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A new region-based active contour model that embeds the image local information is proposed in this
paper. By introducing the local image fitting (LIF) energy to extract the local image information, our
model is able to segment images with intensity inhomogeneities. Moreover, a novel method based on
Gaussian filtering for variational level set is proposed to regularize the level set function. It can not only
ensure the smoothness of the level set function, but also eliminate the requirement of re-initialization,
which is very computationally expensive. Experiments show that the proposed method achieves similar
results to the LBF (local binary fitting) energy model but it is much more computationally efficient. In
addition, our approach maintains the sub-pixel accuracy and boundary regularization properties.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The active contour models (ACM) [1], which are based on the
theory of surface evolution and geometric flows, have been
extensively studied and successfully used in image processing.
The level set method proposed by Osher and Sethian [2] is widely
used in solving the problems of surface evolution. Later, geometric
flows were unified into the classic energy minimization formula-
tions for image segmentation [3-5,9-11,16,17,23]. Generally
speaking, the existing ACM methods can be classified into two
types: edge-based models [1-4,6,9,14,19,20,23] and region-based
models [5,7,8,10,11,16-18,21]. Each of them has its own pros and
cons.

The edge-based models utilize image gradient as an additional
constraint to stop the contours on the boundaries of desired
objects. Usually, a stopping function is used to attract the contours
to the desired boundaries. In order to enlarge the capture range of
the force, a balloon force term is often incorporated into the
evolution function, which controls the contour to shrink or
expand. However, it is difficult to choose a proper balloon force.
Either a too large or too small balloon force will result in
undesirable effects [10].

Region-based models utilize the image statistical information
to construct constraints, and have more advantages over edge-
based models. First, they do not use the image gradient, and can
successfully segment objects with weak boundaries or even
without boundaries. Second, the initial contour can start any-
where in the image, and the interior contours can be automati-
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cally detected. One of the most popular region-based models is
the C-V model [5], which has been successfully used in binary
phase segmentation with the assumption that each image region
is statistically homogeneous. However, the C-V model does not
work well for the images with intensity inhomogeneity. Vese and
Chan extended their work in [17] to utilize multiphase level set
functions to represent multiple regions. These models are called
the piecewise constant (PC) models. Nonetheless, both the C-V
and the PC models have the drawback described above.

In order to segment images with intensity inhomogeneities,
Vese and Chan [17] and Tsai et al. [16] proposed two similar
models, which are called piecewise smooth (PS) model. However,
these methods are computationally inefficient. More discussions
above the properties of PC model and PS model can be found in
[10,11]. Li et al. [10,11] proposed the LBF (local binary fitting)
model, which utilizes the local image information as constraints,
can well segment objects with intensity inhomogeneities.
Furthermore, LBF model has better performance than PC and PS
models in segmentation accuracy and computational efficiency.

In this paper, we propose a novel ACM model that can be used
to segment images with intensity inhomogeneities. We utilize the
local image information to construct a local image fitting (LIF)
energy functional, which can be viewed as a constraint of the
differences between the fitting image [10,11] and the original
image. Furthermore, a novel method is used to regularize the level
set function by using Gaussian kernel filtering after each iteration.
In addition, re-initialization is not needed in the proposed
method. The complexity analysis and experimental results show
that the proposed method is more efficient than the LBF model,
while yielding similar results.

The rest of the paper is organized as follows. In Section 2, we
review some classic models and indicate their limitations. Section
3 describes our model and its variational formulation. In Section 4,
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we validate our method by various experimentations on synthetic
and real images. Conclusion is made in Section 5.

2. Background
2.1. The Mumford and Shah (MS) model

In [8], Mumford and Shah formulated the image segmentation
problem as follows: find an optimal piecewise smooth approx-
imation function u of image I, which varies smoothly within each
sub-region Q; of image domain Q2 c R?, and rapidly or discontinu-
ously goes across the boundaries of ;. They proposed the
following energy functional:

EMS(u,C)z/(u—I)zdx+,u/ [Vu2dx+v|C|, xeQ 1)
Q Q/C

where |C| is the length of the contour C, u,v>0 are fixed
parameters.

The unknown set C and the non-convexity of the above energy
functional make it difficult to be minimized. Some alternative
methods have been proposed to simplify or modify the above
functional, including the two popular ones introduced as follows.

2.2. The C-V model

Chan and Vese [5] proposed an ACM based on the Mumford-
Shah model [8]. Let I : 2—R be an input image and C be a closed
curve, the energy functional is defined by

EYY(C,c1,c) = pt - length(C)+v - area(inside(C))

+/L]/ |I—C1\2dx+iz/ ‘I—Cz‘de, xeQ
inside(C) outside(C)

@)

where u >0, v>0, 41,4, > 0 are fixed parameters. The Euclidean
length term is used to regularize the contour. ¢; and c, are two
constants that approximate the image intensities inside and
outside the contour C, respectively.

Minimizing the above energy functional by using the steepest
descent method [22], and representing the contour C with zero
level set, i.e. C= {x e Q|¢(x) =0}, we obtain the following varia-
tional formulation:

_ JolH(¢p)dQ _ Jol(1 — H(¢))dQ
AD=THpda: 2P T He)de ;
o¢ Vé 3)

3(¢h) {u div (W) —v—J1( = c1)?+ 20 - c2)?
The data fitting term —2A;(I — ¢1)? +2(I — ¢2) plays a key role in
curve evolution, and 4; and A, govern the tradeoff between the
first term and the second term. In most cases, we set 1; =4, and
v=0. u is a scaling parameter. If it is small enough, then small
objects are likely to be extracted; if it is large, big objects can be
detected [5].

Obviously, in Eq. (3), ¢; and c, are related to the global
properties of the image contents inside and outside the contour,
respectively. However, such global image information is not
accurate if the image intensity inside or outside the contour is
inhomogeneous.

A=

2.3. The piecewise smooth (PS) model

For the images with intensity inhomogeneities, the C-V model
does not work well. In order to overcome this difficulty, in [17]
Vese and Chan proposed another method which aims at expres-

sing the intensities inside and outside the contour as piecewise
smooth functions instead of constants. The following energy
functional was defined:

EPSut,u-,¢)= /|u+ —I|2H(¢)dx+/\u’ —112(1 — H(¢p)) dx
JQ Q
i VU PH dxep [ 190 (1 - H) dx

+V/£;|VH((Z))\, XeQ 4

where u, v >0 are fixed parameters, I : Q— R denotes the original
image, u* (x) and u—(x) are smooth functions in the sub-regions
QY =(xeQ:¢px) >0} and Q = {xeQ: ¢(x) <0}, respectively.

Minimizing the above energy functional, we get the following
Euler-Lagrange equations:

ut —I=pAutin {xe Q: ¢(x;t) > 0}

out
a—ﬁ=0 on{xeQ:¢px;t)=0} UQ

u” —I=pAu"in {xe Q: ¢(x;t) <0}

?—njzo on {xeQ: px;t)=0} UoQ
o _ (Vo + 2 120 - 112 -2
At _b(qb){vdlv(w(m) —lut 1" = wVut |“+ju” = I+ p|Vu~|

(6))

Obviously, u* and u~ must be obtained by solving the two partial
differential equations (PDEs) before each iteration, and the
computational cost is very expensive. Moreover, in the imple-
mentation of PS model, u* and u~ must be extended to the whole
image domain, which is difficult to implement and also increases
the computational cost. In summary, the high complexity limits
the application of PS model in practice.

2.4. The LBF model

Li et al. [10,11] proposed the LBF model by embedding the local
image information. LBF is able to segment images with intensity
inhomogeneities and is much more efficient and accurate than the
PS model. The basic idea is to introduce a kernel function to define
an LBF energy functional as follows:

EF(C,fi.fo) = n / /  Kex =) — o2 dy dx
QJinside(C)

i / / Ko —yIIy) - HeoP dydx, x.ye@
JQJoutside(C)
©)

where 11, 13 > 0 are fixed parameters, [ : 2—R is an input image,
K5 is a Gaussian kernel with standard deviation o, f; and f, are
two smooth functions that approximate the local image inten-
sities inside and outside the contour C, respectively.

In the level set method, C c Q can be represented by the zero
level set of a Lipschitz function ¢ : 2 c R. Minimizing the energy
functional E'®F with respect to ¢, we have the gradient descent
flow as follows:

%—(f = —6u(P)(ler — L) @)
In order for stable evolution of the level set function, a distance
regularized term in [9] is incorporated into (7). Moreover, the
Euclidean length term is used to regularize the zero contour of ¢.
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Finally, the total variational formulation is as follows:

o _ (2 g Vb WY
= ,u(V ¢ — d1v<|v—¢‘>> +Vvd.(¢p)div <W

—6:(P)(L1e1 — La€2), (€))
the coefficients /; and 1, weight the two integrals over regions

inside and outside the contour. In most cases, we fix A; = ;. In Eq.
(8), e; and e, are defined as follows:

e1(x) = [oKq(y — 0)IIx) — fiy)* dy ©
e2(%) = [oKo(y = X)) — L)* dy
with
_ Ko x [H(¢)I(0)]
TO="k, 0
f = Ko #10 = H(@)Ie)]

Ko (1 — He(¢))

The standard deviation o of the kernel plays an import role in
practical applications. ¢ can be seen as a scale parameter that
controls the region-scalability from small neighborhood to the
whole image domain [11]. The scale parameter should be properly
chosen according to the images. A too small ¢ may cause
undesirable result, while a too large ¢ will cause high computa-
tional cost.

In the above equations, the regularized versions of Heaviside
function H and Dirac function ¢ are utilized as follows:

H.(2) = % {1 + %arctan (‘g)}
1n

5::(2) = l ¢

-—5—>, ZeR
T 24272’

The parameter ¢ affects the profile of d.(¢). A larger ¢ will lead to a
broader profile, which will enlarge the capture range but decrease
the accuracy in the final contour location.

Obviously, f; and f, of Eq. (10) can be viewed as the weighted
averages of the image intensities in a Gaussian window inside and
outside the contour, respectively. This is why the LBF model can
well handle image with intensity inhomogeneity.

3. ACM with local image fitting (LIF)
3.1. LIF model and its variational level set formulation

A local fitted image (LFI) formulation is defined as follows:
' = mHy(¢h) +ma(1 — H(¢)) (12)

where m; and m; are defined as follows:

{ my =mean(l e ({x € 2|P(x) < 0} N Wi (X)) 13)

my = mean(l e ({x € Q|p(x) > 0} N Wi (X))

where W(x) is a rectangular window function, e.g. a truncated
Gaussian window or a constant window. In our experiment, we
choose a truncated Gaussian window K;(x) with standard
deviation ¢ and of size 4k+1 by 4k+1, where k is the greatest
integer smaller than o¢. Similar segmentation results can be
achieved if we choose a constant window.

In this paper we propose a local image fitting energy functional
by minimizing the difference between the fitted image and the
original image. The formulation is as follows:

EYF () = % Z)ll(x) —Wx)2dx, xeQ (14)

Using the calculus of variation and the steepest descent method
[22], we minimize EYF(¢) with respect to ¢ to get the
corresponding gradient descent flow (please refer to Appendix A
for detailed derivation):

op
=

where d.(¢) is the regularized Dirac function defined in Eq. (11).

(= "Ymy — my)Ss(¢h) (s

3.2. Implementation

In the traditional level set methods [2,15,20], in order to
prevent the level set function ¢ from being too steep or flat, the
level set function is initialized to be a signed distance function
(SDF) to its interface, and during the evolution, re-initialization is
necessary to reshape the degraded level set function as an SDF.
Unfortunately, this is an expensive procedure. Li et al. [9]
proposed a variational formulation penalizing the deviation of
the level set function from an SDF, which is useful in the
application of variational level set methods but cannot be applied
to the pure partial differential equation (PDE) driven level set
methods.

When the level set function ¢ is chosen as an SDF, it will satisfy
IV¢| =1 [15]. As pointed out in [5,24], we can replace 5(¢) by |V¢|
in order to enlarge the capture range. Thus the term
div(V¢/IVe|)d(¢p) used for smoothness regularization can be
replaced by div(V¢/|V¢|)| V|, which equals to the Laplacian of ¢
when ¢ is an SDF. As pointed out by Shi et al. [12], based on the
scale-space theory [13], the evolution of a function according to
its Laplacian is equivalent to Gaussian filtering the initial
condition of the function. So the previous iteration result of the
level set function can be viewed as the initial condition for the
next iteration, i.e. ¢"*' =G 5 * ¢", where G5 is a Gaussian
kernel with variance At, and it can be viewed as the solution to
the following equation at the time t = (n+1)At:

¢t = A¢ (16)

with the initial condition ¢(x,t=nAt)=¢", where n is the
iteration number and At is the time-step.

To obtain the solution to Eq. (16), ¢"*! can also be expressed
as the following iteration:

P = "+ AtAP" 17

where At is the time-step. Obviously, the solution we obtain from
Eq. (17) is in general not smooth because the Laplacian term is
defined on a point-by-point basis, whereas the Gaussian filtering
uses all the points around the center point to make the level set
function smooth.

As we use a Gaussian kernel to regularize the level set function,
the traditional regularized term div(V¢/|V¢|)d(¢) can be re-
moved [6,12]. The main steps of the algorithm can be summarized
as

1. Initialize the level set function ¢ to be a binary function as
follows:

—p, XxeQy— 08
Ppx,t=0)=< 0, xed (18)
0, xeQ—Q

where p > 0 is a constant, { is a subset in the image domain
and 0€y is the boundary of Q.

2. Evolve the level set function ¢ according to Eq. (15).

3. Regularize the level set function by a Gaussian kernel, i.e.
¢ = G.=¢, where ¢ is the standard deviation, which should be
larger than the square root of the time-step At in order to
enhance the smoothing capacity.
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4, Check whether the evolution is stationary. If not, return to
step 2.

Generally speaking, in step 3 the standard deviation ¢ should
be chosen between 0.45 and 1 according to our experiments. If the
noise is high, a larger ¢ should be chosen. The size of the Gaussian
kernel can be truncated as an n x n mask for efficiency, where n is
typically <6.

In the proposed method, the most time-consuming operation
is in step 3 and the computational complexity is O(n?> x N), where
N is the image size. The computational complexity of re-
initialization is O(N x N). Since n?> < N, our method is much more
computationally efficient than the traditional level set method.

3.3. Implementation without re-initialization

In order to compare our method with the variational level set
formulation without re-initialization proposed by Li et al. [9],
we give another implementation. The Euclidean length term
that regularizes the level set function is incorporated into this
formulation, and the total variational level set formulation is as
follows:

o _ Vo

= u(vﬁp —div (W)) +V3:(p)div (%) +( = "My — mp)du(h)
(19)

We implement this formulation by using the similar steps
described in Section 3.2 except step 3. As we will see in Section
4.1, by this method the proposed energy functional is easy to be
trapped into local minima, which result in unsatisfactory
segmentation results.

3.4. Advantages over the LBF model

Although re-initialization is unnecessary in the implementation
of LBF model, the computational complexity is still very high.
Compared with our method, the main computational cost of LBF is
spent on the term Aie; — Ae, in Eq. (8). Instead, we use a cost-
effective method to compute it in this paper. Obviously, e; can be re-
written as follows:

er() = /Q Koy — X)1I(x) — i) dy

= PO[Ke(x)1] = 2I0[Ko (X)f1 0]+ Ko (0)+f2(X),  xeQ
and e, can be written as
200 = | Koty = 01100 L) dy
= P[Ks(x)+1] = 210K () f2(0)] + Ko (X)5f5 (X),  xeQ
So
Jaer — Jaey = (Jq — )P RKs(X)x1] — 2IX)[Ks(X)(rfi — Jafo)]
+ K (0+(afE — 72f3) (20)

The convolution term K, (x)+1 can be computed only once before the
iteration. However, the other two convolution terms must be
computed in each iteration. In practice, we truncate K, as an m x
m mask for efficiency, where m is the smallest odd number bigger
than 4o¢. The total computational complexity of LBF model is
O(m? x N). In the implementation, the size of the regularized
Gaussian kernel in our method is truncated into an n x n mask
with n < 5. However, ¢ is often greater than 3 in our experiments, so
n? <m? and our method is much more computationally efficient
than the LBF model.

4. Experimental results

Our algorithm is implemented in Matlab 7.0 on a 2.8-GHz Intel
Pentium IV personal computer. In this section, we apply our
method to synthetic images and real images of different
modalities, and use the same parameters p=1, e=1, ¢ =0.45,
n=3 and time-step At=0.025. Parameter ¢ is chosen by
experience according to the images The Matlab source code of
the proposed algorithm can be downloaded at http://www.comp.
polyu.edu.hk/~ cslzhang/code/LIF.zip.

4.1. Comparisons between the methods in Sections 3.2 and 3.3

We name the method described in Section 3.2 the Gaussian
regularizing level set model (GRLSM), and name the method in

a b o]
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Fig. 1. Demonstrations of the globally optimal property of GRLSM and the locally
optimal property of VLSM, respectively: (a) initial contour; (b) segmentation result
of GRLSM; (c) segmentation result of VLSM; (d) cross-sections of the middle rows
of the original image (the red solid line), the local fitted images (LFI) by VLSM (the
green solid line) and GRLSM (the blue solid line); and (e) the RMSBE values of
GRLSM (the red solid line) and VLSM (the blue solid line) during the evolution. The
parameter o=5. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Section 3.3 the variational level set model (VLSM). We use the root
mean square biased error (RMSBE) to evaluate the differences
between the fitted image and the original image:

RMSBE = \/%Z\I(x)—ﬂ”(x)ﬁ, xeQ (1)

where N is the size of the image.

Fig. 1 shows the segmentation results of GRLSM and VLSM on a
synthetic image. We set ¢ =>5. Fig. 1(d) shows that the fitted
images of the two methods are very similar and both of them can
match the original image well. Fig. 1(e) shows that the RMSBE
values of the two methods are almost the same during the
evolution. However, Fig. 1(c) shows that the segmentation result is
unsatisfactory by VLSM. The experiments in Section 4.2 also show
that the results by VLSM are unsatisfactory in most cases. This is
because the distance regularized term in Li et al.’s [9] method only
satisfies the necessary condition of the SDF, but not the sufficient
condition. If the distance regularized term in [9] is incorporated
into Eq. (15), the model is easy to be trapped into the local

a b c

minimum. The experimental results in Fig. 1 validate GRLSM can
conveniently achieve satisfying results.

4.2. Comparisons with the C-V model and the LBF model

The experiment in Fig. 2 validates that our method can achieve
sub-pixel segmentation accuracy. As can be seen from Fig. 2(c),
with the C-V model the two middle fingers stick together, which
is not desired. The segmentation result by our method is shown in
Fig. 2(d), which achieves sub-pixel segmentation accuracy of the
finger boundaries. The final contour accurately reflects the true
hand shape.

Fig. 3 shows the segmentation results on a synthetic image
with seven different intensities. Fig. 3(a) is the initial contour, (b)
is the segmentation result of the synthetic image without noise.
Obviously, these objects with different intensities are successfully
extracted. We then added Gaussian noise to the clean image. The
noisy image is shown in Fig. 3(c) and Fig. 3(d) shows the
corresponding segmentation result of our method on the noisy

d e

' N

Fig. 2. Segmenting a hand phantom using the C-V model and the proposed method: (a) initial contour; (b) segmentation result by the C-V model; (c) zoomed view of the
narrow parts in (b); (d) segmentation result by our method; and (e) zoomed view of the narrow parts in (d). The parameter =3 in this example.
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Fig. 3. Segmentation results on synthetic images with and without noise: (a) initial contour; (b) segmentation result of clean image; (c) initial contour; (d) segmentation
result of noisy image; and (e) cross-sections of the middle rows of the original image (the green solid line), noisy image (the red solid line) and fitted image (the blue solid
line). The parameter g=3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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a b c d

Fig. 4. Segmentation results on real blood vessel images:
model; (d) and (h) are the results by the proposed method. The parameter o=3.

(a) and (e) are initial contours; (b) and (f;

) are the results by the C-V model; (c) and (g) are the results by the LBF

Fig. 5. Segmentation on brain MR images: (a) and (c) are the results by the LBF model; (b) and (d) are the results by our method. The red solid lines represent the initial
contours. The parameter ¢=10. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

image. We see that the corresponding segmentation result is
similar to that of the synthetic image without noise in Fig. 3(b).
Although the noise is relatively high as shown in Fig. 3(e), our
method can well fit the original image, while reducing the noise
significantly.

Fig. 4 compares the performance of the C-V model, the LBF
model and our method in segmenting two real blood vessel X-ray

images. We choose ¢ =3. The vessel images are of intensity
inhomogeneities. Figs. 4(b) and (f) show the results by C-V model.
It can be observed that parts of the background and foreground
are mixed together. Figs. 4(c) and (g) show that the LBF model
achieves satisfying segmentation results. Figs. 4(d) and (h) show
the results by our method, which are similar to the results by the
LBF model.
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Fig. 6. Segmentation results by the level set function with and without regularization: (a) is the segmentation result by our method with regularization, and (b) is the
corresponding final level set function. (c) shows the segmentation result without regularization, and (d) is the corresponding final level set function. The red solid lines
represent the initial contours. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Iterations and CPU time (in seconds) by LIF model and LBF model.

Fig. 4(a) Fig. 4(e)

103 x 131 pixels 111 x 110 pixels

Fig. 5(a) Fig. 5(c)

91 x 112 pixels 119 x 78 pixels

Iterations Time (s) Iterations Time (s) Iterations Time (s) Iterations Time (s)
LIF 200 10.64 50 6.68 80 10.33 200 4514
LBF 400 63.62 200 37.04 85 20.78 200 65.47

Fig. 5 shows the segmentation results on two brain MR images
by LBF model and our method. We choose o=10. Again,
our method achieves almost the same results as the LBF model.
Fig. 6 demonstrates the results for the level set function with
or without regularization for brain MR image. Fig. 6(a) shows the
segmentation result by our method with regularization
and Fig. 6(b) shows the corresponding final level set function.
It can be seen that the final level set function is very smooth
and this validates that the proposed level set method is capable
of keeping the level set function regular. However, the final
level set function without regularization has very large
values around the zero level set (see Fig. 6(d)), resulting in very
noisy arbitrary gradients, which cause the evolution to be
unstable.

The converged iterations and CPU time for Figs. 4 and 5 are
compared in Table 1. The sizes of the tested images are also listed.
It can be observed that our method is much faster than LBF model
in each iteration, and in most cases, the number of iterations by

our method is fewer than that by LBF model. Thus the proposed
method is more efficient.

5. Conclusions

In this paper, we proposed a novel active contour model driven
by local image fitting (LIF) energy. The proposed LIF energy
functional has less computational complexity than the local
binary fitting (LBF) energy functional. A novel level set method
based on Gaussian filtering was used to implement our variational
formulation, and the experimental results revealed that it is not
only robust to prevent the energy functional from being trapped
into local minimum, but also capable of keeping the level set
function regular. Experiments demonstrated that our method can
achieve satisfying segmentation results as the LBF model but it is
much more efficient. It should be pointed out that the proposed

j.patcog.2009.10.010

Please cite this article as: K. Zhang, et al., Active contours driven by local image fitting energy, Pattern Recognition (2009), doi:10.1016/



dx.doi.org/10.1016/j.patcog.2009.10.010
dx.doi.org/10.1016/j.patcog.2009.10.010

8 K. Zhang et al. / Pattern Recognition 1 (N1EN) 1EE-NNR

Gaussian regularizing level set method (GRLSM) can be easily
extended to pure PDE driven level set methods.

Appendix A. Derivation of the gradient descent flow

In Eq. (14), we add the variation 7 to the level set function ¢
such that ¢ = ¢ +en. Keeping m; and m, fixed, differentiating
with respect to ¢, and letting ¢ >0, we have
SEUF .d /1 ¥ <
5—4)“” =lim - <§ / Il = miHy($) — ma(1 — He(§)I? dx)

e}

e~0de

=lim(= [ I = miHu(®) — ma(1 = H(@)lm1 — m3)du()n dx)

_ /Q [ — m1Ho(¢) — my(1 — H( )My — ma)d(yn dx

So we obtain the Euler-Lagrange equation
—[I = m1Hg(¢) — ma(1 — He(P)I(M1 — m2)5() =0

By the steepest gradient descent method [19], we get the
following gradient descent flow:

% = (I = m1H(¢) — ma(1 — He(¢)) (M1 — M2)0:(h)

= — "y — my)84()
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