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The development of accurate and robust palmprint verification algorithms is a critical issue in automatic
palmprint authentication systems. Among various palmprint verification approaches, the orientation
based coding methods, such as competitive code (CompCode), palmprint orientation code (POC) and
robust line orientation code (RLOC), are state-of-the-art ones. They extract and code the locally dominant
orientation as features and could match the input palmprint in real-time and with high accuracy. How-
ever, using only one dominant orientation to represent a local region may lose some valuable information
because there are cross lines in the palmprint. In this paper, we propose a novel feature extraction algo-
rithm, namely binary orientation co-occurrence vector (BOCV), to represent multiple orientations for a
local region. The BOCV can better describe the local orientation features and it is more robust to image
rotation. Our experimental results on the public palmprint database show that the proposed BOCV out-
performs the CompCode, POC and RLOC by reducing the equal error rate (EER) significantly.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Automatic authentication using biometric characteristics is
becoming more and more popular. Biometrics is the study of meth-
ods for uniquely recognizing humans based on one or more intrin-
sic physical or behavioral traits (Jain et al., 1999; Zhang, 2000). As
an important member of the biometric characteristics, palmprint
has merits such as robustness, user-friendliness, high accuracy,
and cost-effectiveness.

A palmprint image has mainly three kinds of features: principal
lines (usually three dominant lines on the palm), wrinkles (weaker
and more irregular lines) and crease (the ridge and valley struc-
tures like in fingerprint) (Zhang et al., 2003). The features of prin-
cipal lines and wrinkle could be captured under a relatively low
resolution (Zhang et al., 2003), e.g. less than 100 dpi, while the fea-
ture of crease can only be acquired under a higher resolution, e.g.
500 dpi (NIST report, 2001). Fig. 1a shows a typical palmprint im-
age captured at 75 dpi. After image acquisition, the palmprint im-
age will be processed to extract the region of interest (ROI) for
feature extraction and matching (Zhang et al., 2003). Fig. 1b shows
the extracted ROI image. For more information about ROI extrac-
tion, please refer to (Zhang et al., 2003).

Since Shu and Zhang (1998) first proposed to use palmprint as a
characteristic for automatic personal identification, many algo-
rithms have been proposed for palmprint authentication. These
algorithms can be classified into three main classes: detecting
ll rights reserved.
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interest points or lines (Duta et al., 2002; Han et al., 2003), sub-
space learning (Connie et al., 2005; Hu et al., 2007; Jing et al.,
2007; Kumar and Zhang, 2005; Lu et al., 2003; Ribaric and Fratric,
2005; Wang et al., 2008; Wu et al., 2003; Yao et al., 2007), wavelet
based feature extraction (Zhang and Zhang, 2004; Chen and Xie,
2007) and texture-based coding (Jia et al., 2008; Kong et al.,
2006; Kong and Zhang, 2004; Sun et al., 2005; Wu et al., 2005;
Zhang et al., 2003). Duta et al. (2002) investigated the feasibility
of personal identification by using feature points. Han et al.
(2003) proposed to use Sobel and morphological operator to ex-
tract palm line-like features. Taking palmprint image as a 2D ma-
trix, some subspace learning based methods, such as principal
component analysis (Lu et al., 2003; Kumar and Zhang, 2005;
Ribaric and Fratric, 2005; Yao et al., 2007), Fisher linear discrimi-
nant (Wu et al., 2003), independent component analysis (Connie
et al., 2005), locality preserving projection (Hu et al., 2007; Wang
et al., 2008), and discriminative common vector (Jing et al., 2007)
were explored. Texture-based coding is another popular research
topic in palmprint authentication. Zhang et al. (2003) used the
complex Gabor filtering to code image texture information by the
phase information of the filter response. Kong et al. (2006) pro-
posed to select discriminatory information using several complex
Gabor filters. Sun et al. (2005) tried to code ordinal relationship
from two orthogonal directions by using Gaussian filters. Recently,
some methods (Jia et al., 2008; Kong and Zhang, 2004; Wu et al.,
2005) have been proposed to code line orientation information
by regarding palm lines as negative lines.

Among various schemes, the orientation based coding methods
(Jia et al., 2008; Kong and Zhang, 2004; Wu et al., 2005) are

mailto:csdzhang@comp.polyu.edu.hk
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec


Fig. 1. (a) A sample palmprint image; and (b) its region of interest (ROI).
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state-of-the-art ones and they have merits of high accuracy,
robustness to illumination variation and fast implementation, etc.
Since the orientation of palm lines is stable and can provide en-
ough discriminatory information for personal identification, many
palmprint coding schemes, including competitive code (Comp-
Code) (Kong and Zhang, 2004), palmprint orientation code (POC)
(Wu et al., 2005), robust line orientation code (RLOC) (Jia et al.,
2008), were proposed. These algorithms use different filters or
masks, such as Gabor filter (CompCode), self designed mask
(POC), and modified finite Radon transform (RLOC), to estimate
the orientation feature of each local region. A common rule, the
‘‘competition” rule, is shared by these algorithms: several filters
or masks with different orientation were convolved with the im-
age, and then the ‘‘dominant” orientation was determined with
some criterion. By simply coding the orientation map of the palm-
print, high accuracy palmprint identification could be imple-
mented with high speed matching.

However, the line structures in palmprint image are very com-
plex. Multiple lines may intersect at some regions, so some struc-
Fig. 2. (a) A palmprint image; (b) cropped and enlarged image with two
tural information may be lost if only one orientation is used to
represent the local feature. Fig. 2a and b show an example area
where two lines intersect. Fig. 2c plots the curve of Gabor filtering
response (Kong and Zhang, 2004) vs. orientation for the local area
in Fig. 2b. We can see two valleys, which imply two main orienta-
tions in this area. If only one orientation is kept, much valuable dis-
criminatory information will be lost.

In addition, the extracted ‘‘dominant” orientation is sensitive to
rotation. Fig. 3 shows an example. If we rotated Fig. 3a only by 5�
counter-clockwise, the extracted orientation of the local area will
change from 120� to 90�, i.e. 30� difference.

To circumvent the above problems in traditional orientation
coding schemes, we propose in this paper a new feature represen-
tation algorithm, namely binary orientation co-occurrence vector
(BOCV). Instead of extracting only one orientation from the filter-
ing responses, we preserve all the orientation information by con-
catenating the responses as a vector. Then, the response vector is
binarized by thresholding. There are two main advantages of BOCV
over with the traditional orientation based methods. First, the dis-
intersected lines; and (c) Gabor filtering responses vs. orientation.



Fig. 3. (a) is a palmprint image; and (d) is the 5� rotation of it; (b) and (e) are the cropped and enlarged images of (a) and (d); (c) and (f) are the curves of Gabor filtering
responses vs. six orientations for (b) and (e), respectively.
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criminatory ability is enhanced because more line orientation
information is preserved. Second, it is more robust to small rota-
tion. Taking Fig. 3 as an example, we see that the ‘‘dominant” direc-
tion is very sensitive to rotation. A 5� rotation of the image will
lead to a 30� change of the dominant direction (from 120� to
90�). However, if we code all the directions, it is possible that
Fig. 3c and f have the same code. For instance, we code the Gabor
filtering responses above 0 as ‘‘0”, and code the responses below 0
as ‘‘1”. Then the codes for both Fig. 3c and f are ‘‘000110”. They
have the same representation after small rotation.

The rest of the paper is organized as follows. Section 2 briefly
introduces CompCode. Section 3 shows the proposed feature
extraction algorithm and its matching metric. Section 4 presents
extensive experimental results to illustrate and verify the proposed
method. Section 5 draws the conclusions.

2. Brief review of CompCode

Gabor filters are widely used as tunable filters for extracting the
orientation or edge information from images. The Gabor function is
usually defined as the following form:

wðx; y;x; hÞ ¼ xffiffiffiffiffiffiffiffiffiffi
2pj
p e�

x2

8j2ð4x02þy02Þ eixx0 � e�
j2
2

� �
ð1Þ

where x
0
= (x � x0)cosh + (y � y0)sinh, y

0
= � (x � x0)sinh +

(y � y0)cosh is the center of the function; x is the radial frequency
in radians per unit length and h is the orientation of the Gabor func-
tions in radians. j is defined as j ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2
p

2dþ1
2d�1

� �
, where d is the

half-amplitude bandwidth of the frequency response.
To extract the orientation information from palm lines, Comp-
Code uses six real part of the neurophysiology-based Gabor filters
wR, with different orientations, hj = jp/6, where j = {0,1,2,3,4,5}.
According to the features of palm lines, CompCode selects arg min-
j(I(x,y) * wR(x,y,x,hj)) as the orientation at position (x,y) of image I.

To implement real-time palmprint recognition, CompCode uses
three bits to represent an orientation. An angular distance based on
Hamming distance was used:
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y¼1
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x¼1
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i ðx; yÞ � Q b
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where P and Q are two CompCodes, Pb
i ðQ

b
i Þ is the ith bit plane of P

(Q), � is bitwise exclusive OR and \ is bitwise AND operator. PM

and QM are the corresponding masks of P and Q, respectively. The
masks are used to record the palmprint pixels (Zhang et al., 2003).

3. Binary orientation co-occurrence vector

Usually, the cross section of palm lines is Guassian-shaped.
Fig. 4c shows an example of palm line intensity value distribution,
while Fig. 4d shows the real part of a Gabor filter, which has similar
(but upside-down) shape to Fig. 4c. The Gabor filter can be re-
garded as a line detector or matched filter to detect palm lines
(Van Deemter and Du Buf, 2000). If we normalize the Gabor filter-
ing response vector to L2-norm unity as in (3), the filter response at
each orientation can be treated as a confidence measure of the fea-
ture occurring at that orientation (Varma and Zisserman, 2005).



Fig. 4. (a) A palmprint image; (b) cropped and enlarged image of (a); (c) Intensity value distribution of (b); (d) Gabor filter with h = 0.

1222 Z. Guo et al. / Pattern Recognition Letters 30 (2009) 1219–1227
Gjðx; yÞ ¼
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For each local region, we can calculate a 6-dimensional vector
by concatenating the normalized responses along 6 directions,
namely the orientation co-occurrence vector (OCV). The distance
between two OCVs, P and Q, can be computed by using the L1-
norm:

DðP;QÞ ¼
PM

y¼1

PN
x¼1

P5
j¼0 Pjðx; yÞ � Qjðx; yÞ
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where Pi and Qi are the ith dimension planes of P and Q, respec-
tively, while PM and QM are the corresponding palmprint pixel
masks (Zhang et al., 2003) of P and Q, respectively.

However, because the orientation features are represented by
float numbers, it is time consuming to use OCV for dissimilarity
computation. To speed up the matching time, a 6-bit binarized vec-
tor, called binary OCV (BOCV), is defined by thresholding each ori-
entation’s filter response

Pb
j ðx; yÞ ¼

1; if G0jðx; yÞ < Tj

0; else

(
ð5Þ

The threshold Tj could be set as 0, which is simple and intuitive
but could lead to good result. It can also be chosen according to the
filter response distribution which could further improve the accu-
racy. How to set the optimal threshold will be discussed in Section
4. In the following, unless state explicitly, we set Tj = 0, j = {0,1,2,
3,4,5}. Fig. 5 shows an example of the extracted BOCV.

Similar to CompCode, the widely used Hamming distance can
be applied to BOCV for matching:
DðPb;QbÞ ¼
PM
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PN
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b
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Obviously, D is between 0 and 1, and for a perfect matching the
distance will be 0. In practice, we will shift the BOCV map along
different directions in a small range to find the smallest distance
between two maps. If the distance is smaller than a certain level,
the two palmprints will be classified into the same class.

4. Experimental results

4.1. Palmprint database and test protocol

The public palmprint database (PolyU Palmprint Database,
2006) includes 7752 palmprint images from 193 individuals.
The database is collected in two sessions. Each time, the subject
was asked to collect around 10 palmprint images from his left
and right palms. Altogether, each person provided around 40
images. The average time interval between the two sessions is 69
days.

To compute the verification accuracy in the following tests, each
palmprint image is matched with all the other palmprint images in
the database. A match is counted as a genuine if the two palmprint
images are from the same palm; otherwise, it is counted as an
impostor. The total number of matches is 30,042,876 and the num-
ber of genuine is 74,068. The Equal Error Rate (EER) (the point
when false accept rate (FAR) is equal to false reject rate (FRR))
and the decidability index d

0
(Daugman, 2003) (the index measures

how well the genuine and impostor distributions are separated)
are used to evaluate the accuracy.

d0 ¼
l1 � l2

�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2

1 þ r2
2Þ=2

q ð7Þ



Fig. 5. A palmprint image and its BOCV features. (a) Original palmprint image; (b) BOCV feature map; (c–h) are the binarized feature maps by six Gabor filters in six
directions.
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A ROI extraction procedure similar to that in (Zhang et al., 2003)
is used to extract the ROI of size 128*128. To reduce the influence
of imperfect ROI extraction, we shift the feature maps vertically
and horizontally in a small range for matching. The minimal dis-
tance obtained by shift matching is taken as the final distance.
The shift range is set as [�4,4] in the following experiments.

4.2. Determination of the number of gabor filters

Although those orientation based coding algorithms (Jia et al.,
2008; Kong and Zhang, 2004; Wu et al., 2005) have been widely
used, the relationship between the number of employed direc-
tional filters (i.e. the number of quantized orientations) and the
recognition accuracy has not been well discussed. CompCode
(Kong and Zhang, 2004), POC (Wu et al., 2005) and RLOC (Jia
et al., 2008) use 6, 4, and 6 filters respectively, but the authors
did not clearly show why such numbers were used and whether
the number was optimal. Intuitively, using more filters may obtain
higher accuracy but increase the computational cost. Thus, it is
necessary to analyze the determination of the optimal number of
filters, which could result in high accuracy and fast implementa-
tion. In the following, we discuss this issue.

First, we use 2,4,6,8,10,12,14 and 16 Gabor filters with p/2,p/
4,p/6,p/8,p/10,p/12,p/14 and p/16 interval of [0,p) to extract
BOCV features and implement verification using Hamming dis-
tance. The computed EER and d

0
are plotted in Fig. 6. We see that

the EER is relatively high when the number of Gabor filters is smal-
ler than 6. When the number is bigger than 6, the EER is much low-
er but fluctuates rather than monotonically decreases with the
number of filters. Although d
0

increases as the number increases,
the curve is flat when the number is greater than 6. Thus 6 can
be regarded as the optimal number balancing between the accu-
racy and time consumption. This finding is also in accordance with
the neuro-physiological discovery: simple cells are sensitive to
specific orientation with approximate bandwidth of p/6 (Lee,
1996).

The mainly reason that why increasing the number of filters
could not further reduce the EER is the feature redundancy. To
illustrate it, we can calculate the average rate of identical features
between adjacent bit planes as follows:

SbðPÞ

¼
PM

y¼1

PN
x¼1

Pn�1
i¼0 !ðPb

i ðx;yÞ�Pb
modðiþ1;nÞðx;yÞÞ \ ðPMðx;yÞ \QMðx;yÞÞ

n �
PM

x¼1

PN
y¼1PMðx;yÞ \Q Mðx;yÞ

ð8Þ

where Pb is an extracted BOCV map, modðx; yÞ is the modulus of x
divided by y,n is the number of Gabor filters, and ‘‘!” is a bitwise
NOT operator.

The curve of average rates on the whole database vs. the num-
ber of Gabor filters is plotted in Fig. 7. We can see that as the num-
ber of Gabor filters increases, the percentage of identical bits
between adjacent planes also increases. Assume that the binary
values in each plane follow Bernoulli trials. If two planes are uncor-
related, then the percentage of identical bits should be 50%. How-
ever, Fig. 7 shows that as the number of Gabor filters increases, the
correlation between adjacent bit planes increases, so that using



Fig. 6. EER and d
0

of BOCV using different number of Gabor filters. (a) EER vs. number of Gabor filters; and (b) d
0

vs. number of Gabor filters.

Fig. 7. Average rate of the identical features between two adjacent planes vs. the
number of Gabor filters.

1224 Z. Guo et al. / Pattern Recognition Letters 30 (2009) 1219–1227
more Gabor filters could not increase much the discriminatory
information.

Assuming the comparison (exclusive OR) between two BOCVs
from two different palms follows a Bernoulli trial, the full distribu-
Fig. 8. Degrees-of-freedom of impostor distanc
tion of impostor distance corresponds to a fractional binomial,
whose degrees-of-freedom could be simulated as (Daugman,
2003):

N ¼ pð1� pÞ=r2 ð9Þ

where p is the mean of impostor distance distribution, r is the stan-
dard deviation of impostor distance distribution. Fig. 8 shows the
degrees-of-freedom using different number of filters. It shows sim-
ilar trend to that of d

0
in Fig. 6b. The discriminatory information bits

increases rapidly when the number of filters is less than 6, while it
increases little when the number is greater than 6. On the other
hand, finer quantization may increase the genuine distance due to
noise and rotation. Fig. 9 shows an example. If six Gabor filters
are used, the 6-bit codes of the two ROIs are both 000110. However,
if eight filters are used, the 8-bit codes of the two ROIs are
01011110 and 00011110, respectively.

Based on the above analysis, in the all the experiments in this
paper, we set the number of Gabor filters as 6.

4.3. The robustness to rotation

As shown in Fig. 3, the extracted ‘‘dominant” orientation by
CompCode is sensitive to small rotation, while the proposed BOCV
scheme is not so sensitive. To further show that BOCV is more ro-
bust to rotation than CompCode, two experiments are performed
e distribution vs. number of Gabor filters.



Fig. 9. An example to show finer quantization may increase genuine distance. (a and b) Two ROIs of two sample images from the same palm; (c and d) cropped and enlarged
images of (a and b); (e and f) filter responses using six and eight Gabor filters.

Fig. 10. An original image and its rotated images. (a) original image; (b–f) are the rotated images of (a) by 2�, 4�, 6�, 8� and 10� clockwise, respectively.
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in this section. In the first experiment, we rotate a ROI image by 2�,
4�, 6�, 8� and 10� clockwise, as shown in Fig. 10. The matching dis-
tances between the images by CompCode and BOCV are listed in
Table 1.
From Table 1, we can see that the matching distances by BOCV
are smaller than those by CompCode. This validates that BOCV will
give more robust recognition results when there are small
alignment or registration errors of the palmprint images. To further



Table 1
Matching distances between the images in Fig. 10.

CompCode/BOCV (a) (b) (c) (d) (e) (f)

(a) 0 0.1974/0.1393 0.3337/0.2635 0.4281/0.3744 0.4775/0.4475 0.4959/0.4858
(b) 0 0.1842/0.1389 0.3243/0.2699 0.4155/0.3688 0.4700/0.4449
(c) 0 0.1924/0.1398 0.3379/0.2560 0.4333/0.3579
(d) 0 0.1868/0.1232 0.3465/0.2493
(e) 0 0.1970/0.1342

Fig. 11. EER vs. rotation by CompCode and BOCV.

Table 4
The average percentage of 1 among six planes using tuned thresholds.

Plane 0 Plane 1 Plane 2 Plane 3 Plane 4 Plane 5

Rate of 1 (%) 50.0186 50.0527 50.0505 50.0955 50.0326 50.0496
Rate of 0 (%) 49.9814 49.9473 49.9495 49.9045 49.9674 49.9504
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validate BOCV’s robustness to small rotation, another experiment
is performed. Each images in the database is rotated randomly by
a degree within a range [�d, d], where d = {1,2,3,4,5,6}. By using
the test protocol described in Section 4.1, the calculated EER curves
are plotted in Fig. 11. We can see that the EER values by BOCV are
always lower those by CompCode at all the rotation degrees.

4.4. Palmprint verification results

In the proposed BOVC, a set of thresholds need to be configured
for binarization (referring to (5)). An intuitive and simple but effec-
tive setting is 0, which is widely used in the coding for palmprint
(Kong et al., 2006; Zhang et al., 2003) and iris (Daugman, 2003) rec-
ognition. However, by using 0 as the threshold, the distribution of
the binarized values may not be even. Suppose the probability of 1
in the binarized result is p, Table 2 shows the Exclusive OR outputs
and their associated probabilities under different inputs. If we as-
sume the matching score between two BOCV maps from two dif-
ferent palms follows a Bernoulli trial (Daugman, 2003), the
distance or difference between them will be maximized if and only
if p = 0.5. When pis not equal to 0.5, the probability of smaller
impostor distance will be increased.

As shown in Table 3, if we use 0 as the threshold, the average
rates of 1 and 0 in the six planes are not even, and this increases
Table 2
Exclusive OR output and the associated probability.

Exclusive OR output/possibility

0 0/(1 � p)*(1 � p) 1/p*(1 � p)
1 1/(1 � p)*p 0/(p*p)

Table 3
The average rate of 1 and 0 among six planes by using 0 as threshold.

Plane 0 Plane 1 Plane 2 Plane 3 Plane 4 Plane 5

Rate of 1 (%) 47.6146 47.0470 46.5781 46.2687 46.5260 46.6556
Rate of 0 (%) 52.3854 52.9530 53.4219 53.7313 53.4740 53.3444
the probability of smaller impostor distance. Thus, if a threshold
can result in a more even distribution between 1 and 0 in the bina-
rized plane, the impostor distance could be increased and the accu-
racy may be increased accordingly.

Since (4) can be rewritten as (10), which is an average distance
of six independent planes, the six thresholds for six planes can be
tuned based on the first 192 palms, totally 3849 images. Using the
tuned thresholds, the average rates of 1 and 0 in the binarized
BOCV over the whole database are listed in Table 4, which shows
that the tuned thresholds could get a more even distribution for
each plane.

DðP;QÞ ¼
PM

y¼1

PN
x¼1

P5
j¼0ðP
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j ðx; yÞ � Q b

j ðx; yÞÞ \ ðPMðx; yÞ \ Q Mðx; yÞÞ
6 �
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y¼1
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¼ 1
6

X5

j¼0

DðPb
j ;Q

b
j Þ
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Fig. 12 plots the receiver operating characteristic (ROC) curves
by different methods and Table 5 shows the accuracy rates for
comparison. Some optimizations have been made on ROI extrac-
tion and matching, so the experimental results for RLOC and Comp-
Code are better than the previous publications (Jia et al., 2008;
Kong and Zhang, 2004). From Fig. 12 and Table 5, some conclusions
could be made. First, because BOCV could keep more directional
information than CompCode, it could get better results than Comp-
Code. Second, by using tuned thresholds, the EER is lower than
using 0 as the threshold, and lower FRR could be achieved in most
Fig. 12. ROC curves by different methods.



Table 5
Verification accuracy by different methods.

EER (%) d
0

FRR (when FAR = 3.3 � 10�6 %)

POC 0.2366 3.4549 4.7092
RLOC 0.0905 6.2768 2.8594
CompCode 0.0379 5.4122 1.2273
BOCV (threshold: 0) 0.0220 5.8477 0.3011
BOCV (tuned thresholds) 0.0189 5.7575 0.2525

Fig. 13. EER vs. individual plane.
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cases especially when FAR < = 4 � 10�5%. This validates the effec-
tiveness of tuned thresholds in increasing the impostor distance.
To better illustrate the effectiveness of tuned thresholds, the
curves of EER vs. individual plane are plotted in Fig. 13. We can
see that a more even distribution and smaller EER values can be
obtained by using tuned thresholds.

4.5. Feature size vs. speed

In the proposed BOVC, 6 bits are used to represent orientations
for each pixel. To speed up matching during verification, the fea-
ture is down-sampled to 32 * 32, thus the feature size is 768 bytes
in total for one image, twice the CompCode. The system is imple-
mented using Visual C++6.0 on a Windows XP, T6400 CPU
(2.13GHz) and 2GB Ram PC. The execution time for ROI extraction,
feature extraction and matching is about 138 ms, 40 ms, and
0.33 ms respectively. The total execution time of verification is less
than 0.5 s, which is fast enough for real-time application. As the
speed of matching is fast, it can be easily extended to identification
system.

5. Conclusions

In this paper, we proposed a novel feature extraction scheme,
BOCV, for palmprint verification. The BOCV scheme could keep
more orientation information for complex palmprint lines and is
more robust to small rotations than the conventional CompCode.
We also investigated the relationship between orientation quanti-
zation and accuracy, and found that 6 is an optimal number of ori-
entation quantization in terms of accuracy and complexity. A
threshold selection based on binary value distribution was pro-
posed for the BOCV scheme. Experimental results demonstrated
the effectiveness of this scheme. Using the same Gabor filters as
in CompCode, the proposed BOCV could reduce the EER from
0.0379% to 0.0189%. The proposed BOCV can be extended to other
binary feature extraction algorithms, such as POC, RLOC and
orthogonal line ordinal feature (OLOF) (Sun et al., 2005).
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