
IEEE TRANSACTION ON IMAGE PROCESSING 1

Real-time Object Tracking via

Online Discriminative Feature Selection
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Abstract

Most tracking-by-detection algorithms train discriminative classifiers to separate target objects from

their surrounding background. In this setting, noisy samples are likely to be included when they are not

properly sampled, thereby causing visual drift. The multiple instance learning (MIL) learning paradigm

has been recently applied to alleviate this problem. However, important prior information of instance

labels and the most correct positive instance (i.e., the tracking result in the current frame) can be

exploited using a novel formulation much simpler than an MIL approach. In this paper, we show that

integrating such prior information into a supervised learning algorithm can handle visual drift more

effectively and efficiently than the existing MIL tracker. We present an online discriminative feature

selection algorithm which optimizes the objective function in the steepest ascent direction with respect to

the positive samples while in the steepest descent direction with respect to the negative ones. Therefore,

the trained classifier directly couples its score with the importance of samples, leading to a more robust

and efficient tracker. Numerous experimental evaluations with state-of-the-art algorithms on challenging

sequences demonstrate the merits of the proposed algorithm.
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I. INTRODUCTION

Object tracking has been extensively studied in computer vision due to its importance in

applications such as automated surveillance, video indexing, traffic monitoring, and human-

computer interaction, to name a few. While numerous algorithms have been proposed during

the past decades [1]–[16], it is still a challenging task to build a robust and efficient tracking

system to deal with appearance change caused by abrupt motion, illumination variation, shape

deformation, and occlusion (See Figure 1).
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Fig. 1: Tracking results by our ODFS tracker and the CT [17], Struck [14], MILTrack [15], VTD [18] methods

in challenging sequences with rotation and abrupt motion (Bike skill), drastic illumination change (Shaking), large

pose variation and occlusion (Tiger 1), and cluttered background and camera shake (Pedestrian).

It has been demonstrated that an effective adaptive appearance model plays an important

role for object tracking [2], [4], [6], [7], [9]–[12], [15]. In general, tracking algorithms can be

categorized into two classes based on their representation schemes: generative [1], [2], [6], [9],

[11] and discriminative models [3], [4], [7], [8], [10], [12]–[15]. Generative algorithms typically

learn an appearance model and use it to search for image regions with minimal reconstruction

errors as tracking results. To deal with appearance variation, adaptive models such as the WSL

tracker [2] and IVT method [9] have been proposed. Adam et al. [6] utilize several fragments

to design an appearance model to handle pose change and partial occlusion. Recently, sparse

representation methods have been used to represent the object by a set of target and trivial

templates [11] to deal with partial occlusion, illumination change and pose variation. However,

these generative models do not take surrounding visual context into account and discard useful

information that can be exploited to better separate target object from the background.
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Discriminative models pose object tracking as a detection problem in which a classifier is

learned to separate the target object from its surrounding background within a local region [3].

Collins et al. [4] demonstrate that selecting discriminative features in an online manner improves

tracking performance. Boosting method has been used for object tracking [8] by combing weak

classifiers with pixel-based features within the target and background regions with the on-center

off-surround principle. Grabner et al. [7] propose an online boosting feature selection method

for object tracking. However, the above-mentioned discriminative algorithms [3], [4], [7], [8]

utilize only one positive sample (i.e., the tracking result in the current frame) and multiple

negative samples when updating the classifier. If the object location detected by the current

classifier is not precise, the positive sample will be noisy and result in a suboptimal classifier

update. Consequently, errors will be accumulated and cause tracking drift or failure [15]. To

alleviate the drifting problem, an online semi-supervised approach [10] is proposed to train the

classifier by only labeling the samples in the first frame while considering the samples in the

other frames as unlabeled. Recently, an efficient tracking algorithm [17] based on compres-

sive sensing theories [19], [20] is proposed. It demonstrates that the low dimensional features

randomly extracted from the high dimensional multiscale image features preserve the intrinsic

discriminative capability, thereby facilitating object tracking.

Several tracking algorithms have been developed within the multiple instance learning (MIL)

framework [13], [15], [21], [22] in order to handle location ambiguities of positive samples for

object tracking. In this paper, we demonstrate that it is unnecessary to use feature selection

method proposed in the MIL tracker [15], and instead an efficient feature selection method

based on optimization of the instance probability can be exploited for better performance.

Motivated by success of formulating the face detection problem with the multiple instance

learning framework [23], an online multiple instance learning method [15] is proposed to handle

the ambiguity problem of sample location by minimizing the bag likelihood loss function. We

note that in [13] the MILES model [24] is employed to select features in a supervised learning

manner for object tracking. However, this method runs at about 2 to 5 frames per second (FPS),

which is less efficient than the proposed algorithm (about 30 FPS). In addition, this method is

developed with the MIL framework and thus has similar drawbacks as the MILTrack method [15].

Recently, Hare et al. [14] show that the objectives for tracking and classification are not explicitly

coupled because the objective for tracking is to estimate the most correct object position while the
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Fig. 2: Main steps of the proposed algorithm.

objective for classification is to predict the instance labels. However, this issue is not addressed

in the existing discriminative tracking methods under the MIL framework [13], [15], [21], [22].

In this paper, we propose an efficient and robust tracking algorithm which addresses all the

above-mentioned issues. The key contributions of this work are summarized as follows.

1) We propose a simple and effective online discriminative feature selection (ODFS) approach

which directly couples the classifier score with the sample importance, thereby formulating

a more robust and efficient tracker than state-of-the-art algorithms [6], [7], [10]–[12], [14],

[15], [18] and 17 times faster than the MILTrack [15] method (both are implemented in

MATLAB).

2) We show that it is unnecessary to use bag likelihood loss functions for feature selection as

proposed in the MILTrack method. Instead, we can directly select features on the instance

level by using a supervised learning method which is more efficient and robust than the

MILTrack method. As all the instances, including the correct positive one, can be labeled

from the current classifier, they can be used for update via self-taught learning [25]. Here,

the most correct positive instance can be effectively used as the tracking result of the

current frame in a way similar to other discriminative models [3], [4], [7], [8].

II. PROBLEM FORMULATION

In this section, we present the algorithmic details and theoretical justifications of this work.
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Algorithm 1 ODFS Tracking
Input: (t+1)-th video frame

1) Sample a set of image patches, Xγ = {x|||lt+1(x) − lt(x?)|| < γ} where lt(x?) is the

tracking location at the t-th frame, and extract the features {fk(x)}Kk=1 for each sample

2) Apply classifier hK in (2) to each feature vector and find the tracking location lt+1(x?)

where x? = arg maxx∈Xγ{c(x) = σ(hK(x))}

3) Sample two sets of image patches Xα = {x|||lt+1(x) − lt+1(x?)|| < α} and Xζ,β =

{x|ζ < ||lt+1(x)− lt+1(x?)|| < β} with α < ζ < β

4) Extract the features with these two sets of samples by the ODFS algorithm and update

the classifier parameters according to (5) and (6)

Output: Tracking location lt+1(x?) and classifier parameters

A. Tracking by Detection

The main steps of our tracking system are summarized in Algorithm 1. Figure 2 illustrates

the basic flow of our algorithm. Our discriminative appearance model is based a classifier hK(x)

which estimates the posterior probability

c(x) = P (y = 1|x) = σ(hK(x)), (1)

(i.e., confidence map function) where x is the sample represented by a feature vector f(x) =

(f1(x), . . . , fK(x))>, y ∈ {0, 1} is a binary variable which represents the sample label, and σ(·)

is a sigmoid function.

Given a classifier, the tracking by detection process is as follows. Let lt(x) ∈ R2 denote the lo-

cation of sample x at the t-th frame. We have the object location lt(x?) where we assume the cor-

responding sample is x?, and then we densely crop some patches Xα = {x |‖ lt(x)− lt(x?) ‖ <

α} within a search radius α centering at the current object location, and label them as positive

samples. Then, we randomly crop some patches from set Xζ,β = {x|ζ <‖ lt(x)− lt(x?) ‖< β}

where α < ζ < β, and label them as negative samples. We utilize these samples to update the

classifier hK . When the (t+1)-th frame arrives, we crop some patches Xγ = {x |‖ lt+1(x) −

lt(x?) ‖< γ} with a large radius γ surrounding the old object location lt(x?) in the (t+1)-

th frame. Next, we apply the updated classifier to these patches to find the patch with the
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maximum confidence i.e. x? = arg maxx(c(x)). The location lt+1(x?) is the new object location

in the (t+1)-th frame. Based on the newly detected object location, our tracking system repeats

the above-mentioned procedures.

B. Classifier Construction and Update

In this work, sample x is represented by a feature vector f(x) = (f1(x), . . . , fK(x))>, where

each feature is assumed to be independently distributed as MILTrack [15], and then the classifier

hK can be modeled by a naive Bayes classifier [26]

hK(x) = log

(∏K
k=1 p(fk(x)|y = 1)P (y = 1)∏K
k=1 p(fk(x)|y = 0)P (y = 0)

)
=

K∑
k=1

φk(x), (2)

where

φk(x) = log
(
p(fk(x)|y=1)
p(fk(x)|y=0)

)
, (3)

is a weak classifier with equal prior, i.e., P (y = 1) = P (y = 0). Next, we have P (y = 1 |

x) = σ(hK(x)) (i.e., (1)), where the classifier hK is a linear function of weak classifiers and

σ(z) = 1
1+e−z

.

We use a set of Haar-like features fk [15] to represent samples. The conditional distributions

p(fk | y = 1) and p(fk | y = 0) in the classifier hK are assumed to be Gaussian distributed as

the MILTrack method [15] with four parameters (µ+
k , σ

+
k , µ

−
k , σ

−
k ) where

p(fk | y = 1) ∼ N (µ+
k , σ

+
k ), p(fk | y = 0) ∼ N (µ−k , σ

−
k ). (4)

The parameters (µ+
k , σ

+
k , µ

−
k , σ

−
k ) in (4) are incrementally estimated as follows

µ+
k ← ηµ+

k + (1− η)µ+, (5)

σ+
k ←

√
η(σ+

k )2 + (1− η)(σ+)2 + η(1− η)(µ+
k − µ+)2, (6)

where η is the learning rate for update, σ+ =
√

1
N

∑N−1
i=0|y=1(fk(xi)− µ+)2, and N is the number

of positive samples. In addition, µ+ = 1
N

∑N−1
i=0|y=1 fk(xi). We update µ−k and σ−k with similar

rules. The above-mentioned (5) and (6) can be easily deduced by maximum likelihood estimation

method [27] where η is a learning rate to moderate the balance between the former frames and

the current one.

It should be noted that our parameter update method is different from that of the MILTrack

method [15], and our update equations are derived based on maximum likelihood estimation.
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In Section III, we demonstrate that the importance and stability of this update method in

comparisons with [15].

For online object tracking, a feature pool with M > K features is maintained. As demon-

strated in [4], online selection of the discriminative features between object and background

can significantly improve the performance of tracking. Our objective is to estimate the sample

x? with the maximum confidence from (1) as x? = arg maxx(c(x)) with K selected features.

However, if we directly select K features from the pool of M features by using a brute force

method to maximize c(·), the computational complexity with CK
M combinations is prohibitively

high (we set K = 15 and M = 150 in our experiments) for real-time object tracking. In the

following section, we propose an efficient online discriminative feature selection method which

is a sequential forward selection method [28] where the number of feature combinations is MK,

thereby facilitating real-time performance.

C. Online Discriminative Feature Selection

We first review the MILTrack method [15] as it is related to our work, and then introduce the

proposed ODFS algorithm.

1) Bag Likelihood with Noisy-OR Model: The instance probability of the MILTrack method

is modeled by Pij = σ(h(xij)) (i.e., (1)) where i indexes the bag and j indexes the instance in

the bag, and h =
∑

k φk is a strong classifier. The weak classifier φk is computed by (3) and

the bag probability based on the Noisy-OR model is

Pi = 1−
∏
j

(1− Pij). (7)

The MILTrack method maintains a pool of M candidate weak classifiers, and selects K weak

classifiers from this pool in a greedy manner using the following criterion

φk = arg max
φ∈Φ

logL(hk−1 + φ), (8)

where Φ = {φi}Mi=1 is the weak classifier pool and each weak classifier is composed of a feature

(See (3)), L =
∏

i P
yi
i (1 − Pi)1−yi is the bag likelihood function, and yi ∈ {0, 1} is a binary

label. The selected K weak classifiers construct the strong classifier as hK =
∑K

k=1 φk. The

classifier hK is applied to the cropped patches in the new frame to determine the one with the

highest response as the most correct object location.

November 28, 2013 DRAFT



IEEE TRANSACTION ON IMAGE PROCESSING 8

We show that it is not necessary to use the bag likelihood function based on the Noisy-OR

model (8) for weak classifier selection, and we can select weak classifiers by directly optimizing

instance probability Pij = σ(hK(xij)) via a supervised learning method as both the most correct

positive instance (i.e., the tracking result in current frame) and the instance labels are assumed

to be known.

2) Principle of ODFS: In (1), the confidence map of a sample x being the target is computed,

and the object location is determined by the peak of the map, i.e., x? = arg maxx c(x). Providing

that the sample space is partitioned into two regions R+ = {x, y = 1} and R− = {x, y = 0},

we define a margin as the average confidence of samples in R+ minus the average confidence

of samples in R−:

Emargin =
1

|R+|

∫
x∈R+

c(x)dx− 1

|R−|

∫
x∈R−

c(x)dx, (9)

where |R+| and |R−| are cardinalities of positive and negative sets, respectively.

In the training set, we assume the positive set R+ = {xi}N−1
i=0 (where x0 is the tracking

result of the current frame) consists of N samples, and the negative set R− = {xi}N+L−1
i=N is

composed of L samples (L ≈ N in our experiments). Therefore, replacing the integrals with the

corresponding sums and putting (2) and (1), we formulate (9) as

Emargin ≈
1

N

(N−1∑
i=0

σ
( K∑
k=1

φk(xi)
)
−

N+L−1∑
i=N

σ
( K∑
k=1

φk(xi)
))
. (10)

Each sample xi is represented by a feature vector f(xi) = (f1(xi), . . . , fM(xi))>, a weak classifier

pool Φ = {φm}Mm=1 is maintained using (3). Our objective is to select a subset of weak classifiers

{φk}Kk=1 from the pool Φ which maximizes the average confidence of samples in R+ while

suppressing the average confidence of samples in R−. Therefore, we maximize the margin

function Emargin by

{φ1, . . . , φK} = arg max
{φ1,...,φK}∈Φ

Emargin(φ1, . . . , φK). (11)

We use a greedy scheme to sequentially select one weak classifier from the pool Φ to maximize
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Emargin

φk = arg max
φ∈Φ

Emargin(φ1, . . . , φk−1, φ)

= arg max
φ∈Φ


N−1∑
i=0

σ(hk−1(xi) + φ(xi))

−
N+L−1∑
i=N

σ(hk−1(xi) + φ(xi))

 ,

(12)

where hk−1(·) is a classifier constructed by a linear combination of the first (k-1) weak classifiers.

Note that it is difficult to find a closed form solution of the objective function in (12). Further-

more, although it is natural and easy to directly select φ that maximizes objective function in (12),

the selected φ is optimal only to the current samples {xi}N+L−1
i=0 , which limits its generalization

capability for the extracted samples in the new frames. In the following section, we adopt an

approach similar to the approach used in the gradient boosting method [29] to solve (12) which

enhances the generalization capability for the selected weak classifiers.

The steepest descent direction of the objective function of (12) in the (N+L)-dimensional data

space at gk−1(x) is gk−1 = (gk−1(x0), . . . , gk−1(xN−1), −gk−1(xN), . . . ,−gk−1(xN+L−1))> where

gk−1(x) = −∂σ(hk−1(x))

∂hk−1

= −σ(hk−1(x))(1− σ(hk−1(x))), (13)

is the inverse gradient (i.e., the steepest descent direction) of the posterior probability function

σ(hk−1) with respect to hk−1. Since gk−1 is only defined at the points (x0, . . . , xN+L−1)>, its

generalization capability is limited. Friedman [29] proposes an approach to select φ that makes

φ = (φ(x0), . . . , φ(xN+L−1))> most parallel to gk−1 when minimizing our objective function in

(12). The selected weak classifier φ is most highly correlated with the gradient gk−1 over the data

distribution, thereby improving its generalization performance. In this work, we instead select

φ that is least parallel to gk−1 as we maximize the objective function (See Figure 3). Thus,

we choose the weak classifier φ with the following criterion which constrains the relationship

between Single Gradient and Single weak Classifier (SGSC) output for each sample:

φk = arg max
φ∈Φ

{ESGSC(φ) = ‖ gk−1 − φ ‖2
2}

= arg max
φ∈Φ


N−1∑
i=0

(gk−1(xi)− φ(xi))2

+
N+L−1∑
i=N

(−gk−1(xi)− φ(xi))2

 .

(14)
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However, the constraint between the selected weak classifier φ and the inverse gradient direction

gk−1 is still too strong in (14) because φ is limited to the a small pool Φ. In addition, both

the single gradient and the weak classifier output are easily affected by noise introduced by the

misaligned samples, which may lead to unstable results. To alleviate this problem, we relax the

constraint between φ and gk−1 with the Average Gradient and Average weak Classifier (AGAC)

criteria in a way similar to the regression tree method in [29]. That is, we take the average weak

classifier output for the positive and negative samples, and the average gradient direction instead

of each gradient direction for every sample,

φk = arg max
φ∈Φ

EAGAC(φ) = N(g+
k−1 − φ

+
)2

+L(−g−k−1 − φ
−

)2


≈ arg max

φ∈Φ

(
(g+
k−1 − φ

+
)2 + (−g−k−1 − φ

−
)2

)
,

(15)

where N is set approximately the same as L in our experiments. In addition, g+
k−1 = 1

N

∑N−1
i=0 gk−1(xi),

φ
+

= 1
N

∑N−1
i=0 φ(xi), g−k−1 = 1

L

∑N+L−1
i=N gk−1(xi), and φ

−
= 1

L

∑N+L−1
i=N φ(xi). It is easy to verify

ESGSC(φ) and EAGAC(φ) have the following relationship:

ESGSC(φ) = S2
+ + S2

− + EAGAC(φ), (16)

where S2
+ =

∑N−1
i=0 (gk−1(xi)− φ(xi)− (g+

k−1 − φ
+

))2 and S2
− =

∑N+L−1
i=N (−gk−1(xi)− φ(xi)−

(−g−k−1−φ
−

))2. Therefore, (S2
+ +S2

−)/N measures the variance of the pooled terms {gk−1(xi)−

φ(xi)}N−1
i=0 and {−gk−1(xi)− φ(xi)}N+L−1

i=N . However, this pooled variance is easily affected by

noisy data or outliers. From (16), we have maxφ∈Φ EAGAC(φ) = maxφ∈Φ(ESGSC(φ)−(S2
++S2

−)),

which means the selected weak classifier φ tends to maximize ESGSC while suppressing the

variance S2
+ + S2

−, thereby leading to more stable results.

In our experiments, a small search radius (e.g., α = 4) is adopted to crop out the positive

samples in the neighborhood of the current object location, leading to the positive samples

with very similar appearances (See Figure 4). Therefore, we have g+
k−1 = 1

N

∑N−1
i=0 gk−1(xi) ≈

gk−1(x0). Replacing g+
k−1 by gk−1(x0) in (15), the ODFS criterion becomes

φk = arg max
φ∈Φ

EODFS(φ) = (gk−1(x0)− φ+
)2

+(−g−k−1 − φ
−

)2

 . (17)

It is worth noting that the average weak classifier output (i.e., φ
+

in (17)) computed from

different positive samples alleviates the noise effects caused by some misaligned positive samples.
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Fig. 3: Principle of the SGSC feature selection method.

Moreover, the gradient from the most correct positive sample helps select effective features that

reduce the sample ambiguity problem. In contrast, other discriminative models that update with

positive features from only one positive sample (e.g., [3], [4], [7], [8]) are susceptible to noise

induced by the misaligned positive sample when drift occurs. If only one positive sample (i.e.,

the tracking result x0) is used for feature selection in our method, we have the single positive

feature selection (SPFS) criterion

φk = arg max
φ∈Φ

ESPFS(φ) = (gk−1(x0)− φ(x0))2

+(−g−k−1 − φ
−

)2

 . (18)

We present experimental results to validate why the proposed method performs better than the

one using the SPFS criterion in Section III-C.

When a new frame arrives, we update all the weak classifiers in the pool Φ in parallel, and

select K weak classifiers sequentially from Φ using the criterion (17). The main steps of the the

proposed online discriminative feature selection algorithm are summarized in Algorithm 2.

3) Relation to Bayes Error Rate: In this section, we show that the optimization problem in

(11) is equivalent to minimizing the Bayes error rate in statistical classification. The Bayes error
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Fig. 4: Illustration of cropping out positive samples with radius α = 4 pixels. The yellow rectangle denotes the

current tracking result and the white dash rectangles denote the positive samples.

rate [30] is
Pe = P (x ∈ R+, y = 0) + P (x ∈ R−, y = 1)

=

 P (x ∈ R+|y = 0)P (y = 0)

+P (x ∈ R−|y = 1)P (y = 1)


=

 ∫
R+ p(x ∈ R+|y = 0)P (y = 0)dx

+
∫
R− p(x ∈ R−|y = 1)P (y = 1)dx

 ,

(19)

where p(x|y) is the class conditional probability density function and P (y) describes the prior

probability. The posterior probability P (y|x) is computed by P (y|x) = p(x|y)P (y)/p(x), where

p(x) =
∑1

j=0 p(x|y = j)P (y = j). Using (19), we have

Pe =

 ∫
R+ P (y = 0|x ∈ R+)p(x ∈ R+)dx

+
∫
R− P (y = 1|x ∈ R−)p(x ∈ R−)dx


= −

∫ R+(P (y = 1|x ∈ R+)− 1)p(x ∈ R+)dx

−
∫
R− P (y = 1|x ∈ R−)p(x ∈ R−)dx

 .

(20)

In our experiments, the samples in each set Rs, s = {+,−} are generated with equal probability,

i.e, p(x ∈ Rs) = 1
|Rs| , where |Rs| is the cardinality of set Rs. Thus, we have

Pe = 1− Emargin, (21)
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Algorithm 2 Online Discriminative Feature Selection

Input: Dataset {xi, yi}N+L−1
i=0 where yi ∈ {0, 1}.

1: Update weak classifier pool Φ = {φm}Mm=1 with data {xi, yi}N+L−1
i=0 .

2: Update the average weak classifier outputs φ
+

m and φ
−
m,m = 1, . . . ,M , in (15), respectively.

3: Initialize h0(xi) = 0.

4: for k = 1 to K do

5: Update gk−1(xi) by (13).

6: for m = 1 to M do

7: Em = (gk−1(x0)− φ+

m)2 + (−g−k−1 − φ
−
m)2.

8: end for

9: m? = arg maxm(Em).

10: φk ← φm? .

11: hk(xi)←
∑k

j=1 φj(xi).

12: hk(xi)← hk(xi)/
∑k

j=1 |φj(xi)| (Normalization).

13: end for

Output: Strong classifier hK(x) =
∑K

k=1 φk(x) and confidence map function P (y = 1|x) =

σ(hK(x)).

where Emargin is our objective function (9). That is, maximizing the proposed objective function

Emargin is equivalent to minimizing the Bayes error rate Pe.

4) Discussion: We discuss the merits of the proposed algorithm with comparisons to the

MILTrack method and related work.

A. Assumption regarding the most positive sample. We assume the most correct positive sample

is the tracking result in the current frame. This has been widely used in discriminative models

with one positive sample [4], [7], [8]. Furthermore, most generative models [6], [9] assume the

tracking result in the current frame is the correct object representation which can also be seen

as the most positive sample. In fact, it is not possible for online algorithms to ensure a tracking

result is completely free of drift in the current frame (i.e., the classic problems in online learning,

semi-supervised learning, and self-taught learning). However, the average weak classifier output
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in our objective function of (17) can alleviate the noise effect caused by misaligned samples.

Moreover, our classifier couples its score with the importance of samples that can alleviate the

drift problem. Thus, we can alleviate this problem by considering the tracking result in the

current frame as the most correct positive sample.

B. Sample ambiguity problem. While the findings by Babenko et al. [15] demonstrate that the

location ambiguity problem can be alleviated with the online multiple instance learning approach,

the tracking results may still not be stable in some challenging tracking tasks [15]. This can be

explained by several factors. First, the Noisy-OR model used by MILTrack does not explicitly

treat the positive samples discriminatively, and instead selects less effective features. Second,

the classifier is only trained by the binary labels without considering the importance of each

sample. Thus, the maximum classifier score may not correspond to the most correct positive

sample, and a similar observation is recently stated by Hare et al. [14]. In our algorithm, the

feature selection criterion (i.e., (17)) explicitly relates the classifier score with the importance of

the samples. Therefore, the ambiguity problem can be better dealt with by the proposed method.

C. Sparse and discriminative feature selection. We examine Step 12 of Algorithm 2 in greater

detail. If we denote φj = wjψj , where ψj = sign(φj) can be seen as a binary weak classifier

whose output is only 1 or −1, and wj = |φj| is the weight of the binary weak classifier whose

range is [0,+∞) (refer to (3)). Therefore, the normalized equation in Step 12 can be rewritten

as hk ←
∑k

i=1(ψiwi/
∑k

j=1 |wj|), and we restrict hk to be the convex combination of elements

from the binary weak classifier set {ψi, i = 1, . . . , k}. This normalization procedure is critical

because it avoids the potential overfitting problem caused by arbitrary linear combination of

elements of the binary weak classifier set. In fact a similar problem also exists in the AnyBoost

algorithm [31]. We choose an `1 norm normalization method which helps to sparsely select the

most discriminative features. In our experiments, we only need to select 15 (K = 15) features

from a feature pool with 150 (M = 150) features, which is computationally more efficient than

the boosting feature selection techniques [7], [15] that select 50 (K = 50) features out of a pool

of 250 (M = 250) features in the experiments.

D. Advantages of ODFS over MILTrack. First, our ODFS method only needs to update the

gradient of the classifier once after selecting a feature, and this is much more efficient than
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the MILTrack method because all instance and bag probabilities must be updated M times

after selecting a weak classifier. Second, the ODFS method directly couples its classifier score

with the importance of the samples while the MILTrack algorithm does not. Thus the ODFS

method is able to select the most effective features related to the most correct positive instance.

This enables our tracker to better handle the drift problem than the MILTrack algorithm [15],

especially in case of drastic illumination change or heavy occlusion.

E. Differences with other online feature selection trackers. Online feature selection techniques

have been widely studied in object tracking [4], [7], [32]–[37]. In [36], Wang et al. use particle

filter method to select a set of Haar-like features to construct a binary classifier. Grabner et

al. [7] propose an online boosting algorithm to select Haar-like, HOG and LBP features. Liu

and Yu [37] propose a gradient-based online boosting algorithm to update a fixed number of HOG

features. The proposed ODFS algorithm is different from the aforementioned trackers. First, all

of the abovementioned trackers use only one target sample (i.e., the current tracking result) to

extract features. Thus, these features are easily affected by noise introduced by misaligned target

sample when tracking drift occurs. However, the proposed ODFS method suppresses noise by

averaging the outputs of the weak classifiers from all positive samples (See (17)). Second, the

final strong classifier in [7], [36], [37] generates only binary labels of samples (i.e., foreground

object or not). However, this is not explicitly coupled to the objective of tracking which is to

predict the object location [14]. The proposed ODFS algorithm selects features that maximize

the confidences of target samples while suppressing the confidences of background samples,

which is consistent with the objective of tracking.

The proposed algorithm is different from the method proposed by Liu and Yu [37] in another

two aspects. First, the algorithm by Liu and Yu does not select a small number of features

from a feature pool but uses all the features in the pool to construct a binary strong classifier. In

contrast, the proposed method selects a small number of features from a feature pool to construct

a confidence map. Second, the objective of [37] is to minimize the weighted least square error

between the estimated feature response and the true label whereas the objective of this work is

to maximize the margin between the average confidences of positive samples and negative ones

based on (9).
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Fig. 5: Probability distributions of three differently selected features that are linearly combined with two, three, four

rectangle features, respectively. The yellow numbers denote the corresponding weights. The red stair represents the

histogram of positive samples while the blue stair represents the histogram of negative samples. The red and blue

lines denote the corresponding distribution estimations by our incremental update method.

III. EXPERIMENTS

We use the same generalized Haar-like features as [15], which can be efficiently computed

using the integral image. Each feature fk is a Haar-like feature computed by the sum of weighted

pixels in 2 to 4 randomly selected rectangles. For presentation clarity, in Figure 5 we show the

probability distributions of three selected features by our method. The positive and negative

samples are cropped from a few frames of a sequence. The results show that a Gaussian

distribution with an online update using (5) and (6) is a good approximation of the selected

features.

As the proposed ODFS tracker is developed to address several issues of MIL based tracking

methods (See Section I), we evaluate it with the MILTrack [15] on 16 challenging video clips,

among which 14 sequences are publicly available [12], [15], [18] and the others are collected on

our own. In addition, seven other state-of-the-art learning based trackers [6], [7], [10]–[12], [14],

[17], [18] are also compared. For fair evaluations, we use the original source or binary codes [6],

[7], [10]–[12], [14], [15], [17], [18] in which parameters of each method are tuned for best

performance. The 9 trackers we compare with are: fragment tracker (Frag) [6], online AdaBoost

tracker (OAB) [7], Semi-Supervised Boosting tracker (SemiB) [10], multiple instance learning
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tracker (MILTrack) [15], Tracking-Learning-Detection (TLD) method [12], Struck method [14],

`1-tracker [11], visual tracking decomposition (VTD) method [18] and compressive tracker

(CT) [17]. We fix the parameters of the proposed algorithm for all experiments to demonstrate

its robustness and stability. Since all the evaluated algorithms involve some random sampling

except [6], we repeat the experiments 10 times on each sequence, and present the averaged

results. Implemented in MATLAB, our tracker runs at 30 frames per second (FPS) on a Pentium

Dual-Core 2.10 GHz CPU with 1.95 GB RAM. Our source codes and videos are available at

http://www4.comp.polyu.edu.hk/∼cslzhang/ODFS/ODFS.htm.
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Fig. 6: Error plots in terms of center location error for 16 test sequences.
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A. Experimental Setup

We use a radius (α) of 4 pixels for cropping the similar positive samples in each frame

and generate 45 positive samples. A large α can make positive samples much different which

may add more noise but a small α generates a small number of positive samples which are

insufficient to avoid noise. The inner and outer radii for the set Xζ,β that generates negative

samples are set as ζ = d2αe = 8 and β = d1.5γe = 38, respectively. Note that we set the inner

radius ζ larger than the radius α to reduce the overlaps with the positive samples, which can

reduce the ambiguity between the positive and negative samples. Then, we randomly select a

set of 40 negative samples from the set Xζ,β which is fewer than that of the MILTrack method

(where 65 negative examples are used). Moreover, we do not need to utilize many samples to

initialize the classifier whereas the MILTrack method uses 1000 negative patches. The radius for

searching the new object location in the next frame is set as γ = 25 that is enough to take into

account all possible object locations because the object motion between two consecutive frames

is often smooth, and 2000 samples are drawn, which is the same as the MILTrack method [15].

Therefore, this procedure is time-consuming if we use more features in the classifier design. Our

ODFS tracker selects 15 features for classifier construction which is much more efficient than

the MILTrack method that sets K = 50. The number of candidate features M in the feature pool

is set to 150, which is fewer than that of the MILTrack method (M = 250). We note that we also

evaluate with the parameter settings K = 15,M = 150 in the MILTrack method but find it does

not perform well for most experiments. The learning parameter can be set as η = 0.80 ∼ 0.95.

A smaller learning rate can make the tracker quickly adapts to the fast appearance changes and

a larger learning rate can reduce the likelihood that the tracker drifts off the target. Good results

can be achieved by fixing η = 0.93 in our experiments.

B. Experimental Results

All of the test sequences consist of gray-level images and the ground truth object locations are

obtained by manual labels at each frame. We use the center location error in pixels as an index

to quantitatively compare 10 object tracking algorithms. In addition, we use the success rate to

evaluate the tracking results [14]. This criterion is used in the PASCAL VOC challenge [38]

and the score is defined as score = area(G
⋂
T )

area(G
⋃
T )

, where G is the ground truth bounding box

and T is the tracked bounding box. If score is larger than 0.5 in one frame, then the result
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TABLE I: Center location error (CLE) and average frames per second (FPS). Top two results are shown in Bold

and italic.

Sequence ODFS CT MILTrack Struck OAB TLD `1-tracker SemiB Frag VTD

Animal 15 17 32 17 62 − 155 25 99 11

Bike skill 6 12 43 95 9 − 79 14 106 86

Coupon book 8 6 6 10 9 − 6 74 63 73

Cliff bar 5 8 14 20 33 − 35 56 34 31

David 12 17 19 9 57 12 42 37 73 6

Football 13 13 14 19 37 10 184 58 143 6

Jumping 8 9 10 42 11 8 99 11 29 17

Kitesurf 7 11 8 7 11 − 45 9 93 30

Occluded face 2 10 12 16 25 36 − 19 39 58 46

Pedestrian 8 43 38 13 105 − 99 57 99 35

Panda 7 8 9 67 10 20 10 10 69 71

Soccer 19 18 64 95 96 − 189 135 54 24

Shaking 11 11 12 166 22 − 192 133 41 8

Twinings 12 13 14 7 7 15 10 70 15 20

Tiger 1 13 20 27 12 42 − 48 39 39 12

Tiger 2 14 14 18 22 22 − 57 29 37 47

Average CLE 10 13 20 44 31 − 67 49 62 31

Average FPS 30 33 10.31 0.01 8.5 9.4 0.1 6.5 3.5 0.01
1The FPS is 1.7 in our MATLAB implementation.

is considered a success. Table I shows the experimental results in terms of center location

errors, and Table II presents the tracking results in terms of success rate. Our ODFS-based

tracking algorithm achieves the best or second best performance in most sequences, both in

terms of success rate and center location error. Furthermore, the proposed ODFS-based tracker

performs well in terms of speed (only slightly slower than CT method) among all the evaluated

algorithms on the same machine even though other trackers (except for the TLD, CT methods and

`1-tracker) are implemented in C or C++ which is intrinsically more efficient than MATLAB.

We also implement the MILTrack method in MATLAB which runs at 1.7 FPS on the same

machine. Our ODFS-based tracker (at 30 FPS) is more than 17 times faster than the MILTrack

method with more robust performance in terms of success rate and center location error. The

quantitative results also bear out the hypothesis that supervised learning method can yield much
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TABLE II: Success rate (SR). Top two results are shown in Bold and italic.

Sequence ODFS CT MILTrack Struck OAB TLD `1-tracker SemiB Frag VTD

Animal 90 76 73 97 15 75 5 47 3 96

Bike skill 91 30 2 7 74 8 7 47 3 27

Coupon book 99 98 99 99 98 16 100 37 27 37

Cliff bar 94 87 65 70 23 67 38 65 22 47

David 90 86 68 98 31 98 41 46 8 98

Football 71 76 70 69 37 80 30 19 31 96

Jumping 100 97 99 18 86 98 9 84 36 87

Kitesurf 84 58 78 82 73 45 27 73 1 41

Occluded face 2 100 98 99 78 47 46 84 40 52 67

Pedestrian 71 54 53 58 4 21 18 23 5 64

Panda 78 80 75 13 69 29 56 67 7 4

Soccer 67 70 17 14 8 10 13 9 27 39

Shaking 87 88 85 1 40 16 10 31 28 97

Twinings 83 85 72 98 98 46 83 23 69 78

Tiger 1 68 53 39 73 24 65 13 28 19 73

Tiger 2 43 55 45 22 37 41 12 17 13 12

Average SR 83 80 66 52 52 45 42 41 26 62

more stable and accurate results than the greedy feature selection method used in the MILTrack

algorithm [15] as we integrate known prior (i.e., the instance labels and the most correct positive

sample) into the learning procedure.

Figure 6 shows the error plots for all test video clips. For the sake of clarity, we only present

the results of ODFS against the CT, Struck, MILTrack and VTD methods which have been

shown to perform well.

Scale and pose. Similar to most state-of-the-art tracking algorithms (Frag, OAB, SemiB, and

MILTrack), our tracker estimates the translational object motion. Nevertheless, our tracker is

able to handle scale and orientation change due to the use of Haar-like features. The targets in

David (#130, #180, #218 in Figure 7), Twinings (#200, #366, #419 in Figure 8) and Panda

(#100, #150, #250, #550, #780 in Figure 9) sequences undergo large appearance change due

to scale and pose variation. Our tracker achieves the best or second best performance in most
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Fig. 7: Some tracking results of David sequence.

sequences. The Struck method performs well when the objects undergo pose variation as in the

David, Twinings and Kitesurf sequences (See Figure 10) but does not perform well in the Panda

sequence (See frame #150, #250, #780 in Figure 9). The object in Kitesurf sequence shown

in Figure 10 undergoes large in-plane and out-of-plane rotation. The VTD method gradually

drifts away due to large appearance change (See frame #75, #80 in Figure 10). The MILTrack

does not perform well in the David sequence when the appearance changes much (See frame

#180, #218, #345 in Figure 7). In the proposed algorithm, the background samples yield very

small classifier scores with (15) which makes our tracker better separate target object from its

surrounding background. Thus, the proposed tracker does not drift away from the target object

in cluttered background.

Heavy occlusion and pose variation. The object in Occluded face 2 shown in Figure 11

undergoes heavy occlusion and pose variation. The VTD and Struck methods do not perform

well as shown in Figure 11 due to large appearance change caused by occlusion and pose
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Fig. 8: Some tracking results of Twinings sequence.

variation (#380,#500 in Figure 11). In the Tiger 1 sequence (Figure 1) and Tiger 2 sequences

(Figure 12), the appearances of the objects change significantly as a result of scale, pose variation,

illumination change and motion blur at the same time. The CT and MILTrack methods drift to

the background in the Tiger 1 sequence (#290, #312, #348 in Figure 1). The Struck, MILTrack

and VTD methods drift away at frame #278, #355 in Tiger 2 sequences when the target objects

undergo changes of lighting, pose, and partial occlusion. Our tracker performs well in these

challenging sequences as it effectively selects the most discriminative local features for updating

the classifier, thereby better handling drastic appearance change than methods based on holistic

features.

Abrupt motion, rotation and blur. The blurry images of the Jumping sequence (See Figure 13)

due to fast motion make it difficult to track the target object. As shown in frame #300 of Figure

13, the Struck and VTD methods drift away from the target because of the drastic appearance

change caused by motion blur. The object in the Cliff bar sequence of Figure 14 undergoes scale
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Fig. 9: Some tracking results of Panda sequence.

change, rotation, and motion blur. As illustrated in frame #154 of Figure 14, when the object

undergoes in-plane rotation and blur, all evaluated algorithms except the proposed tracker do not

track the object well. The object in the Animal sequence (Figure 15) undergoes abrupt motion.

The MILTrack method performs well in most of frames, but it loses track of the object from

frame #35 to #45. The Bike skill sequence shown in Figure 1 is challenging as the object moves

abruptly with out-of-plane rotation and motion blur. The MILTrack, Struck and VTD methods

drift away from the target object after frame #100.

For the above four sequences, our tracker achieves the best performance in terms of tracking

error and success rate except in the Animal sequence (See Figure 15) the Struck and VTD

methods achieve slightly better success rate. The results show that the proposed feature selection

method by integrating the prior information can effectively select more discriminative features

than the MILTrack method [15], thereby preventing our tracker from drifting to the background

region.
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Fig. 10: Some tracking results of Kitesurf sequence.

Cluttered background and abrupt camera shake. The object in the Cliff bar sequence (See

Figure 14) changes in scale and moves in a region with similar texture. The VTD method is

a generative model that does not take into account the negative samples, and it drifts to the

background in the Cliff bar sequence (See frame #200,#230 of Figure 14) because the texture

of the background is similar to the object. Similarly, in the Coupon book sequence (See frame

#190,#245,#295 of Figure 16), the VTD method is not effective in separating two nearby

objects with similar appearance. Our tracker performs well on these sequences because it weighs

more on the most correct positive sample and assigns a small classifier score to the background

samples during classifier update, thereby facilitating separation of the foreground target and the

background.

The Pedestrian sequence (See Figure 1) is challenging due to the cluttered background and

camera shake. All the other compared trackers except for the Struck method snap to the other

object with similar texture to the target after frame #100 (See Figure 6). However, the Struck

method gradually drifts away from the target (See frame #106, #139 of Figure 1). Our tracker
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Fig. 11: Some tracking results of Occluded face 2 sequence.

performs well as it integrates the most correct positive sample information into the learning

process which makes the updated classifier better differentiate the target from the cluttered

background.

Large illumination change and pose variation. The appearance of the singer in the Shaking

sequence (See Figure 1) changes significantly due to large variation of illumination and head

pose. The MILTrack method fails to track the target when the stage light changes drastically at

frame #60 whereas our tracker can accurately locate the object. In the Soccer sequence (See

Figure 17), the target player is occluded in a scene with large change of scale and illumination

(e.g., frame #100, #120, #180, #240 of Figure 17). The MILTrack and Struck methods fail to

track the target object in this video (See Figure 6). The VTD method does not perform well when

the heavy occlusion occurs as shown by frame #120, #180 in Figure 17. Our tracker is able to

adapt the classifier quickly to appearance change as it selects the discriminative features which

maximize the classifier score with respect to the most correct positive sample while suppressing
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Fig. 12: Some tracking results of Tiger 2 sequence.

the classifier score of background samples. Thus, our tracker performs well in spite of large

appearance change due to variation of illumination, scale and camera view.

C. Analysis of ODFS

We compare the proposed ODFS algorithm with the AGAC (i.e., (15)), SPFS (i.e., (18)), and

SGSC (i.e., (14)) methods all of which differ only in feature selection and number of samples.

Tables III and IV present the tracking results in terms of center location error and success rate,

respectively. The ODFS and AGAC methods achieve much better results than other two methods.

Both ODFS and AGAC use average weak classifier output from all positive samples (i.e., φ
+

in

(17) and (15)) and the only difference is that ODFS adopts single gradient from the most correct

positive sample to replace the average gradient from all positive samples in AGAC. This approach

facilitates reducing the sample ambiguity problem and leads to better results than the AGAC

method which does not take into account the sample ambiguity problem. The SPFS method uses

single gradient and single weak classifier output from the most correct positive sample that does
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Fig. 13: Some tracking results of Jumping sequence.

not have the sample ambiguity problem. However, the noisy effect introduced by the misaligned

samples significantly affects its performance. The SGSC method does not work well because of

both noisy and sample ambiguity problems. Both the gradient from the most correct positive

sample and the average weak classifier output from all positive samples play important roles for

the performance of ODFS. The adopted gradient reduces the sample ambiguity problem while

the averaging process alleviates the noisy effect caused by some misaligned positive samples.

D. Online Update of Model Parameters

We implement our parameter update method in MATLAB with evaluation on 4 sequences, and

the MILTrack method using our parameter update method is referred as CMILTrack as illustrated

in Section . For fair comparisons, the only difference between the MATLAB implementations

of the MILTrack and CMILTrack methods is the parameter update module. We compare the

proposed ODFS, MILTrack and CMILTrack methods using four videos. Figure 18 shows the

error plots and some sampled results are shown in Figure 19. We note that in the Occluded face
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Fig. 14: Some tracking results of Cliff bar sequence.

2 sequence, the results of the CMILTrack algorithm are more stable than those of the MILTrack

method. In the Tiger 1 and Tiger 2 sequences, the CMILTrack tracker has less drift than the

MILTrack method. On the other hand, in the Pedestrian sequence, the results by the CMILTrack

and MILTrack methods are similar. Experimental results show that both the parameter update

method and the Noisy-OR model are important for robust tracking performance. While we use the

parameter update method based on maximum likelihood estimation in the CMILTrack method,

the results may still be unstable because the Noisy-OR model may select the less effective

features (even though the CMILTrack method generates more stable results than the MILTrack

method in most cases). We note the results by the proposed ODFS algorithm are more accurate

and stable than the MILTrack and CMILTrack methods.

IV. CONCLUSION

In this paper, we present a novel online discriminative feature selection (ODFS) method for ob-

ject tracking which couples the classifier score explicitly with the importance of the samples. The
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Fig. 15: Some tracking results of Animal sequence.

proposed ODFS method selects features which optimize the classifier objective function in the

steepest ascent direction with respect to the positive samples while in steepest descent direction

with respect to the negative ones. This leads to a more robust and efficient tracker without param-

eter tuning. Our tracking algorithm is easy to implement and achieves real-time performance with

MATLAB implementation on a Pentium dual-core machine. Experimental results on challenging

video sequences demonstrate that our tracker achieves favorable performance when compared

with several state-of-the-art algorithms.
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Fig. 17: Some tracking results of Soccer sequence.
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Fig. 19: Some tracking results of Tiger 1, Tiger 2, Pedestrian, and Occluded face 2 sequences using MILTrack,

CMILTrack and ODFS methods.
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