order to extract features
via simulating visual processing procedures and effectively inte-
grate color, texture, shape features and image color layout
information as a whole for image retrieval, in this paper we
propose a novel feature detector and descriptor, namely micro-
structures descriptors (MSD), to describe image features via
micro-structures.

The micro-structures are defined by computing edge orienta-
tion similarity and the underlying colors, which can effectively
represent image local features. The underlying colors refer to
those colors that have similar edge orientation, and they can
mimic human color perception well. With micro-structures ser-
ving as a bridge, the MSD can extract and describe color, texture
and shape features simultaneously. The MSD has advantages of
both statistical and structural texture description approaches.
rights reserved.
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In addition, the MSD algorithm simulates human visual percep-
tion mechanism to some extent. Our experiments on large-scale
datasets show that the MSD achieves higher retrieval precision
than representative texture feature descriptors, such as Gabor
feature [3] and our previous work called multi-textons histogram
(MTH) [4], for image retrieval.

The rest of this paper is organized as follows. In Section 2,
related works are introduced. The MSD scheme is presented
in Section 3. In Section 4, the performance of the MSD in image
retrieval is evaluated and compared with Gabor features and MTH
on two Corel datasets. Section 5 concludes the paper.
2. Related works

Various algorithms have been designed to extract the color
and texture features for image retrieval. Color histogram is
invariant to orientation and scale and this makes it powerful in
image classification. Hence, color histogram-based image retrie-
val has been extensively studied and widely used in CBIR systems
for its simplicity and effectiveness. However, color histogram is
difficult to characterize image spatial structures. Therefore, color
descriptors have been proposed to exploit the spatial information,
e.g. compact color moments, color coherence vector and color
correlograms [5]. In the MPEG-7 standard, the color descriptors
consist of a number of histogram descriptors, such as dominant
color descriptor, color layout descriptor (CLD) and scalable color
descriptor (SCD) [6]. Texture features provide an important
information of the smoothness, coarseness and regularity of many
real-world objects such as fruit, skin, clouds, trees, bricks and
fabric, etc. [7], and texture based algorithms are also widely used
in CBIR systems, including the gray level co-occurrence
matrices [8], Markov random field (MRF) model [9], Gabor
filtering [10], local binary pattern (LBP) [11], etc. The MPEG-7
standard adopts three texture descriptors: homogeneous texture
descriptor, texture browsing descriptor and the edge histogram
descriptor [10].

There are some algorithms that combine color and texture
features together, such as the integrative co-occurrence
matrix [12], texton co-occurrences matrix [13], multi-texton
histogram (MTH) [4], color edge co-occurrence histogram
(CECH) [14], color auto-correlograms [5], etc. Although computing
Gabor features separately for each channel can be used as a color-
texture descriptor, the computational burden of Gabor filtering is
relatively big.

Apart from color and texture features, the shape features are
also used in CBIR. Classical methods include moment invar-
iants [15],[16], Fourier transform coefficients [17],[18], edge
curvature and arc length [7]. In the MPEG-7 standard, three shape
descriptors are used for object-based image retrieval: 3-D shape
descriptor, region-based shape derived from Zernik moments and
curvature scale space (CSS) descriptor [10].

Local image feature extraction and description have been
attracting a lot of attention in recent years. Various feature
descriptors have been proposed by emphasizing different image
properties such as pixel intensities, color, texture and edges.
Many of them are distribution-based, such as the SIFT descrip-
tor [19], PCA-SIFT descriptor [20], GLOH descriptor [21], SURF
descriptor [22], shape context [23], generalized correlograms [24]
and CS-LBP algorithm [25]. These methods use histograms to
represent different characteristics of image appearance or object
shape without requiring segmentation. Local features have advan-
tages that they are tolerant to certain illumination changes,
perspective distortions, image transformations, and they are very
robust to occlusion.
Please cite this article as: G.-H. Liu, et al., Image retrieval base
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The idea of applying visual attention mechanism to image
retrieval and pattern recognition has been receiving increasing
attention over the past 30 years. Treisman [26] proposed a
hypothesis about the role of focused attention, and the feature-
integration theory of attention suggests that attention must be
directed serially to each stimulus in a display whenever conjunc-
tions of more than one separable feature are needed to character-
ize or distinguish the possible objects presented. The human
visual system exhibits remarkable ability to detect subtle differ-
ences in textures that are generated from an aggregate of
elements [27,28]. Color and texture have close relationship in
terms of fundamental elements and they are considered as atoms
for pre-attentive human visual perception. The term ‘‘texton’’ was
conceptually proposed by Julesz twenty years ago [27]. Chen [29]
demonstrated that the visual system is sensitive to global topo-
logical properties via three experiments on tachistoscopic percep-
tion of visual stimuli. The results indicate that an extraction of
global topological properties is a basic factor in perceptual
organization.

To address the fundamental question of what the primitives of
visual perception are, a theory of ‘‘early topological perception’’
has been proposed [29,30]. Mishkin et al. proposed that the visual
system is organized hierarchically into two separate cortical
visual pathways, one specialized for the object vision and the
other for the spatial vision [31]. Goodale and Miler [32] proposed
a ‘what’ versus ‘how’ division for the primate posterior cerebral
cortex. According to Goodale and Milner’s framework, the role of
the dorsal pathway is primarily about transforming perception
into action, and the ‘how’ model can be considered as a general-
ization of the ‘where’ model [32]. Lindeberg developed a frame-
work for detecting salient blob-like objects without relying on
priori information [33]. Itti et al. proposed a saliency model about
visual attention [34]. In the saliency model, an input image is
filtered in a number of low-level visual ‘‘feature channels’’ at
multiple spatial scales for extracting features of color, intensity
and orientation. Developing computational models that describe
how attention is deployed within a given scene has been an
important challenge for computational neuroscience [35].
3. Micro-structure descriptor (MSD)

The contents in digital images can vary significantly so that
directly comparing them is infeasible for applications such as
image retrieval. However, the local structures of images from the
same class (e.g. textile, mountains, etc.) often show a certain
amount of similarity. The structural approach assumes that
texture is formed with simple primitives called ‘‘texels’’ (texture
elements) by following some placement rules. For example, the
local binary pattern [11] can be considered as a type of texture
elements. A typical example of ‘‘texels’’ is Julesz’s textons the-
ory [27],[28], but it emphasizes on regular texture images. To
address this problem, the concept of micro-structures is proposed
in this paper for image retrieval. In some sense, we may think that
the meaningful content of natural images is composed of many
universal micro-structures. Therefore, if we could extract these
micro-structures and describe them effectively, they can serve as
common bases for the comparison and analyses of different
images. This is the essential idea of this paper, and we call the
proposed technique micro-structure descriptor (MSD).

One main problem of the MSD is how to define micro-
structures. As an early feature-analysis approach, the feature-
integration theory [26] proposed by Treisman adopts a ‘two stage
model’. In the pre-attentive stage, primitive features such as
colors and orientation are extracted effortlessly and registered
in special modules of feature maps. In the attentive stage, focal
d on micro-structure descriptor, Pattern Recognition (2011),
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attention is required to recombine the separate features to form
objects [26,30]. This two stage model of feature-integration
theory inspires the proposed MSD framework.

For a full color image g(x,y) of size W�N, we transform the
RGB color space to HSV color space for detecting the micro-
structure features. In the HSV color space, we quantize the color
image into 72 colors and detect the edge orientation. Then, the
micro-structures are defined in the edge orientation image, and
the MSD is built based on the underlying colors in micro-
structures. Finally, the MSD is used to represent the image
features for image retrieval. In the following, we describe these
steps in detail.

3.1. HSV color space and color quantization

The HSV color space is defined in terms of three components:
Hue (H), Saturation (S) and Value (V). The HSV color space can be
modeled as a cylinder [7,36,37]. The H component describes the
color type. It ranges 0–3601, with red at 01, green at 1201 and blue
at 2401. The S component refers to the relative purity or how
much the color is polluted with white color. It ranges 0–1. The
lower the saturation of a color is, the more ‘‘grayness’’ will be
presented and the more faded color will appear. The V component
is used for the amount of black that is mixed with a hue, or
represents the brightness of the color. It ranges 0–1.

It is well-known that color provides powerful information for
image retrieval or object recognition, even in the absence of shape
information. The human eye cannot perceive a large number of
colors at the same time, but it is able to distinguish similar colors
well. The HSV color space could mimic human color perception
well. In this paper, the HSV color space is adopted and we
uniformly quantize the color image into 72 colors. Specifically
the H, S and V color channels are uniformly quantized into 8,
3 and 3 bins, respectively, so that in total 8�3�3¼72 color
combinations are obtained. The quantized color image is denoted
by C(x,y), and C(x,y)¼w,wA{0,1, y, 71}.

3.2. Edge orientation detection in HSV color space

Edge orientation has strong influence on image perception. For
instance, orientation is one of the most important texton char-
acteristics used in pre-attentive vision [7,27,28]. The orientation
map in an image represents the object boundaries and texture
structures, and it provides most of the semantic information in
the image. Therefore, orientation detection is an important low
level image processing procedure. Many existing edge detectors,
such as Sobel operator, the Prewitt operator, the Robert operator,
the LOG operator and the canny operator, can be used for
orientation detection. However, all these edge detectors are
designed for gray level images, while a color image has three
color channels. If we apply the edge detector to the three channels
separately, some edges caused by the spectral variations may be
missed. If we convert the full color image into a gray image, and
then detect the gradient magnitude and orientation, much chro-
matic information will be lost. In this section, we adopt the
following method in HSV color space, so that the MSD can be
easily constructed in a unified framework for color images.

In Cartesian space, the dot product of vectors a(x1,y1,z1) and
b(x2,y2,z2) is defined as

ab¼ x1x2þy1y2þz1z2 ð1Þ

so that

cos da, b
� �

¼
ab

aj j b
�� �� ¼ x1x2þy1y2þz1z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
1þy2

1þz2
1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2

q ð2Þ
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Because the HSV color space is based on the cylinder coordi-
nate system, we transform it into Cartesian coordinate system
to calculate the angle between vectors. Let (H,S,V) be a point in
the cylinder coordinate system, and (H0,S0,V0) be the transforma-
tion of (H,S,V) in Cartesian coordinate system, H0 ¼ S � cosðHÞ, Su ¼

S � sinðHÞ and V0 ¼V. We apply Sobel operator to each of H0, S0 and
V0 channels of a color image g(x,y) in Cartesian coordinate system.
The reason that we use Sobel operator is that it is less sensitive to
noise than other gradient operators or edge detectors, while being
very efficient [7]. The gradients along x and y directions can then
be denoted by two vectors aðH’

x, S’
x, V ’

xÞ and bðH’
y, S’

y, V ’
yÞ, where H’

x

denotes the gradient in H0 channel along the horizontal direction,
and so on. Their norm and dot product can be defined as

9a9¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The angle between a and b is then

cos da, b
� �

¼
ab

9a99b9
ð6Þ

y¼ arccos da, b
� �

¼ arccos
ab

9a9 � 9b9

" #
ð7Þ

After the edge orientation y of each pixel is computed, the
orientation is uniformly quantized into m bins, where
mA{6,12,18,24,30,36}. Denoted by y(x,y) the edge orientation
map, as y(x,y)¼f,fA{0,1, y, m}. In Section 4.4, the experiments
demonstrated that using six bins in HSV color space works well
under our framework. Thus, the orientations are quantized into
six bins with an interval of 301.

3.3. Micro-structure definition and map extraction

Natural scenes are rich in color, texture and shape information,
and a wide range of natural images can be considered as a mosaic
of regions with different colors, textures and shapes. Edge
orientation plays an important role in the human visual system
for recognition and interpretation [1]. It contains rich texture and
shape information. The approaches to texture description can be
roughly classified into three categories: statistical, spectral and
structural methods [7]. The statistical approach characterizes
texture by its gray level statistics. The spectral approach is based
on power spectral analysis and filtering theory in the frequency
domain. The structural approach assumes that texture is formed
with simple primitives called ‘‘texels’’ (texture elements) by
following some placement rules.

A typical example of ‘‘texels’’ method is Julesz’s texton the-
ory [27,28]. In general, textons are defined as a set of blobs or
emergent patterns sharing a common property; however, defin-
ing textons remains a challenge. Based on the texton theory,
texture can be decomposed into elementary units: the texton
classes of colors, elongated blobs of specific widths, orientation
and aspect ratios and the terminators of these elongated blobs. In
Julesz’s texton theory, it does not specify details of spatial
confinement of line segments and does not specify exactly the
line segments. Moreover Julesz’s texton theory does not consider
color or natural images.

Human visual system is sensitive to orientation and color.
Orientation is a powerful visual cue about the subject depicted in
an image. Strong orientation usually indicates a definite pattern;
however, many natural scenes do not show strong orientation and
have no clear structure or specific pattern. Although the natural
d on micro-structure descriptor, Pattern Recognition (2011),
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images show various contents, they may have some common
fundamental elements. The different combination and spatial dis-
tribution of those basic elements result in the various micro-struc-
tures or patterns in the natural images. In this paper, micro-structures
are defined as the collection of certain underlying colors. The under-
lying colors are those colors which have similar or the same edge
orientation in uniform color space. The highlight of underlying colors
is that they can combine color, texture and shape cues as a whole.
Julesz’s texton theory mainly focuses on analyzing regular textures,
while the micro-structures can be considered as the extension of
Julesz’s textons or the color version of textons. Since micro-structures
involve color, texture and shape information, they can better present
image features for image retrieval.

In order to find the micro-structures, which have similar attributes
such as edge orientation and color distribution, we partition the
image into many small blocks, which can be a grid of size 2�2, 3�3,
5�5, 7�7 and so on. For the convenience of expression, the 3�3
block is used in the following development of micro-structure
analysis. The edge orientation image y(x,y) is used to define micro-
structures, because an edge orientation is insensitive to color and
illumination variation and it is independent of translation, scaling and
small rotation [7]. Note that since we quantize the orientation into six
levels, the values of the pixels in y(x,y) can only vary from 0 to 5. We
move the 3�3 block from left-to-right and top-to-bottom through-
out the image to detect micro-structures.

In the 3�3 block, if one of the eight nearest neighbors has the
same value as the center pixel, then it is kept unchanged;
otherwise it is set to empty. If all the eight nearest neighboring
pixels are empty, then the 3�3 block is not considered as
a micro-structure and all pixels in the 3�3 block will be set
to empty. The pattern resulted from this operation is called a
fundamental micro-structure. Fig. 1 shows an example of the
micro-structure detection process.

Suppose there is an edge orientation map y(x,y) of size W�N.
When we move the 3�3 block from left-to-right and top-to-
bottom throughout the image, the detected fundamental micro-
structures in a neighborhood can overlap. To obtain a final single
micro-structure map of the whole image, we use a simple five-
step strategy described as follows.
(1)
Fig.
fund

Pl
do
Starting from the origin (0,0), we move the 3�3 block from
left-to-right and top-to-bottom throughout the edge orienta-
tion image y(x,y) with a step-length of three pixels along both
horizontal and vertical directions. Then, we will obtain a
micro-structure map, denoted by M1(x,y), where 0rx

rW�1, 0ryrN�1.

(2)
 Starting from the location (1,0), we move the 3�3 block from

left-to-right and top-to-bottom with a step-length of three
pixels along both horizontal and vertical directions. Then, a
micro-structure map M2(x,y) is obtained, where 1rxrW�1,
0ryrN�1.
(3)
 Similarly starting from location (0,1), we can have the third
micro-structure map M3(x,y), where 0rxrW�1, 1ryrN�1.
1. An example of micro-structure detection: (a) a 3�3 grid of edge orientation ma

amental micro-structure.
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p; (b

d o
Starting from location (1,1), we can have the fourth micro-
structure map M4(x,y), where 1rxrW�1, 1ryrN�1.
(5)
 The final micro-structure map, denoted by M(x,y), is obtained
by fusing the four maps based on the following rule:
Mðx, yÞ ¼MaxfM1ðx, yÞ, M2ðx, yÞ, M3ðx, yÞ, M4ðx, yÞg ð8Þ

Fig. 2 uses an example to illustrate the above micro-structure
map extraction process. Fig. 2(a) shows the extraction of micro-
structure map M1(x,y). Maps M2(x,y), M3(x,y) and M4(x,y) can be
extracted similarly. Fig. 2(b) then shows the fusion of the four
maps to form the final micro-structure map M(x,y).

3.4. Micro-structure image

According to the neuropsychological findings, different types
of stimulus are processed separately, yet simultaneously, by
different neural mechanisms before the stimulus is consciously
perceived as a whole [2]. The color and orientation information is
processed separately, but simultaneously. After the micro-struc-
ture map M(x,y) is extracted from the edge orientation image
y(x,y), we use it as a mask to extract the underlying colors
information from the quantized image C(x,y). Fig. 3 illustrates
this process. Fig. 3(a) shows the micro-structure map; Fig. 3(b) is
the color image; by imposing the micro-structure map on the
image, as shown in Fig. 3(c), finally we get the micro-structure
image by preserving only the colors in the micro-structure map,
as shown in Fig. 3(d). All the colors outside the map are set to
empty. For the convenience of expression, we use f(x,y) to denote
the micro-structure image. Clearly, in the formation of micro-
structure image, not only the edge features, but also the color
features are exploited. That is, the micro-structure map serves as a
bridge to combine the color, texture and shape features as a whole.

3.5. Micro-structure feature representation

After the micro-structure image is extracted, the next step is how
to describe its features so that the different images can be compared
for retrieval. However, a main problem is how to stimulate visual
processing to a certain extent. There are some frameworks for
understanding the ventral versus dorsal organization of the posterior
cortex: cortical visual systems and visuomotor systems [38]. They are
often known as the ‘what/where’ and ‘‘what/how’ pathways. The
cortical visual system hypothesis is widely accepted, but still con-
troversial. It describes two information processing streams originating
in the occipital cortex, dorsal stream and ventral stream [31],[38]. The
‘what/where’ pathways are responsible for object identification (e.g.
color and shape) and object location (e.g. position and motion),
respectively. The ‘how’ pathway can be considered as a generalization
of the ‘where’ pathway, and it transforms perception into action [32].
Those analyses provide an insight into the nature of attributes
determining the relationship of image feature representation and
visual attention mechanism.
)–(c) show the micro-structure detection process; and (d) shows the detected

n micro-structure descriptor, Pattern Recognition (2011),
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Fig. 3. Micro-structure image formation. (a) The detected micro-structure map M(x,y); (b) the quantized color image C(x,y); (c) imposing the micro-structure map on the

image; and (d) the obtained micro-structure image f(x,y) by keeping only the colors within the micro-structure map.

Fig. 2. Illustration of micro-structure map extraction. (a) Shows the extraction micro-structure mapM1(x,y). Maps M2(x,y), M3(x,y) and M4(x,y) can be extracted similarly.

(b) Shows the fusion of the four maps to form the final micro-structure map M(x,y).
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A typical visual scene contains many different objects, not all
of which can be fully processed by the visual system. Human
visual attention is enhanced through a process of competing
interactions among neurons representing all of the stimuli pre-
sented in the visual field, and only a few points of attention
are selected while the other irrelevant materials are sup-
pressed [2,39]. According to this viewpoint, a behaviorally rele-
vant object in a cluttered field is found by rapidly shifting
the spotlight from one object in the scene to the next, until the
sought-for object is found [2]. In the proposed algorithm, the
stimuli are the similar color pixels in the micro-structure images.

In order to describe image features via simulating the visual
attention mechanism to some extent, we implement the proposed
algorithm according to the following rules: (1) what the micro-
structure is; (2) where the micro-structure is; (3) how the micro-
structure correlates with others. (1) and (2) are about the repre-
sentation of the perception image, and (3) is about the spatial
abstraction of the micro-structures in a human brain. According to
these rules, the proposed algorithm can be expressed as follows.

Values of a micro-structure image f(x,y) is denoted as
f(x,y)¼w,wA{0,1, y, L�1}. In each 3�3 block of f(x,y), denoted
Please cite this article as: G.-H. Liu, et al., Image retrieval base
doi:10.1016/j.patcog.2011.02.003
by P0¼(x0,y0) the center position of it and let f(P0)¼w0. Denoted
by Pi¼(xi,yi) the eight nearest neighbors to P0 and let f(Pi)¼wi,
i¼1,2, y, 8. Denoted by N the co-occurring number of values w0

and wi, and by N the occurring number of w0. Moving the 3�3
block from left-to-right and top-to-bottom throughout the micro-
structure image, we use the following equation to describe the
micro-structure features

Hðw0Þ ¼

N f ðp0Þ ¼ w0Lf ðpiÞ ¼ wi99pi�p09 ¼ 1f g
8 Nff ðp0Þ ¼ w0g

where w0 ¼wi, i A f1, 2, . . ., 8g

8<: ð9Þ

The dimensionality of H(w0) is 72 for color images. It can
express how the spatial correlation of neighboring underlying
colors distributes in the micro-structures image. Fig. 4 shows two
examples of the proposed MSD.

The micro-structure image is only a part of the full color
image. It fits the attribute of the human visual system, in that it
selects only a few points of attention and suppresses the irrele-
vant material. Generally speaking, the proposed algorithm not
only describes ‘‘what’’ and ‘‘how’’ colors and orientations are
used, but also specifies ‘‘where’’ and ‘‘how’’ the color and
d on micro-structure descriptor, Pattern Recognition (2011),
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Fig. 4. Two examples of an MSD: (a) sailing ship and (b) bus.
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orientation components are distributed within a certain distance
in the visual scenery. The MSD can describe the different combi-
nation and spatial distribution of the micro-structures, so it has
the discrimination power of color, texture, shape features and
color layout information.
4. Experimental results

For a fair evaluation of MSD’s performance in image retrieval,
we selected those algorithms which are specifically developed for
image retrieval, such as Gabor features [3] and multi-textons
histogram (MTH) [4], in the experiments for comparison. In
the experiments, we selected randomly 50 images from each
category as query images. The performance is evaluated by the
average result of each query. An online image retrieval system by
the proposed method is available at: http://www.ci.gxnu.cn/cbir/.

The well-known local feature descriptors, LBP, SIFT and SURF
descriptors, were originally developed for texture classification
and image matching. In the SIFT and SURF descriptors, each
keypoint has a 128 and 64 dimensional feature vector, respec-
tively. This will lead to a very high dimensional descriptor for
large scale image retrieval, because each image will have many
keypoints. It is not suitable to use SIFT and SURF directly for
image retrieval, especially for large scale image datasets. The LBP
algorithm was originally developed for texture classification
or analysis, and it cannot describe the smooth areas well. The
CS-LBP [25] incorporates the advantage of SIFT algorithm and it
can overcome this limitation. However, it is developed for object
recognition, but not for image retrieval. With the above consid-
erations, we compare MSD with Gabor features and MTH in the
following experiments. The source code of our MSD algorithm can
be downloaded at http://www4.comp.polyu.edu.hk/�cslzhang/
code/MSD.rar

4.1. Datasets

So far there are no standard test dataset and performance
evaluation model for CBIR systems [1]. Most of the researchers
Please cite this article as: G.-H. Liu, et al., Image retrieval base
doi:10.1016/j.patcog.2011.02.003
use Corel image dataset to test image retrieval performance,
while some researchers use self-collected images or Brodatz and
Outex texture datasets in experiments. However, Corel dataset
has become a de-facto standard in demonstrating the perfor-
mance of CBIR systems. In this section, we evaluate the perfor-
mance of our method by using Corel dataset. All Corel images
come from Corel Gallery Magic 20, 0000 (8 cds).

Corel image database contains a large amount of images of
various contents ranging from animals and outdoor sports to
natural scenarios. Two Corel datasets are used in our image
retrieval systems. The first one is Corel-5000 dataset, which
contains 50 categories. There are 5000 images from diverse
contents such as fireworks, bark, microscopic, tile, food texture,
tree, wave, pills and stained glass. Each category contains 100
images of size 192�128 in the JPEG format. The second dataset is
Corel-10,000 dataset. It contains 100 categories, and there are
10,000 images from diverse contents such as sunset, beach,
flower, building, car, horses, mountains, fish, food, door, etc. Each
category contains 100 images of size 192�128 in the JPEG
format. Corel-10,000 dataset contains all categories of Corel-
5000 dataset.
4.2. Distance measure

For each template image in the dataset, an M-dimensional
feature vector T¼[T1,T2, y, TM] is extracted and stored in the
database. Let Q¼[Q1,Q2, y, QM] be the feature vector of a query
image, the L1 distance between them is simply calculated as

DðT , Q Þ ¼
XM
i ¼ 1

9Ti�Qi9 ð10Þ

The L1 distance is simple to calculate, which needs no square
or square root operations. It can save much computational cost
and is very suitable for large scale image datasets. For the
proposed MSD, M¼72 for color images. The class label of the
template image, which yields the smallest distance, is assigned to
the query image.
d on micro-structure descriptor, Pattern Recognition (2011),
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4.3. Performance evaluation metrics

The precision and recall indices are used to evaluate the
performance of the proposed method. The two indices are the
most commonly used measurements for evaluating image retrie-
val performance. Precision is the ratio of the number of retrieved
similar images to the number of retrieved images, while recall is
the ratio of the number of retrieved similar images to the total
number of similar images. They are defined as follows:

P¼ IN=N ð11Þ

R¼ IN=K ð12Þ

where IN is the number of similar images retrieved, N is the total
number of images retrieved and K is the total number of similar
images. In our image retrieval system, we set N¼12 and K¼100 for
Corel datasets.

4.4. Retrieval results

We use the RGB, HSV and Lab color spaces to evaluate the
retrieval performance. The average retrieval precisions and recalls
are listed in Tables 1–3. According to the retrieval results, the
proposed algorithm achieves the best retrieval performance in
the HSV color space. The retrieval precision may decrease when
the number of quantization levels is too high. And a too
Table 1
The average retrieval precision and recall of the MSD under different color and orienta

Color quantization levels Texture orientation quantization levels

Precision (%)

6 12 18 24 30

128 50.46 50.24 50.03 49.71 49.7

64 49.42 49.32 48.77 48.87 48.8

32 46.70 46.89 46.31 46.28 46.5

16 39.08 39.53 39.31 39.47 39.1

Table 2
The average retrieval precision and recall of the MSD under different color and orienta

Color quantization levels Texture orientation quantization levels

Precision (%)

6 12 18 24 30

192 58.04 57.9 57.74 57.45 57.6

128 58.06 57.58 57.84 57.74 57.5

108 56.89 56.54 56.45 56.73 56.7

72 55.92 55.95 56.02 56.15 56.5

Table 3
The average retrieval precision and recall of the MSD under different color and orienta

Color quantization levels Texture orientation quantization levels

Precision (%)

6 12 18 24 30

225 54.34 53.71 53.64 53.50 53.0

180 54.87 54.40 54.70 54.51 54.2

90 53.17 53.40 53.46 53.07 53.3

45 47.16 46.84 47.58 46.97 47.4

Please cite this article as: G.-H. Liu, et al., Image retrieval base
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fine quantization level cannot suppress the noise and variations
in the image. On the other hand, a finer quantization level
will lead to a higher dimensionality of the feature vector, so
that more storage space and more search time are required.
However, a too coarse quantization reduces the discrimination
power. For a good balance between retrieval accuracy, storage
space and retrieval speed, we set the color and orientation
quantization level in the MSD as 72 and 6 for image retrieval.
The proposed algorithm performs poorly in RGB color space,
because RGB color space is not perceptually uniform and does
not separate the luminance component from the chrominance
ones, and hence affect the retrieval performance of the proposed
algorithm.

The HSV and Lab color spaces are perceptually uniform. The
H component is particularly important in the HSV color space,
since it represents color in a manner that mimics human color
recognition. So we set the uniform quantization number of H

component bin(H)Z8, and other two components bin(S)Z3 and
bin(V)Z3, in the proposed framework. As can be seen from the
results in Tables 1–3, the proposed MSD works much better in
these two perceptually uniform color spaces than in the RGB color
space. In addition, the HSV color space has slightly better
performance than the Lab color space. Thus, the HSV color space
is employed in the proposed algorithm.

Table 4 lists the average retrieval precision and recall by the
MSD with different distances or similarity metrics. As can be seen
tion quantization levels on Corel-5000 dataset in RGB color space.

Recall (%)

36 6 12 18 24 30 36

9 50.01 6.06 6.03 6.00 5.97 5.98 6.00

9 49.14 5.93 5.92 5.85 5.86 5.87 5.90

1 46.52 5.61 5.63 5.56 5.56 5.58 5.58

8 39.26 4.69 4.75 4.72 4.74 4.70 4.71

tion quantization levels on Corel-5000 dataset in HSV color space.

Recall (%)

36 6 12 18 24 30 36

8 57.56 6.96 6.95 6.93 6.89 6.92 6.91

9 57.49 6.97 6.91 6.94 6.93 6.91 6.90

2 56.17 6.83 6.78 6.77 6.81 6.81 6.74

55.79 6.71 6.71 6.72 6.74 6.78 6.70

tion quantization levels on Corel -5000 dataset in Lab color space.

Recall (%)

36 6 12 18 24 30 36

9 53.36 6.52 6.45 6.44 6.42 6.37 6.40

6 54.42 6.59 6.53 6.56 6.54 6.51 6.53

4 53.30 6.38 6.41 6.42 6.37 6.40 6.40

1 47.36 5.66 5.62 5.71 5.64 5.69 5.69

d on micro-structure descriptor, Pattern Recognition (2011),
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Table 4
The average retrieval precision and recall by the MSD with different distances or similarity metrics.

Dataset Performance Distance or similarity metrics

Canberra L1 L2 Quadratic Weighted L1 Cos correlation Histogram intersection

Corel-5000 Precision (%) 49.73 55.92 55.92 24.76 55.25 54.08 34.41

Recall (%) 5.97 6.71 6.71 2.98 6.63 6.49 4.13

Corel-10,000 Precision (%) 40.05 45.62 45.62 19.01 45.14 43.49 23.83

Recall (%) 4.81 5.48 5.48 2.29 5.42 5.22 2.87

Table 5
The average retrieval precision and recall ratios by various methods on Corel

datasets.

Dataset Precision (%) Recall (%)

Gabor MTH MSD Gabor MTH MSD

Corel-5000 36.22 49.84 55.92 4.35 5.98 6.71

Corel-10000 29.15 41.44 45.62 3.50 4.97 5.48
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from it, among these distance or similarity metrics, L1 and L2

metrics perform the best and surpass other metrics, and the
quadratic metric gives the worst results. In the proposed frame-
work, we adopted L1 metric, but not L2 metric because the L1

distance is very simple to calculate and needs no square or square
root operations. It can save much computational cost and is very
suitable for large scale image datasets. The Canberra distance is
also simple to calculate and it obtains good precision in retrieval
experiments. As can be seen in Fig. 4, there are some bins whose
frequencies are close to zero. Thus, if we apply the histogram
intersection to the MSD, the probability that min(T,Q)¼0 will be
high and some false matches may appear. Therefore, the histo-
gram intersection is also not suitable to the proposed MSD as a
similarity metric.

L1, L2 and histogram intersection metrics belong to Bin-by-Bin
type; Canberra, weighted L1 and Cos correlation metrics belong to
the weighted type; and quadratic metric belongs to the Cross-Bin
type. As can be seen from Table 4, the L1 metric performs the best
and surpasses other Bin-by-Bin, Cross-Bin and weighted L1

metrics (in weighted L1 metric, 1/(1+Ti+Qi) is the weight).
Generally speaking, the Cross-Bin metric can obtain better
performance than that of Bin-by-Bin metric and histogram
intersection metric for color histogram-based image retrieval.
Indeed, the proposed algorithm is not a traditional color histo-
gram, but a specific histogram that combines color, orientation
and spatial layout information as a whole, so the quadratic form
metric is not suitable for this framework. However, the computa-
tion burden of the cross-bin type metric is also bigger than that of
the bin-by-bin type metrics. So we adopt the L1 metric in Eq. (10)
for matching.

The precision vs. recall results by Gabor feature, MTH and MSD
methods on the two Corel dataset are listed in Table 5. It can be
seen that the proposed MSD achieves much better performance
than the other methods. On Corel-5000 dataset, it outperforms
Gabor feature and MTH by 19.70% and 6.08%, respectively. On
Corel-10,000 dataset, MSD outperforms Gabor feature and MTH
by 16.47% and 4.48%, respectively, in terms of the average
retrieval precision.

To better illustrate the retrieval effectiveness of our algorithm,
we plot the precision-recall curves in Fig. 5. The horizontal axis
corresponds to the recall, while the vertical axis corresponds to
precision. In image retrieval, if a method achieves higher
Please cite this article as: G.-H. Liu, et al., Image retrieval base
doi:10.1016/j.patcog.2011.02.003
precision and recall for large answer sets, it is considered to be
better than others; if the average retrieval precision and recall is
higher, curves will go far from the origin of coordinate; if the
performance of two methods on some image categories are very
similar, part of their curves may be overlapped. In general, if the
performance of a method is low, its curve will be short and
concentrated on a certain field. If a method has reasonable
performance over each image category, its curve will be smooth.
If there are many significant turning points on curves, it means
that the performance is unstable. As can be seen from Fig. 5, MSD
performs much better than Gabor feature and MTH methods on
the two Corel datasets. Its precision vs. recall curve is far from the
origin of the coordinate. The number of turning points is few and
curve spans well for all image categories.

Figs. 6 and 7 show two examples of the image retrieval on
Corel-10,000 dataset by the proposed algorithm. As can be seen
from Fig. 6, on Corel-10000dataset, the retrieved images by MSD
have very similar color and texture features or scene contents.
From Fig. 7, we see that an MSD can describe color and shape
features well. Most of the retrieved images have very similar color
appearance to the query image. These examples validate that the
MSD can capture the common micro-structures of natural images,
and it can represent the distribution of edge orientation and color
features via micro-structures.

Many texture descriptors can obtain good performance only in
regular texture images. However, the performance of these
texture descriptors, such as EHD [6], Gabor feature [3,6,10,40],
etc., will be reduced when processing natural images. Gabor filter
is widely used to extract texture features for image retrieval,
because frequency and orientation representations of Gabor filter
are similar to those of the human visual system, and it has been
found to be particularly appropriate for texture representation
and discrimination [40]. However, as images in real-world often
have no homogenous textures or regular textures, the image
features obtained from Gabor filtering cannot represent the
property of real-world images well. On the other hand, the
texture feature only represents partial attribute of images, and
using a single attribute to describe image features is not accurate
enough for image retrieval.

MTH [4] combines the first- and second-order statistics into an
entity for the texton analysis, and thus the texture discrimination
power is greatly increased. The MTH can represent the spatial
correlation of edge orientation and color based on textons
analysis [4]. Its performance is better than that of Gabor filter.
The MTH analyzes the spatial correlation between neighboring
colors and edge orientations based on four special texton types,
while these four special texton types are only a part of many
texton types in the natural image. This limits the discrimination
power of the MTH, and makes the MTH hard to fully represent the
content of texton images.

The proposed MSD algorithm analyzes the spatial correlation
among neighboring micro-structures by the uniform color space.
The micro-structure can efficiently combine color, texture and
shape cue as a whole, so it can be considered as an extension of
d on micro-structure descriptor, Pattern Recognition (2011),
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Fig. 6. An example of image retrieval by the MSD on Corel �10,000 dataset. The query is a sailing ship image, and 9 images are correctly retrieved and ranked within the

top 12 images. (The top-left image is the query image, and the similar images include the query image itself.)

Fig. 5. The precision vs. recall curves by Gabor, MTH and MSD: (a) Corel-5000 dataset and (b) Corel-10,000 dataset.
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Julesz’s texton or the color version of texton. The MSD also
overcomes the drawback of the MTH by introducing micro-
structures and simulating human brain’s working procedures
for visual information processing. The MSD can describe the
different combination and spatial distribution of micro-struc-
tures, and has the discrimination power of color, texture, shape
features and layout information. At the same time, the vector
dimension in the proposed algorithm is smaller than that of the
MTH algorithm.

All experiments were conducted on an Intel (R) Core (TM)
2 Quad 2.83 GHz PC with 4 GB memory and the Windows XP
operating system. The image retrieval system is built in Visual C#
2010. During the course of features extraction for a natural image
of size 192�128, the average time usage of Gabor filter, MTH
and MSD are 1326.33, 71.18 and 54.64 ms, respectively. The
computational burden of implementing Gabor filter is the highest,
because it needs to perform filtering along various scales and
octaves. The time used by the MSD is mainly on the stage of
micro-structure analysis and description. According to the
Please cite this article as: G.-H. Liu, et al., Image retrieval base
doi:10.1016/j.patcog.2011.02.003
computation burdens, it is clear that the proposed algorithm is
very suitable for image retrieval on large scale image datasets.
5. Conclusion

A simple yet efficient image retrieval approach, namely micro-
structure descriptor (MSD), was developed in this paper. The
micro-structures are defined by an edge orientation similarity
with the underlying colors, which can effectively represent image
features. The underlying colors are colors with similar edge
orientation and can mimic the human color perception well. With
micro-structures serving as a bridge, the MSD can extract and
describe color, texture and shape features simultaneously. The
MSD has advantages of both statistical and structural texture
description approaches. In addition, this algorithm simulates
human visual perception mechanism to a certain extent. The
MSD algorithm has higher indexing performance and efficiency
for image retrieval, but lower dimensionality which is only 72 for
d on micro-structure descriptor, Pattern Recognition (2011),
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Fig. 7. An example of image retrieval by the MSD on Corel �10,000 dataset. The query is a bus image, and 11 images are correctly retrieved and ranked within the top

12 images. (The top-left image is the query image, and similar images include the query image itself.)
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full color images. Our experiments on large-scale datasets show
that the MSD achieves higher retrieval precision than the existing
representative image feature descriptors, such as Gabor feature
and MTH, for image retrieval. It has good discrimination power of
color, texture, shape features and layout information.
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