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This paper presents a novel image feature representation method, called multi-texton histogram (MTH),

for image retrieval. MTH integrates the advantages of co-occurrence matrix and histogram by

representing the attribute of co-occurrence matrix using histogram. It can be considered as a

generalized visual attribute descriptor but without any image segmentation or model training. The

proposed MTH method is based on Julesz’s textons theory, and it works directly on natural images as a

shape descriptor. Meanwhile, it can be used as a color texture descriptor and leads to good performance.

The proposed MTH method is extensively tested on the Corel dataset with 15 000 natural images. The

results demonstrate that it is much more efficient than representative image feature descriptors, such

as the edge orientation auto-correlogram and the texton co-occurrence matrix. It has good

discrimination power of color, texture and shape features.

Crown Copyright & 2010 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Image retrieval is an important topic in the field of pattern
recognition and artificial intelligence. Generally speaking, there
are three categories of image retrieval methods: text-based,
content-based and semantic-based. The text-based approach can
be traced back to 1970s [4]. Since the images need to be manually
annotated by text descriptors, it requires much human labour
for annotation, and the annotation accuracy is subject to human
perception. In early 1990s, researchers had built many content-
based image retrieval systems, such as QIBC, MARS, Virage,
Photobook, FIDS, Web Seek, Netra, Cortina [5], VisualSEEK [6] and
SIMPLIcity [7]. Various low-level visual features can be extracted
from the images and stored as image indexes. The query is an
image example that is indexed by its features, and the retrieved
images are ranked with respect to their similarity to the query
image. Since the indexes are directly derived from the image
content, it requires no semantic labeling [8]. Considering that
humans tend to use high-level features to interpret images
and measure their similarity and image low-level features
(e.g. color, texture, shape) often fail to describe the high level
semantic concepts, researchers have proposed some methods for
image retrieval by using machine learning techniques such as
SVM [9–13].
010 Published by Elsevier Ltd. All

.
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Some statistical models have been proposed to exploit the
similarities between image regions or patches, which are
represented in a uniform vector, such as the Visual Token Catalog
[14] and the Visual Language Modeling [15]. They map the blob to
visual words and apply language model to visual words. A visual
token catalog is generated to exploit the content similarities
between regions in [14], while the Visual Language Modeling in
[15] is based on the assumption that there are implicit visual
grammars in a meaningful image. Those methods need accurate
image segmentation, which is however still an open problem.
Limited by the current advances of artificial intelligence and
cognitive science, semantic-based image retrieval still has a long
way to go for real applications. Comparatively, content-based
image retrieval (CBIR) is still attracting much attention by
researchers. In general, the research of CBIR techniques mainly
focuses on two aspects: part-based object retrieval [16–19] and
low-level visual feature-based image retrieval [20–23].

In this paper, we focus on edge-based image representation for
image retrieval. In [24,25], Jain et al. introduced the edge direction
histogram (EDH) for trademark images retrieval. This method is
invariant to image translation, rotation and scaling because it uses
the edges only but ignores correlation between neighboring
edges. EDH only suits for flat-images of trademarks. Gevers et al.
[23,35] proposed a new method for image indexing and retrieval
by combining color and shape invariant features. This method is
robust to partial occlusion, object clutter and change in viewpoint.
The MPEG-7 edge histogram descriptor (EHD) can capture
the spatial distribution of edges, and it is an efficient texture
descriptor for images with heavy textural presence. It can also
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work as a shape descriptor as long as the edge field contains the
true object boundaries [26]. In [27], Mahmoudi et al. proposed
the edge orientation autocorrelogram (EOAC) for shape-based
image indexing and retrieval. It can be used for edge-based image
indexing and retrieval without segmentation. The EOAC is
invariant to translation, scaling, color, illumination, and small
viewpoint variations, but it is not appropriate for texture-based
images retrieval. Lowe [28] proposed a very effective algorithm,
called scale-invariant feature transform (SIFT), in computer vision
to detect and describe local features in images. It has been widely
used in object recognition, robotic mapping and navigation, image
stitching, 3D modeling, gesture recognition, video tracking, etc.
Banerjee et al. [31] proposed to use edge-based features for CBIR.
The algorithm is computationally attractive as it computes
different features with limited number of selected pixels. The
texton co-occurrence matrices (TCM) proposed in [20] can
describe the spatial correlation of textons for image retrieval. It
has the discrimination power of color, texture and shape features.
Kiranyaz et al. [21] proposed a generic shape and texture
descriptor over multi-scale edge field for image retrieval, which
is the so called 2-D walking ant histogram (2D-WAH). As a shape
descriptor, it deals directly with natural images without any
segmentation or object extraction preprocessing stage. When
tuned as a texture descriptor, it can achieve good retrieval
accuracy especially for directional textures. Luo et al. [38]
developed a robust algorithm called color edge co-occurrence
histogram (CECH), which is based on a particular type of spatial-
color joint histogram. This algorithm employs perceptual color
naming to handle color variation, and pre-screening to limit the
search scope (i.e. size and location) of the object.

Natural scenes are usually rich in both color and texture, and a
wide range of natural images can be considered as a mosaic of
regions with different colors and textures. The human visual
system exhibits a remarkable ability to detect subtle differences
in textures that are generated from an aggregate of fundamental
micro-structures or elements [1,2]. Color and texture have close
relationship via fundamental micro-structures in natural images
and they are considered as the atoms for pre-attentive human
visual perception. The term ‘‘texton’’ is conceptually proposed by
Julesz [1]. It is a very useful concept in texture analysis and has
been utilized to develop efficient models in the context of texture
recognition or object recognition [33,34]. However, few works
were proposed to apply texton models to image retrieval. How to
obtain texton features, and how to map the low-level texture
features to textons need to be further studied. To this end, in this
paper we propose a new descriptor for image retrieval. It can
represent the spatial correlation of color and texture orientation
without image segmentation and learning processes.

This paper presents a new feature extractor and descriptor,
namely multi-texton histogram (MTH), for image retrieval. MTH can
be viewed as an improved version of TCM. It is specially designed for
natural image analysis and can achieve higher retrieval precision
than that of EOAC [27] and TCM [20]. It integrates the advantages of
co-occurrence matrix and histogram by representing the attribute of
co-occurrence matrix using histogram, and can represent the spatial
correlation of color and texture orientation.

The rest of this paper is organized as follows. In Section 2, the
TCM is introduced. The MTH is presented in Section 3. In Section
4, performance comparison among EOAC, TCM and MTH is taken
on two Corel datasets. Section 5 concludes the paper.
Fig. 1. Five special texton types used in TCM.
2. The texton co-occurrence matrix (TCM)

Before describing in detail the proposed MTH, let us briefly
review the TCM [20] method for image retrieval. TCM can
represent the spatial correlation of textons, and it can discrimi-
nate color, texture and shape features simultaneously. Let r, g and
b be unit vectors along the R, G and B axes in RGB color space, we
define the following vectors for a full color image f(x,y) [3,32]:

u¼
@R

@x
rþ

@G

@x
gþ

@B

@x
b ð1Þ

v¼
@R

@y
rþ

@G

@y
gþ

@B

@y
b ð2Þ

gxx, gyy and gxy are defined as the dot products of these vectors:

gxx ¼ uT u¼ j@R=@xj2þj@G=@xj2þj@B=@xj2 ð3Þ

gyy ¼ vT v¼ j@R=@yj2þj@G=@yj2þj@B=@yj2 ð4Þ

gxy ¼ uT v¼
@R

@x

@R

@y
þ
@G

@x

@G

@y
þ
@B

@x

@B

@y
ð5Þ

Let v(x,y) be an arbitrary vector in RGB color space. Using the
above notations, it can be seen that the direction of maximum
rate of the change of v(x,y) is [3,32]

yðx; yÞ ¼
1

2
tan�1 2gxy

ðgxx�gyyÞ

� �
ð6Þ

The value of the rate of change at (x, y) in the direction of y(x, y) is
given by

Gðx; yÞ ¼ 1
2½ðgxxþgyyÞþðgxx�gyyÞcos 2yþ2gxy sin 2y�
� �1=2

ð7Þ

Denote by Max(G) and Min(G) the maximum and minimum
values of G along some direction by Eq. (7). The original color
image is quantized into 256 colors in RGB color space, denoted by
C(x, y). Five special types of texton templates are used to detect
the textons, which are shown in Fig. 1. The flow chart of texton
detection is illustrated in Fig. 2. In an image, we move the 2�2
grid from left-to-right and top-to-bottom throughout the image to
detect textons with one pixel as the step-length. If the pixel values
that fall in the texton template are the same, those pixels will
form a texton, and their values are kept as the original values.
Otherwise they will be set to zero. Each texton template can lead
to a texton image (an example of texton detection result is shown
in Fig. 2(a)), and the five texton templates will lead to five texton
images. We combine them into a final texton image, as shown in
Fig. 2(b).

For the texton images detected with Max(G), Min(G) and
C(x, y), we use co-occurrence matrix to extract their features.
Denote the values of a texton image as f(P)=w, wA{0, 1, y, 255}.
The pixel position is P=(x, y). Let P1=(x1, y1), P2=(x2, y2), f(P1)=w

and f ðP2Þ ¼ ŵ. If the probability of two values w and ŵ co-occur
with two pixel positions related by D, we define the cell entry
(w, ŵ) of co-occurrence matrix CD;y as follows:

CD;y ¼ 1�Prff ðP1Þ ¼w4f ðP2Þ ¼ ŵjjP1�P2j ¼Dg ð8Þ

The TCM utilizes energy, contrast, entropy and homogeneity to
describe image features. For an image, a 12-dimensional vector
will be obtained as the final feature for retrieval.



ARTICLE IN PRESS

Fig. 2. The flow chart of texton detection in TCM: (a) an example of texton detection; (b) the five detected texton images and the final texton image.
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3. The multi-texton histogram (MTH)

The study of pre-attentive (also called effortless) texture
discrimination can serve as a model system, with which the roles
of local texture detection and global (statistical) computation in
visual perception can be distinguished [1]. This can be easily
explained by the local orientation differences between the
elements that constitute the two texture images. It is possible
to describe the differences between the texture images globally. If
the first-order statistics of two texture images are identical, the
second-order statistics may also differ greatly [1]. The first and
second-order statistics have their own advantages in texture
discrimination, so in this paper we propose to combine the first-
order statistics and second-order statistics into an entity for
texton analysis. We call the proposed technique multi-texton
histogram (MTH), and use it for image retrieval.

Based on the texton theory [1,2], texture can be decomposed
into elementary units, the texton classes of colors, elongated blobs
of specific widths, orientation and aspect ratios, and the
terminators of these elongated blobs. In the proposed MTH-based
image retrieval scheme, texture orientation needs to be detected
for texton analysis. In the following sub-section, we propose a
computationally efficient method for texture orientation detec-
tion.
3.1. Texture orientation detection

Texture orientation analysis plays an important role in
computer vision and pattern recognition. For instance, orientation
is used in pre-attentive vision to characterize textons [1–3].
Orientation of texture images has a strong influence on human’s
perception of a texture image. Texture orientation can also be
used to estimate the shape of textured images. The orientation
map in an image represents the object boundaries and texture
structures, and it provides most of the semantic information in
the image. In this paper, we propose a computationally efficient
algorithm for texture orientation detection.
By applying some gradient operator, such as the Sobel
operator, to a gray level image along horizontal and vertical
directions, we can have two gradient images, denoted by gx and
gy. A gradient map g(x,y) can be obtained, with the gradient

magnitude and orientation defined as jgðx; yÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

x þg2
y

q
and

yðx; yÞ ¼ arctanðgy=gxÞ.

As for full color images, there are red, green and blue channels. If
we convert the full color image into a gray image, and then detect
the gradient magnitude and orientation from the gray image, much
chromatic information will lose. In order to detect the edges caused
by chromatic changes, we propose the following method.

In the Cartesian space, let a¼ ðx1; y1; z1Þ and b¼ ðx2; y2; z2Þ.
Their dot product is defined as

a � b¼ x1x2þy1y2þz1z2 ð9Þ

so that

cosðda; bÞ ¼ a:b

jajjbj
¼

x1x2þy1y2þz1z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1þy2
1þz2

1

q
:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2þy2
2þz2

2

q ð10Þ

We apply the Sobel operator to each of the red, green and blue
channels of a color image f(x,y). The reason that we use the Sobel
operator is that it is less sensitive to noise than other gradient
operators or edge detectors while being very efficient [3]. The
gradients along x and y directions can then be denoted by two
vectors aðRx;Gx;BxÞ and bðRy;Gy;ByÞ, where Rx denotes the gradient
in R channel along horizontal direction, and so on. Their norm and
dot product can be defined as

jaj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRxÞ

2
þðGxÞ

2
þðBxÞ

2
q

ð11Þ

jbj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRyÞ

2
þðGyÞ

2
þðByÞ

2
q

ð12Þ

a � b¼ Rx � RyþGx � GyþBx � By ð13Þ

The angle between a and b is then

cosðda; bÞ ¼ a � b

jaj � jbj
ð14Þ
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y¼ arccos½cosðda; bÞ� ¼ arccos
a � b

jaj � jbj

� �
ð15Þ

After the texture orientation y of each pixel is computed,
we quantize it uniformly into 18 orientations with 101 as the
step-length.

3.2. Color quantization in RGB color space

It is well known that color provides powerful information for
image retrieval or object recognition, even in the total absence of
shape information. HSV color space could mimic human color
perception well, and thus many researchers use it for color quant-
ization. In terms of digital processing, however, RGB color space is
most commonly used in practice and it is straightforward. In
order to extract color information and simplify manipulation, in
this work the RGB color space is used and it quantized into 64
colors. In Section 4.4, the experiments demonstrated that the RGB
color space is well suitable for our framework. Given a color
image with size N�N, we uniformly quantize the R, G, and B

channels into 4 bins so that 64 colors are obtained. Denote by
C(x, y) the quantized image, where x, y=[0, 1,y, N�1]. Then each
value of C(x, y) is a 6-bits binary code, ranging from 0 to 63.

3.3. Texton detection

The concept of ‘‘texton’’ was proposed in [1] more than 20
years ago, and it is a very useful tool in texture analysis. In
general, textons are defined as a set of blobs or emergent patterns
sharing a common property all over the image; however, defining
textons remains a challenge. In [2], Julesz presented a more
complete version of texton theory, with emphasis on critical
distances (D) between texture elements on which the computa-
tion of texton gradients depends. Textures are formed only if the
adjacent elements lie within the D-neighborhood. However, this
D-neighborhood depends on element size. If the texture elements
are greatly expanded in one orientation, pre-attentive discrimina-
tion is somewhat reduced. If the elongated elements are not
jittered in orientation, this increases the texton-gradients at the
texture boundaries. Thus, with a small element size, such as 2�2,
Fig. 3. Four texton types defined in MTH: (a) 2�2 grid; (b) T1; (c) T2; (d) T3

and (e) T4.

Fig. 4. Illustration of the te
texture discrimination can be increased because the texton
gradients exist only at texture boundaries [2]. In view of this
and for the convenience of expression, the 2�2 block is used in
this paper for textons detection.

The texton templates defined in MTH are different from those
in TCM (refer to Fig. 1). In this paper, four special texton types are
defined on a 2�2 grid, as shown in Fig. 3. Denote the four pixels
as V1, V2, V3 and V4. If the two pixels highlighted in gray color have
the same value, the grid will form a texton. Those 4 texton types
are denoted as T1, T2, T3 and T4, respectively.

The working mechanism of texton detection is illustrated in
Fig. 4. In the color index image C(x, y), we move the 2�2 block
from left-to-right and top-to-bottom throughout the image to
detect textons with 2 pixels as the step-length. If a texton is
detected, the original pixel values in the 2�2 grids are kept
unchanged. Otherwise it will have zero value. Finally, we will
obtain a texton image, denoted by T(x, y).

The four texton types used in MTH contain richer information
than those in TCM because the co-occurring probability of
two same-valued pixels is bigger than that of three or four
same-valued pixels in a 2�2 grid. As for the texton detection
procedure, MTH is also faster than TCM. In the texton detection of
TCM, the 2�2 grid moves throughout the image with one pixel as
the step-length, and the detected textons in a neighborhood may
overlap. The final texton image needs to be fused by the
overlapped components of textons, and this will increase the
computational complexity. Therefore, in this paper the step-
length is set to two pixels to reduce the computational cost.
3.4. Features representation

In [16], the angle and radius are quantized by using the log
polar quantization scheme as in [29,30]. The angle is quantized
into 12 bins and the radius is quantized into 5 bins. The log-polar
quantization has a good performance in image retrieval. It can
well express the local information, but the feature dimension is
big and the feature matrix is sparse. The TCM scheme utilizes
energy, contrast, entropy and homogeneity to describe image
features [20]. However, these metrics cannot fully represent the
discrimination power of color, texture and shape features. There is
still much room to improve TCM, and the proposed method in this
section is such an improved version of TCM.

The co-occurrence matrix characterizes the relationship
between the values of neighboring pixels, while the histogram-
based techniques have high indexing performance and are simple
to compute. If we use the co-occurrence matrix to represent
image features directly, the dimension will be high and the
performance can be decreased. If we use histogram only to
represent image features, the spatial information will be lost. In
xton detection process.
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Fig. 5. Two examples of MTH: (a) stained glass; (b) racing car.
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order to combine the advantages of co-occurrence matrix and
histogram, in this paper we propose the MTH descriptor.

The values of a texton image T are denoted as wA{0,
1,y,W�1}. Denote by P1=(x1, y1) and P2=(x2, y2) two neighboring
pixels, and their values are T(P1)=w1 and T(P2)=w2. In the texture
orientation image yðx; yÞ, the angles at P1 and P2 are denoted by
yðP1Þ ¼ v1 and yðP2Þ ¼ v2. In texton image T, two different texture
orientations may have the same color, while in texture orientation
image yðx; yÞ, two different colors may have the same texture
orientation. Denote by N the co-occurring number of two values
v1 and v2, and by N the co-occurring number of two values w1 and
w2. With two neighboring pixels whose distance is D, we define
the MTH as follows:

HðTðP1ÞÞ ¼
NfyðP1Þ ¼ v14yðP2Þ ¼ v2jjP1�P2j ¼Dg

where yðP1Þ ¼ yðP2Þ ¼ v1 ¼ v2

(
ð16Þ

HðyðP1ÞÞ ¼
NfTðP1Þ ¼w14TðP2Þ ¼w2jjP1�P2j ¼Dg

where TðP1Þ ¼ TðP2Þ ¼w1 ¼w2

(
ð17Þ

The proposed algorithm analyzes the spatial correlation
between neighboring color and edge orientation based on four
special texton types, and then forms the textons co-occurrence
matrix and describes the attribute of texton co-occurrence matrix
using histogram. This is why we call it multi-texton histogram
(MTH). Fig. 5 shows two examples of the proposed MTH.

H(T(P1)) can represent the spatial correlation between neigh-
boring texture orientation by using color information, leading to a
64 dimensional vector. H(y(P1)) can represent the spatial correla-
tion between neighboring colors by using the texture orientation
information, leading to a 18 dimensional vector. Thus in total
MTH uses a 64+18=82 dimensional vector as the final image
features in image retrieval.
4. Experimental results

In this section, we demonstrate the performance of
our method using two Corel datasets. The methods used in
comparison are the edge orientation autocorrelogram (EOAC) [27]
and TCM [20]. Both EOAC and the proposed MTH are based on
edge features without image segmentation, and TCM is the origin
of our method. In the experiments, we selected randomly 50
images from every category as query image. The performance is
evaluated by the average results of each query respectively. The
source code of the proposed MTH algorithm can be downloaded at
http://www.comp.polyu.edu.hk/�cslzhang/code/MTH_C_Code.txt.
4.1. Datasets

There are so far no standard test datasets and performance
evaluation models for CBIR systems [4]. Although many image
datasets, such as Coil-100 dataset, ETH-80 dataset and VisTex
texture dataset, are available, they are mainly used for image
classification or object recognition. There are essential differences
between image retrieval and image classification. Image
classification has the training dataset and aims at identifying
the class of the query image; however, in image retrieval there is
no training set, and the purpose is to search for similar images to
the given one. The image datasets used for image classification are
not well fitted for image retrieval, and the image representations
used in image classification are often not well fitted for image
retrieval, either. The Corel image dataset is the most commonly
used dataset to test image retrieval performance and the Brodatz
texture dataset [36] and the OUTex texture dataset [37] are also
widely used. Images collected from internet serve as another
data source especially for systems targeting at Web image
retrieval [37].

The Corel image database contains a large amount of images of
various contents ranging from animals and outdoor sports to
natural scenarios. Two Corel datasets are used in our image
retrieval systems. The first one is the Corel 5000 dataset, which
contains 50 categories. There are 5000 images from diverse
contents such as fireworks, bark, microscopic, tile, food texture,
tree, wave, pills and stained glass. Every category contains 100
images of size 192�128 in JPEG format. The second dataset is
Corel 10 000 dataset. It contains 100 categories. There are 10 000
images from diverse contents such as sunset, beach, flower,
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building, car, horses, mountains, fish, food, door, etc. Every
category contains 100 images of size 192�128 in JPEG format.
The Corel 10 000 dataset contains all categories of Corel 5000
dataset.
4.2. Distance metric

For each template image in the dataset, an M-dimensional
feature vector T=[T1, T2 y TM] will be extracted and stored in the
database. Let Q=[Q1, Q2 y QM] be the feature vector of a query
image, the distance metric between them is simply calculated as

DðT;Q Þ ¼
XM
i ¼ 1

jTi�Qij

1þTiþQi
ð18Þ

The above formula is as simple to calculate as the L1 distance,
which needs no square or square root operations. It can save
much computational cost and is very suitable for large scale
image datasets. Actually, it can be considered as a weight L1

distance with the 1=ð1þTiþQiÞ being the weight. For the
proposed MTH, M=82 for color images. The class label of
the template image which yields the smallest distance will be
assigned to the query image.
4.3. Performance measure

In order to evaluate the effectiveness of our method, the
Precision and Recall curves are adopted, which are the most
common measurements used for evaluating image retrieval
performance. Precision and Recall are defined as follows:

PðNÞ ¼ IN=N ð19Þ

RðNÞ ¼ IN=M ð20Þ

where IN is the number of images retrieved in the top N positions
that are similar to the query image, M is the total number of
images in the database similar to the query, and N is the total
number of images retrieved. In our image retrieval system, N=12
and M=100.
Table 1
The average retrieval precision of MTH with different texture orientation quantization

Color quantization levels Texture orientation quantization levels

Precision (%)

6 9 12 18 24

128 50.77 51.43 51.22 51.25 51.3

64 48.82 49.43 49.85 49.98 50.0

32 45.95 46.93 47.43 47.93 48.0

16 41.88 42.76 43.42 44.20 44.2

Table 2
The average retrieval precision of MTH with different texture orientation quantization

Color quantization levels Texture orientation quantization levels

Precision (%)

6 9 12 18 24

192 48.38 48.77 49.22 49.90 49.7

128 48.13 48.62 49.07 49.85 49.8

108 47.95 48.70 49.00 49.37 49.9

72 47.70 48.15 49.05 49.23 49.4
4.4. Retrieval performance

In the experiments, different quantization levels of texture
orientation and color are used to test the performance of the
proposed MTH in RGB color space. The HSV color space is also
used for comparison. Denote by bin(H), bin(S) and bin(V) the
number of bins for H, S and V components. Similar to [26,39], in
this paper we let bin(H)Z8, bin(S)Z3 and bin(V)Z3 for HSV color
space quantization in the image retrieval experiments, and hence
the number of total bins is at least 72 and it is gradually increased
to 128 bins. Tables 1 and 2 provide the average retrieval precision
and recall of MTH in both RGB and HSV color spaces. We can see
that under the same or similar retrieval precision, the
performance of MTH in RGB color space is better than that in
HSV color space. The precision is about 48–50% in RGB color space
when the number of color quantization is 64, while the precision
is about 47–49% in HSV color space when the number of color
quantization is 72. In other words, the total number of
quantization bins in HSV color space is higher than that in RGB
color space, but its image retrieval precision is lower than that of
RGB color space. Considering that the color quantization level
determines the feature vector dimensionality, we select the RGB
color space for color quantization in the proposed MTH scheme.
However, it should be stressed that this does not mean that RGB
color space will also be better than HSV color space in other image
retrieval methods. It only validates that RGB is better fitted for the
proposed MTH. Indeed, HSV color space is widely use in image
retrieval and object recognition and achieves good performance
[3,26,38,39]. Based on the results in Table 1 and in order to
balance the retrieval precision and vector dimensionality, the
final number of color quantization and texture orientation
quantization in the proposed MTH are set to 64 and 18,
respectively.

To validate the performance of the proposed texture orienta-
tion detection method proposed in Section 3.1, we used several
typical gradient operators to detect the gradient magnitude and
orientation and listed the image retrieval results in Table 3. Note
that the proposed method works on the full color image, while the
other four operators work on the gray level version of the color
images. It can be seen from Table 3 that the proposed orientation
and color quantization levels on the Corel-5000 dataset in RGB color space.

Recall (%)

36 6 9 12 18 24 36

2 51.14 6.09 6.17 6.15 6.15 6.16 6.13

8 49.52 5.86 5.93 5.98 6.00 6.01 5.94

0 47.48 5.51 5.63 5.69 5.75 5.76 5.70

5 44.43 5.03 5.13 5.21 5.30 5.31 5.33

and color quantization levels on the Corel-5000 dataset in HSV color space.

Recall (%)

36 6 9 12 18 24 36

8 50.05 5.81 5.85 5.91 5.99 5.97 6.01

3 50.38 5.78 5.83 5.89 5.98 5.98 6.05

2 49.87 5.75 5.84 5.88 5.92 5.99 5.98

1 49.48 5.72 5.78 5.89 5.91 5.93 5.94



ARTICLE IN PRESS

G.-H. Liu et al. / Pattern Recognition 43 (2010) 2380–23892386
detector achieve better results because it exploits the chromatic
information that is ignored by other gradient operators in
orientation detection.

We then validate the performance of our distance metric and
other popular distance or similarity metrics in the proposed MTH
method. As can be seen from Table 4, the proposed distance
metric obtains much better results than other others distance
metrics or similarity metric such as histogram intersection. We
can also see that the L1 distance and L2 Euclidian distance have the
same result with the proposed MTH method, but L1 distance is
much more computationally efficient at the price of losing
rotation invariant property [38].

The proposed MTH integrates the merits of co-occurrence
matrix and histogram by representing the attribute of co-
occurrence matrix using histogram. As can be seen form Fig. 5,
there are many bins whose frequencies are close to zero, thus if
we apply histogram intersection to MTH. The probability that
minðTi;QiÞ ¼ 0 will be high and hence false match may appear.
Therefore, histogram intersection is not suitable to the proposed
MTH as a similarity metric. The results in Table 4 also validate
this. Meanwhile, the proposed distance metric in Section 4.2 is
simple to calculate, while it can be considered as a weighted L1

distance with the 1=ð1þTiþQiÞ being the weight. Since the same
values of jTi�Qij can come from different pairs of Ti and Qi, using
the weight parameter can reduce the opposite forces.

We vary the distance parameter D=1, 2,y,9 in calculating the
MTH. The average retrieval precision values are listed in Table 5.
Table 3
The retrieval precision of MTH with different gradient operators for orientation

detection.

Dataset Performance Gradient operators

Proposed Sobel Robert LoG Prewitt

Corel-5000 Precision (%) 49.98 49.58 48.93 48.02 49.24

Recall (%) 6.00 5.45 5.87 5.76 5.91

Corel-10 000 Precision (%) 40.87 39.48 39.18 38.72 39.26

Recall (%) 4.91 4.74 4.71 4.65 4.71

Table 4
The average retrieval precision of MTH with different distance metrics.

Dataset Performance Distance or similarity metr

Our distance metric

Corel-5000 Precision (%) 49.98

Recall (%) 6.00

Corel-10 000 Precision (%) 40.87

Recall (%) 4.91

Table 5
The average retrieval precision of MTH with different distance parameter.

Datasets Performance Distance parameter (D)

1 2 3

Corel-5000 Precision (%) 49.98 49.37 49.10

Recall (%) 6.00 5.93 5.89

Corel-10 000 Precision (%) 40.87 40.79 40.61

Recall (%) 4.91 4.89 4.87
The average retrieval precision of MTH is from about 49–48% for
Corel-5000 dataset and from about 40–39% for Corel-10 000
dataset. The best performance of MTH is obtained when D=1 for
both Corel 5000 dataset and Corel 10 000 dataset. MTH takes into
account the spatial correlation between neighboring color and
edge orientation by using the four texton types. If we increase the
values of distance parameter, the performance is reduced because
the probability of neighboring pixels with the same gray level
in a 2�2 grid is higher than that in a bigger grid. In other word,
the information with D=1 is richer than other distance values,
thus MTH obtains the best performance when the distance
parameter D=1.

The average retrieval precision and recall results on the two
datasets are listed in Table 6, and the average retrieval precision
and recall curves are plotted in Fig. 6. It can be seen from the
Table 6 and Fig. 6 that our method achieves much better results
than EOAC and TCM methods. On the Corel-5000 dataset with
D=1, MTH’s precision is 22.62% and 18.75% higher than TCM and
EOAC, respectively. On the Corel-10 000 MTH’s precision is 20.45%
and 17.51% higher than TCM and EOAC, respectively.

Figs. 7 and 8 show two retrieval examples on the Corel 5000
and Corel 10 000 datasets. In Fig. 7, the query is a stained glass
image, and the top all retrieved images show good match of
texture and color to the query image. In Fig. 8, the query image is
a racing car which has obvious shape features. All the top 12
retrieved images show good match of the shape, where 10
returned images belong to F1 racing car.
ics

L1 Euclidian Histogram intersection

45.55 45.55 35.62

5.47 5.47 4.27

35.29 35.29 27.37

4.23 4.23 3.28

4 5 6 7 8 9

49.30 49.22 49.08 49.07 48.63 48.47

5.92 5.91 5.89 5.89 5.84 5.82

40.33 40.26 40.18 40.02 39.86 39.52

4.84 4.83 4.82 4.80 4.78 4.74

Table 6
The average retrieval precision and recall results on the two Corel datasets.

Datasets Performance Method

EOAC TCM MTH

Corel-5000 Precision (%) 31.23 27.36 49.98

Recall (%) 3.74 3.28 6.00

Corel-10 000 Precision (%) 23.36 20.42 40.87

Recall (%) 2.81 2.45 4.91
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Fig. 6. The precision and recall curves of EOAC, TCM and MTH. (a) Corel-5000 dataset and (b) Corel-10 000 dataset.

Fig. 7. An example of image retrieval by MTH on the Corel 5000 dataset. The query is a stained glass image, and all images are correctly retrieved and ranked within the top

12 images. (The top-left image is the query image, and the similar images include the query image itself).

Fig. 8. An example of image retrieval by MTH on the Corel 10 000 dataset. The query is a racing car image, and all the returned images are correctly retrieved and ranked

within top 12 images, where 10 returned images belong to F1 racing car. (The top-left image is the query image, and the similar images include the query image itself).

G.-H. Liu et al. / Pattern Recognition 43 (2010) 2380–2389 2387
EOAC is invariant to translation, scaling, illumination and small
rotation. It represents edges features based on their orientations
and correlation between neighboring edges. Though EOAC can
well represent the shape information of the image, it cannot well
represent the color and texture features [27]. In the experiments
we see that EOAC achieves good performance only for a few image
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categories which have obvious shape features without complex
background. EOAC is also appropriate for retrieving images with
continuous and clear edges, especially for images with direct
lines. However, EOAC is not appropriate for retrieving images
with texture and unclear edges [27]. In order to be invariant to
illumination, EOAC loses some color information. The spatial
correlation of edge and edge orientation can only represent image
features partially. EOAC has advantage in shape feature repre-
sentation by the spatial correlation of edge orientation, and this
advantage is preserved in the proposed method.

TCM describes an image by its gradient information and color
information with a 12-dimensional vector, including features of
energy, contrast, entropy and homogeneity [20]. However, TCM
does not take into account the relationship between gradient
and color features, and thus the discrimination power of TCM is
not high enough for image retrieval in large scale image data-
sets. The features used in TCM belong to the second-order
statistics. Based on Julesz’s texton theory, the second-order
statistics are not always identical to the difference of two textures
[1,2], so using only those features to describe image content may
not always enhance the texture discrimination power. The
proposed MTH combines the first-order statistics and second-
order statistics into an entity for texton analysis, and thus the
texture discrimination power is greatly increased. MTH can
represent the spatial correlation of edge orientation and color
based on textons analysis. So its performance is better than
EOAC and TCM.

The experiments were all performed on a double core 1.8 GHz
Pentium PC with 1024 MB memory and the Windows XP
operating system. The image retrieval system was built in
Borland Delphi 7. During the course of features extraction for a
natural image of size 192�128, the average time consumption of
EOAC, TCM and MTH are 887.40, 157.36 and 314.38 ms,
respectively. The time used by MTH is mainly on the stage of
texton analysis.
5. Conclusion

We proposed a new method, namely multi-texton histogram
(MTH), to describe image features for image retrieval. MTH can
represent both the spatial correlation of texture orientation and
texture color based on textons. It integrates co-occurrence matrix
and histogram into one descriptor and represents the attribute of
co-occurrence matrices using histograms. MTH does not need any
image segmentation, learning and training stages, and it is very
easy to implement. It is well suited for large-scale image dataset
retrieval. MTH can be considered as a generalized visual attribute
descriptor. Moreover, when used as a color texture descriptor, it
can obtain good performance for natural texture extraction. The
dimension of MTH feature vector is only 82, which is efficient for
image retrieval. The experiments were conducted on two Corel
datasets in comparison with the edge orientation auto-correlo-
gram (EOAC) method and the texton co-occurrence matrix (TCM)
method. The experimental results validated that our method has
strong discrimination power of color, texture and shape features,
and outperforms EOAC and TCM significantly.
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