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Appendix
Defog Filter Design
Motivated by the conventional dark channel prior method (He,
Sun, and Tang 2009), we design a defog filter with a learnable
parameter. In the atmospheric scattering model (McCartney
1976; Narasimhan and Nayar 2002), the formation of a hazy
image can be formulated as follows:

I(x) = J(x)t(x) +A(1− t(x)) (1)

where I(x) is the foggy image, and J(x) represents the scene
radiance (clear image). A is the global atmospheric light, and
t(x) is the medium transmission map.

In order to recover the clear image J(x), the key is to
obtain the global atmospheric light A and the medium trans-
mission map t(x). To this end, we first compute the dark
channel map and pick the top 1000 brightest pixels. Then, A
is estimated by averaging these 1000 pixels in the haze image
I(x). From Eq. (1), we can derive that

IC(x)

AC
= t(x)

JC(x)

AC
+ (1− t(x)) (2)

where C donates the RGB color channel. By taking two min
operations, one on the channels and one on a local patch, in
the above equation, we can obtain:

min
C

( min
y∈Ω(x)

IC(y)

AC
) = t(x)min

C
( min
y∈Ω(x)

JC(y)

AC
)+(1−t(x))

(3)
Based on the dark channel prior, we can get that

Jdark (x) = min
C

( min
y∈Ω(x)

JC(y)) = 0 (4)

Since AC is always positive, Eq. (4) can be written as:

min
C

( min
y∈Ω(x)

JC(y)

AC
) = 0 (5)

By substituting Eq. (5) into Eq. (2), we can obtain:

t(x) = 1−min
C

( min
y∈Ω(x)

IC(y)

AC
) (6)
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We further introduce a parameter ω to control the degree
of defogging. There is:

t(x, ω) = 1− ωmin
C

( min
y∈Ω(x)

IC(y)

AC
) (7)

Since the above operation is differentiable, we can optimize
ω through back propagation to make defog filter more con-
ducive to foggy image detection.

Experiments
Experiments on Foggy Images We compare our method
with the baseline YOLOv3 (Redmon and Farhadi 2018),
Defog + Detect (Hang et al. 2020; Liu et al. 2019), do-
main adaptation (Hnewa and Radha 2021), and multi-task
learning (Huang, Le, and Jaw 2020). For domain adapta-
tion approach, we employ the one-stage multi-scale domain-
adaptive detector DAYOLO (Hnewa and Radha 2021) with
multiple domain adaptation paths and the corresponding do-
main classifiers at different scales of YOLOv3. We set the
loss weight λ = 0.1 for training, and each batch has 2 images,
one from the source domain and the other from the target
domain. Other hyperparameters are set the same as in the
original paper.

Fig. 1 shows several visual examples of our IA-YOLO
method, the baseline YOLOv3 II and the Defog +Detect
methods. Both GridDehaze (Liu et al. 2019) and MS-
BDN (Hang et al. 2020) can reduce the haze effect, which
is generally beneficial to detection. Our IA-YOLO method
not only reduces the haze, but also enhances the local image
gradients, which lead to better detection performance.

Fig. 2 shows two examples on how the CNN-PP mod-
ule predicts DIP’s parameters , including detailed parameter
values and the images processed by each sub-filter. The CNN-
PP is able to learn a set of DIP parameters for each image
according to its brightness, color, tone and weather-specific
information. After the input image is processed by the learned
DIP module, more image details are revealed, which are con-
ducive to the subsequent detection task.

Experiments on Low-light Images The total number of
images in VOC_norm_trainval, VOC_norm_test and Ex-
Dark_test are 12334, 3760 and 2563, respectively. The num-
bers of instances are listed in Table 1.



Figure 1: Detection results by different methods on real-world RTTS foggy images. From left to right: YOLOv3 II, GirdDehaze
+ YOLOv3 I, MSBDN + YOLOv3 I and our IA-YOLO. The proposed method learns to reduce the haze and enhance the image
contrast, which leads to better detection performance with fewer missed and wrong detections.
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Figure 2: Examples of learned DIP module and their filtering outputs. The image-adaptive processing module can output the
corresponding filter parameters according to the brightness, color, tone and weather-information of each input image, so as to get
better detection performance.



Dataset person bicycle car bus motorbike boat bottle cat chair dog Total

Voc_norm_trainval 13256 1064 3267 822 1052 1140 1764 1593 3152 2025 29135
Voc_norm_test 4528 337 1201 213 325 263 469 358 756 489 8939
ExDark_test 2235 418 919 164 242 515 433 425 609 490 6450

Table 1: Statistics of the used datasets.

Method Additional Params Speed(ms)
YOLOv3 / 31

YOLOv3_deep II 412K 35
ZeroDCE 79K 34
MSBDN 31M 94

GridDehaze 958K 51
IA-YOLO(Ours) 165K 44

Table 2: Efficiency analysis on the compared methods.

We compare our presented method with the baseline
YOLOv3, Enhance+Detect (Guo et al. 2020), DAYOLO,
and DSNet on the three testing datasets. Fig. 3 shows sev-
eral visual examples of our IA-YOLO method, the baseline
YOLOv3 II and the Enhance + Detect methods. It can
be observed that both Zero-DCE (Guo et al. 2020) and IA-
YOLO can brighten the image and reveal the image details.
The proposed IA-YOLO can further increases the contrast of
the input image, which is essential to object detection.

Efficiency Analysis
In our proposed IA-YOLO framework, we introduce a learn-
ing module of CNN-PP into YOLOv3, which is a small
network containing five convolutional layers and two fully
connected layers. Table 2 shows the efficiency analysis of
some methods used in our experiments. The methods not
listed are validated using the YOLOv3 architecture. The sec-
ond column lists the number of additional parameters over
the YOLOv3 model. The third column lists the running time
on a 544×544×3 resolution image with a single Tesla V100
GPU. It can be seen that IA-YOLO only adds 165K trainable
parameters over YOLOv3 while achieving the best perfor-
mance on all testing with comparable running time. Note that
IA-YOLO has fewer trainable parameters than YOLO_deep
II but its running time is longer. This is because that the filter-
ing process in the DIP module incurs additional computation.
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Figure 3: Detection results of different methods on synthetic VOC_Dark_test images (top row), real-world ExDark_test low-light
images (bottom two rows). From left to right: YOLOv3 II, ZeroDCE + YOLOv3 I and our IA-YOLO. The proposed method
learns to make the image brighter with more details, which results in better detection performance with fewer missed and wrong
detections.


