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Fast Compressive Tracking
Kaihua Zhang, Lei Zhang, and Ming-Hsuan Yang

Abstract—It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as
pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples
from observations in recent frames. Despite much success has been demonstrated, numerous issues remain to be addressed. First,
while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to
learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, misaligned
samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient
tracking algorithm with an appearance model based on features extracted from a multiscale image feature space with data-independent
basis. The proposed appearance model employs non-adaptive random projections that preserve the structure of the image feature
space of objects. A very sparse measurement matrix is constructed to efficiently extract the features for the appearance model. We
compress sample images of the foreground target and the background using the same sparse measurement matrix. The tracking task is
formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. A coarse-to-fine search
strategy is adopted to further reduce the computational complexity in the detection procedure. The proposed compressive tracking
algorithm runs in real-time and performs favorably against state-of-the-art methods on challenging sequences in terms of efficiency,
accuracy and robustness.

Index Terms—Visual Tracking, Random Projection, Compressive Sensing.
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1 INTRODUCTION

Despite that numerous algorithms have been proposed in the
literature, object tracking remains a challenging problem due
to appearance change caused by pose, illumination, occlusion,
and motion, among others. An effective appearance model is
of prime importance for the success of a tracking algorithm
that has attracted much attention in recent years [2]–[16].

Numerous effective representation schemes have been pro-
posed for robust object tracking in recent years. One com-
monly adopted approach is to learn a low-dimensional sub-
space (e.g., eigenspace [7], [17]), which can adapt online
to object appearance change. Since this approach is data-
dependent, the computational complexity is likely to increase
significantly because it needs eigen-decompositions. More-
over, the noisy or misaligned samples are likely to degrade the
subspace basis, thereby causing these algorithms to drift away
the target objects gradually. Another successful approach is to
extract discriminative features from a high-dimensional space.
Since object tracking can be posed as a binary classification
task which separates object from its local background, a
discriminative appearance model plays an important role for its
success. Online boosting methods [6], [10] have been proposed
to extract discriminative features for object tracking. Alterna-
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tively, high-dimensional features can be projected to a low-
dimensional space from which a classifier can be constructed.

The compressive sensing (CS) theory [18], [19] shows
that if the dimension of the feature space is sufficiently
high, these features can be projected to a randomly cho-
sen low-dimensional space which contains enough informa-
tion to reconstruct the original high-dimensional features.
The dimensionality reduction method via random projec-
tion (RP) [20], [21] is data-independent, non-adaptive and
information-preserving. In this paper, we propose an effective
and efficient tracking algorithm with an appearance model
based on features extracted in the compressed domain [1].
The main components of the proposed compressive tracking
algorithm are shown by Figure 1. We use a very sparse
measurement matrix that asymptotically satisfies the restricted
isometry property (RIP) in compressive sensing theory [18],
thereby facilitating efficient projection from the image fea-
ture space to a low-dimensional compressed subspace. For
tracking, the positive and negative samples are projected
(i.e., compressed) with the same sparse measurement matrix
and discriminated by a simple naive Bayes classifier learned
online. The proposed compressive tracking algorithm runs at
real-time and performs favorably against state-of-the-art track-
ers on challenging sequences in terms of efficiency, accuracy
and robustness.

The rest of this paper is organized as follows. We first
review the most relevant work on online object tracking
in Section 2. The preliminaries of compressive sensing and
random projection are introduced in Section 3. The proposed
algorithm is detailed in Section 4, and the experimental results
are presented in Section 5 with comparisons to state-of-the-art
methods on challenging sequences. We conclude with remarks
on our future work in Section 6.



IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜

• • •
• • •
• • •
• • •
• • •
• • •

⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜• •⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠•

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜

• • •
• • •
• • •
• • •
• • •
• • •

⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜• •⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠•

⊗

⊗

⊗
⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

• • •
• • •
• • •⎜ ⎟
⎝ ⎠ ⎝• ⎠•⎝ ⎠•

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

• • •
• • •
• • •⎜ ⎟
⎝ ⎠ ⎝• ⎠•⎝ ⎠•

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

• • •
• • •
• • •⎜ ⎟
⎝ ⎠ ⎝• ⎠•⎝ ⎠•

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

• • •
• • •
• • •⎜ ⎟
⎝ ⎠ ⎝• ⎠•⎝ ⎠•

Frame(t) Samples Multiscale 
filter bank

Sparse 
measurement

matrix
Compressed 

vectors
ClassiferMultiscale 

image features

(a) Updating classifier at the t-th frame

Sparse 
measurement

matrix

Compressed 
vectors

Multiscale 
filter bank

Frame(t+1)
Sample with maximal 

classifier response

Classifier

Multiscale
image features

(b) Tracking at the (t+ 1)-th frame

Fig. 1: Main components of the proposed compressive tracking algorithm.

2 RELATED WORK

Recent surveys of object tracking can be found in [22]–[24].
In this section, we briefly review the most relevant literature
of online object tracking. In general, tracking algorithms can
be categorized as either generative [2], [3], [7], [9], [11], [12],
[25]–[29] or discriminative [4]–[6], [8], [10], [13], [16], [30]
based on their appearance models.

Generative tracking algorithms typically learn a model to
represent the target object and then use it to search for the
image region with minimal reconstruction error. Black et
al. [2] learn an off-line subspace model to represent the object
of interest for tracking. Reference templates based on color
histogram [31], [32], integral histogram [25] have been used
for tracking. In [3] Jepson et al. present a Gaussian mixture
model with an online expectation maximization algorithm to
handle object appearance variations during tracking. Ho et
al. [17] propose a tracking method using a set of learned
subspace model to deal with appearance change. Instead of
using pre-trained subspace, the IVT method [7] learns an
appearance model online to adapt appearance change. Kwon
et al. [9] combine multiple observation and motion models in
a modified particle filtering framework to handle large appear-
ance and motion variation. Recently, sparse representation has
been used in the `1-tracker where an object is modeled by a
sparse linear combination of target and trivial templates [12].
However, the computational complexity of the `1-tracker is
rather high, thereby limiting its applications in real-time sce-
narios. Li et al. [11] further extend it by using the orthogonal
matching pursuit algorithm for solving the optimization prob-
lems efficiently, and Bao et al. [27] improve the efficiency
via accelerated proximal gradient approach. A representation
based on distribution of pixels at multiple layers is proposed to
describe object appearance for tracking [29]. Oron et al. [28]
propose a joint model of appearance and spatial configuration
of pixels which estimates the amount of local distortion of

the target object, thereby well handling rigid and nonrigid
deformations. Recently, Zhang et al. [26] propose a multi-
task approach to jointly learn the particle representations for
robust object tracking. Despite much demonstrated success of
these online generative tracking algorithms, several problems
remain to be solved. First, numerous training samples cropped
from consecutive frames are required in order to learn an
appearance model online. Since there are only a few samples
at the outset, most tracking algorithms often assume that the
target appearance does not change much during this period.
However, if the appearance of the target changes significantly,
the drift problem is likely to occur. Second, these generative
algorithms do not use the background information which is
likely to improve tracking stability and accuracy.

Discriminative algorithms pose the tracking problem as a
binary classification task with local search and determine the
decision boundary for separating the target object from the
background. Avidan [4] extends the optical flow approach
with a support vector machine classifier for object tracking,
and Collins et al. [5] demonstrate that the most discriminative
features can be learned online to separate the target object
from the background. In [6] Grabner et al. propose an online
boosting algorithm to select features for tracking. However,
these trackers [4]–[6] use one positive sample (i.e., the current
tracker location) and a few negative samples when updating
the classifier. As the appearance model is updated with noisy
and potentially misaligned examples, this often leads to the
tracking drift problem. An online semi-supervised boosting
method is proposed by Grabner at al. [8] to alleviate the
drift problem in which only the samples in the first frame
are labeled and all the other samples are unlabeled. Babenko
et al. [10] formulate online tracking within the multiple
instance learning framework where samples are considered
within positive and negative bags or sets. A semi-supervised
learning approach [33] is developed in which positive and
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negative samples are selected via an online classifier with
structural constraints. Wang et al. [30] present a discriminative
appearance model based on superpixels which is able to handle
heavy occlusions and recovery from drift. In [13], Hare et al.
use an online structured output support vector machine (SVM)
for robust tracking which can mitigate the effect of wrong
labeling samples. Recently, Henriques et al. [16] introduce a
fast tracking algorithm which exploits the circulant structure
of the kernel matrix in SVM classifier that can be efficiently
computed by the fast Fourier transform algorithm.

3 PRELIMINARIES
We present some preliminaries of compressive sensing which
are used in the proposed tracking algorithm.

3.1 Random projection and compressive sensing
In random projection, a random matrix R ∈ Rn×m whose
rows have unit length projects data from the high-dimensional
feature space x ∈ Rm to a lower-dimensional space v ∈ Rn

v = Rx, (1)

where n � m. Each projection v is essentially equivalent
to a compressive measurement in the compressive sensing
encoding stage. The compressive sensing theory [19], [34]
states that if a signal is K-sparse (i.e., the signal is a linear
combination of only K basis [35]), it is possible to near
perfectly reconstruct the signal from a small number of random
measurements. The encoder in compressive sensing (using (1))
correlates signal with noise (using random matrix R) [19],
thereby it is a universal encoding which requires no prior
knowledge of the signal structure. In this paper, we adopt this
encoder to construct the appearance model for visual tracking.

Ideally, we expect R provides a stable embedding that
approximately preserves the salient information in any K-
sparse signal when projecting from x ∈ Rm to v ∈ Rn. A
necessary and sufficient condition for this stable embedding is
that it approximately preserves distances between any pairs of
K-sparse signals that share the same K basis. That is, for any
two K-sparse vectors x1 and x2 sharing the same K basis,

(1−ε)‖x1−x2‖2`2 ≤ ‖Rx1−Rx2‖2`2 ≤ (1+ε)‖x1−x2‖2`2 . (2)

The restricted isometry property [18], [19] in compressive
sensing shows the above results. This property is achieved with
high probability for some types of random matrix R whose
entries are identically and independently sampled from a
standard normal distribution, symmetric Bernoulli distribution
or Fourier matrix. Furthermore, the above result can be directly
obtained from the Johnson-Lindenstrauss (JL) lemma [20].

Lemma 1. (Johnson-Lindenstrauss lemma) [20]: Let Q be
a finite collection of d points in Rm. Given 0 < ε < 1 and
β > 0, let n be a positive integer such that

n ≥
(

4 + 2β

ε2/2− ε3/3

)
ln(d). (3)

Let R ∈ Rn×m be a random matrix with R(i, j) = rij , where

rij =

{
+1 with probability 1

2
−1 with probability 1

2 .
(4)

or

rij =
√

3×

 +1 with probability 1
6

0 with probability 2
3

−1 with probability 1
6 .

(5)

Then, with probability exceeding 1 − d−β , the following
statement holds: For every x1, x2 ∈ Q,

(1−ε)‖x1−x2‖2`2 ≤
1√
n
‖Rx1−Rx2‖2`2 ≤ (1+ε)‖x1−x2‖2`2 .

(6)

Baraniuk et al. [36] prove that any random matrix satisfying
the Johnson-Lindenstrauss lemma also holds true for the
restricted isometry property in compressive sensing. Therefore,
if the random matrix R in (1) satisfies the JL lemma, x
can be reconstructed with minimum error from v with high
probability if x is K-sparse (e.g., audio or image signals).
This strong theoretical support motivates us to analyze the
high-dimensional signals via their low-dimensional random
projections. In the proposed algorithm, a very sparse matrix is
adopted that not only asymptotically satisfies the JL lemma,
but also can be efficiently computed for real-time tracking.

3.2 Very sparse random measurement matrix

A typical measurement matrix satisfying the restricted isome-
try property is the random Gaussian matrix R ∈ Rn×m where
rij ∼ N (0, 1) (i.e., zero mean and unit variance), as used in
recent work [11], [37], [38]. However, as the matrix is dense,
the memory and computational loads are very expensive when
m is large. In this paper, we adopt a very sparse random
measurement matrix with entries defined as

rij =
√
ρ×


1 with probability 1

2ρ

0 with probability 1− 1
ρ

−1 with probability 1
2ρ .

(7)

Achlioptas [20] proves that this type of matrix with ρ = 1
or 3 satisfies the Johnson-Lindenstrauss lemma (i.e., (4) and
(5)). This matrix is easy to compute which requires only a
uniform random generator. More importantly, when ρ = 3,
it is sparse where two thirds of the computation can be
avoided. In addition, Li et al. [39] show that for ρ = o(m)
(x ∈ Rm), the random projections are almost as accurate as
the conventional random projections where rij ∼ N (0, 1).
Therefore, the random matrix (7) with ρ = o(m) asymp-
totically satisfies the JL lemma. In this work, we set ρ =
o(m) = m/(a log10(m)) = m/(10a) ∼ m/(6a) with a
fixed constant a because the dimensionality m is typically
in the order of 106 to 1010. For each row of R, only about
c = ( 1

2ρ + 1
2ρ ) × m = a log10(m) ≤ 10a nonzero entries

need to be computed. We observe that good results can be
obtained by fixing a = 0.4 in our experiments. Therefore, the
computational complexity is only o(cn) (n = 100 in this work)
which is very low. Furthermore, only the nonzero entries of R
need to be stored which makes the memory requirement also
very light.
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Fig. 2: Illustration of multiscale image representation.

4 PROPOSED ALGORITHM

In this section, we present the proposed compressive tracking
algorithm in details. The tracking problem is formulated as a
detection task and the main steps of the proposed algorithm
are shown in Figure 1. We assume that the tracking window in
the first frame is given by a detector or manual label. At each
frame, we sample some positive samples near the current target
location and negative samples away from the object center
to update the classifier. To predict the object location in the
next frame, we draw some samples around the current target
location and determine the one with the maximal classification
score.

4.1 Image representation
To account for large scale change of object appearance, a
multiscale image representation is often formed by convolving
the input image with a Gaussian filter of different spatial
variances [40]. The Gaussian filters in practice have to be
truncated which can be replaced by rectangle filters. Bay
et al. [41] show that this replacement does not affect the
performance of the interest point detectors but can significantly
speed up the detectors via integral image method [42].

For each sample Z ∈ Rw×h, its multiscale representation (as
illustrated in Figure 2) is constructed by convolving Z with
a set of rectangle filters at multiple scales {F1,1, . . . ,Fw,h}
defined by

Fw,h(x, y) =
1

wh
×
{

1, 1≤ x ≤ w, 1≤ y ≤ h
0, otherwise (8)

where w and h are the width and height of a rectangle filter,
respectively.

Then, we represent each filtered image as a column vector in
Rwh and concatenate these vectors as a very high-dimensional
multiscale image feature vector x = (x1, ..., xm)> ∈ Rm
where m = (wh)2. The dimensionality m is typically in the
order of 106 to 1010. We adopt a sparse random matrix R in (7)
to project x onto a vector v ∈ Rn in a low-dimensional space.
The random matrix R needs to be computed only once off-
line and remains fixed throughout the tracking process. For the

Rn m×

=× i ij j
j

v r x=∑

x

v

Fig. 3: Graphical representation of compressing a high-dimensional
vector x to a low-dimensional vector v. In the matrix R, dark, gray
and white rectangles represent negative, positive, and zero entries,
respectively. The blue arrows illustrate that one of nonzero entries of
one row of R sensing an element in x is equivalent to a rectangle
filter convolving the intensity at a fixed position of an input image.

sparse matrix R in (7), the computational load is very light. As
shown in Figure 3, we only need to store the nonzero entries
in R and the positions of rectangle filters in an input image
corresponding to the nonzero entries in each row of R. Then, v
can be efficiently computed by using R to sparsely measure the
rectangular features which can be efficiently computed using
the integral image method [42].

4.2 Analysis of compressive features
4.2.1 Relationship to the Haar-like features
As shown in Figure 3, each element vi in the low-dimensional
feature v ∈ Rn is a linear combination of spatially distributed
rectangle features at different scales. Since the coefficients in
the measurement matrix can be positive or negative (via (7)),
the compressive features compute the relative intensity differ-
ence in a way similar to the generalized Haar-like features [10]
(See Figure 3). The Haar-like features have been widely
used for object detection with demonstrated success [10],
[42], [43]. The basic types of these Haar-like features are
typically designed for different tasks [42], [43]. There often
exist a very large number of Haar-like features which make the
computational load very heavy. This problem is alleviated by
boosting algorithms for selecting important features [42], [43].
Recently, Babenko et al. [10] adopt the generalized Haar-like
features where each one is a linear combination of randomly
generated rectangle features, and use online boosting to select
a small set of them for object tracking. In this work, the
large set of Haar-like features are compressively sensed with
a very sparse measurement matrix. The compressive sensing
theories ensure that the extracted features of our algorithm
preserve almost all the information of the original image, and
hence is able to correctly classify any test image because the
dimension of the feature space is sufficiently large (106 to
1010) [37]. Therefore, the projected features can be classified
in the compressed domain efficiently and effectively without
the curse of dimensionality.

4.2.2 Scale invariant property
It is easy to show that the low-dimensional feature v is
scale invariant. As shown in Figure 3, each feature in v is
a linear combination of some rectangle filters convolving the
input image at different positions. Therefore, without loss of
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generality, we only need to show that the j-th rectangle feature
xj in the i-th feature vi in v is scale invariant. From Figure 4,
we have

xj(sy) = Fswj ,shj
(sy)⊗ Z(sy)

= Fswj ,shj
(a)⊗ Z(a)|a=sy

=
1

s2wihi

∫
u∈Ωs

Z(a− u)du

=
1

s2wihi

∫
u∈Ω

Z(y− u)|s2|du

=
1

wihi

∫
u∈Ω

Z(y− u)du

= Fwj ,hj
(y)⊗ Z(y)

= xj(y),

where Ω = {(u1, u2)|1 ≤ u1 ≤ wi, 1 ≤ u2 ≤ hi} and Ωs =
{(u1, u2)|1 ≤ u1 ≤ swi, 1 ≤ u2 ≤ shi}.

4.3 Classifier construction and update

We assume all elements in v are independently distributed and
model them with a naive Bayes classifier [44],

H(v) = log

(∏n
i=1 p(vi|y = 1)p(y = 1)∏n
i=1 p(vi|y = 0)p(y = 0)

)
=

n∑
i=1

log

(
p(vi|y = 1)

p(vi|y = 0)

)
, (9)

where we assume uniform prior, p(y = 1) = p(y = 0), and
y ∈ {0, 1} is a binary variable which represents the sample
label.

cγ
fγ

Fig. 6: Coarse-to-fine search for new object location. Left: object
center location (denoted by red solid circle) at the t-th frame. Middle:
coarse-grained search with a large radius γc and search step ∆c based
on the previous object location. Right: fine-grained search with a
small radius γf < γc and search step ∆f < ∆c based on the coarse-
grained search location (denoted by green solid circle). The final
object location is denoted by blue solid circle.

Diaconis and Freedman [45] show that random projections
of high dimensional random vectors are almost always Gaus-
sian. Thus, the conditional distributions p(vi|y = 1) and
p(vi|y = 0) in the classifier H(v) are assumed to be Gaussian
distributed with four parameters (µ1

i , σ
1
i , µ

0
i , σ

0
i ),

p(vi|y = 1) ∼ N (µ1
i , σ

1
i ), p(vi|y = 0) ∼ N (µ0

i , σ
0
i ), (10)

where µ1
i (µ0

i ) and σ1
i (σ0

i ) are mean and standard deviation
of the positive (negative) class. The scalar parameters in (10)
are incrementally updated by

µ1
i ← λµ1

i + (1− λ)µ1

σ1
i ←

√
λ(σ1

i )2 + (1− λ)(σ1)2 + λ(1− λ)(µ1
i − µ1)2,

(11)

where λ > 0 is a learning parameter, σ1 =√
1
n

∑n−1
k=0|y=1(vi(k)− µ1)2 and µ1 = 1

n

∑n−1
k=0|y=1 vi(k).

Parameters µ0
i and σ0

i are updated with similar rules. The
above equations can be easily derived by maximum likelihood
estimation [46]. Figure 5 shows the probability distributions
for three different features of the positive and negative samples
cropped from a few frames of a sequence for clarity of
presentation. It shows that a Gaussian distribution with online
update using (11) is a good approximation of the features in
the projected space where samples can be easily separated.

Because the variables are assumed to be independent in our
classifier, the n-dimensional multivariate problem is reduced
to the n univariate estimation problem. Thus, it requires fewer
training samples to obtain accurate estimation than estimating
the covariance matrix in the multivariate estimation. Further-
more, several densely sampled positive samples surrounding
the current tracking result are used to update the distribution
parameters, which is able to obtain robust estimation even
when the tracking result has some drift. In addition, the useful
information from the former accurate samples is also used
to update the parameter distributions, thereby facilitating the
proposed algorithm to be robust to misaligned samples. Thus,
our classifier performs robustly even when the misaligned or
the insufficient number of training samples are used.

4.4 Fast compressive tracking
The aforementioned classifier is used for local search. To
reduce the computational complexity, a coarse-to-fine sliding
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Algorithm 1 (Scaled) Fast Compressive Tracking

Input: the t-th image frame
1: Coarsely sample a set of image patches in Dγc =
{Z|||l(Z)−lt−1|| < γc} where lt−1 is the tracking location
at the (t− 1)-th frame by shifting a number of pixels ∆c,
and extract the features with low dimensionality.

2: Use classifier H in (9) to each feature vector v(Z) and
find the tracking location l′t with the maximal classifier
response.

3: Finely sample a set of image patches in Dγf = {Z|||l(Z)−
l′t|| < γf} by shifting a number of pixels ∆f , and extract
the features with low dimensionality.

4: Use classifier H in (9) to each feature vector v(Z) and
find the tracking location lt with the maximal classifier
response. (For multiscale tracking, update the tracking
location and scale every fifth frame as (lt(Z), s) =
arg maxvs(Z)∈F H(vs(Z))).

5: Sample two sets of image patches Dα = {Z|||l(Z)−lt|| <
α} and Dζ,β = {Z|ζ < ||l(Z)−lt|| < β} with α < ζ < β,
and extract the features with these two sets of samples.

6: Update the classifier parameters according to (11).
Output: Tracking location lt (and scale s for multiscale

tracking) and classifier parameters

window search strategy is adopted (See Figure 6). The main
steps of our algorithm are summarized in Algorithm 1. First,
we search the object location based on the previous object
location by shifting the window with a large number of pixels
∆c within a large search radius γc. This generates fewer
windows than locally exhaustive search method (e.g., [10])
but the detected object location may be slightly inaccurate but
close to the accurate object location. Based on the coarse-
grained detected location, fine-grained search is carried out
with a small number of pixels ∆f within a small search radius
γf . For example, we set γc = 25, ∆c = 4, and γf = 10,
∆f = 1 in all the experiments. If we use the fine-grained
locally exhaustive method with γc = 25 and ∆f = 1, the total
number of search windows is about 1,962 (i.e., πγ2

c ). However,
using this coarse-to-fine search strategy, the total number of
search windows is about 436 (i.e., πγ2

c/16 + πγ2
f ), thereby

significantly reducing computational cost.

4.4.1 Multiscale fast compressive tracking

At each location in the search region, three image patches
are cropped at different scale s: current (s = 1), small
(s = 1 − δ) and large scale (s = 1 + δ), to account for
appearance variation due to fast scale change. The template
of each rectangle feature for patch with scale s is multiplied
by ratio s (See Figure 4). Therefore, the feature vs for
each patch with scale s can be efficiently extracted by using
the integral image method [42]. Since the low-dimensional
features for each image patch are scale invariant, we have
vst = arg maxv∈F H(v) ≈ vt−1, where vt−1 is the low-
dimensional feature vector that represents the object in the
(t− 1)-th frame, and F is the set of low-dimensional features
extracted from image patches at different scales. The classifier

is updated with cropped positive and negative samples based
on the new object location and scale. The above procedures
can be easily integrated into Algorithm 1: the scale is updated
every fifth frame in the fine-grained search procedure (See Step
4 in Algorithm 1), which is a tradeoff between computational
efficiency and effectiveness of handling appearance change
caused by fast scale change.

4.5 Discussion

We note that simplicity is the prime characteristic of the
proposed algorithm in which the proposed sparse measurement
matrix R is independent of training samples, thereby resulting
in an efficient method. In addition, the proposed algorithm
achieves robust performance as discussed below.

Difference with related work. It should be noted that the
proposed algorithm is different from recent work based on
sparse representation [12] and compressive sensing [11]. First,
both algorithms are generative models that encode an ob-
ject sample by sparse representation of templates using `1-
minimization. Thus the training samples cropped from the
previous frames are stored and updated, but this is not required
in the proposed algorithm due to the use of a data-independent
measurement matrix. Second, the proposed algorithm extracts
a linear combination of generalized Haar-like features and
other trackers [12] [11] use sparse representations of holistic
templates which are less robust as demonstrated in the experi-
ments. Third, both tracking algorithms [12] [11] need to solve
numerous time-consuming `1-minimization problems although
one method has been recently proposed to alleviate the prob-
lem of high computational complexity [27]. In contrast, the
proposed algorithm is efficient as only matrix multiplications
are required.

The proposed method is different from the MIL tracker [10]
as it first constructs a feature pool in which each feature is
randomly generated as a weighted sum of pixels in 2 to 4
rectangles. A subset of most discriminative features are then
selected via an MIL boosting method to construct the final
strong classifier. However, as the adopted measurement matrix
of the proposed algorithm satisfies the JL lemma, the com-
pressive features can preserve the `2 distance of the original
high-dimensional features. Since each feature that represents
a target or background sample is assumed to be independently
distributed with a Gaussian distribution, the feature vector for
each sample is modeled as a mixture of Gaussian (MoG)
distribution. The MoG distribution is essentially a mixture of
weighted `2 distances of Gaussian distributions. Thus, the `2
distance between the target and background distributions is
preserved in the compressive feature space, and the proposed
algorithm can obtain favorable results without further learning
the discriminative features from the compressive feature space.

Discussion with the online AdaBoost method [6]. The
reasons that our method performs better than the OAB method
can be attributed to the following factors. First, to reduce
the computational complexity, the feature pool size designed
by the OAB method is small (less than 250 according to
the default setting in [6] which may contain insufficient
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Fig. 7: Illustration of the proposed algorithm in dealing with ambi-
guity in detection. Top row: three positive samples. The sample in
red rectangle is the most “correct” positive sample while other two
in yellow rectangles are less “correct” positive samples. Bottom row:
the probability distributions for a feature extracted from positive and
negative samples. The green markers denote the feature extracted
from the most “correct” positive sample while the yellow markers
denote the feature extracted from the two less “correct” positive
samples. The red and blue stairs as well as lines denote the estimated
distributions of positive and negative samples as shown in Figure 5.

discriminative features. However, our compressive features can
preserve the intrinsic discriminative strength of the original
high-dimensional multiscale features, i.e., large (between 106

and 1010) feature space . Therefore, our compressive features
have better discriminative capability than the Haar-like fea-
tures used by the OAB method. Second, the proposed method
uses several positive samples (patches close to the tracking
result at any frame) for online update of the appearance model
which alleviates the errors introduced by inaccurate tracking
locations, whereas the OAB method only uses one positive
sample (i.e., the tracking result). When the tracking location
is not accurate, the appearance model of the OAB method will
not be updated properly and thereby cause drift.

Random projection vs. principal component analysis. For
visual tracking, dimensionality reduction algorithms such as
principal component analysis (PCA) and its variations have
been widely used in generative approaches [2], [7]. These
methods need to update the appearance models frequently for
robust tracking. However, these methods are usually sensitive
to heavy occlusion due to the holistic representation schemes
although some robust schemes have been proposed [47].
Furthermore, it is not clear whether the appearance models
can be updated correctly with new observations (e.g., without
alignment errors to avoid tracking drift). In contrast, the
proposed algorithm does not suffer from the problems with
online self-taught learning approaches [48] as the proposed
model with the measurement matrix is data-independent. It
has been shown that for image and text applications, favorable
results are achieved by methods with random projection than
principal component analysis [21].

Robustness to ambiguity in detection. The tracking-by-
detection methods often encounter the inherent ambiguity
problems as shown in Figure 7. Recently Babenko et al. [10]
introduce online multiple instance learning schemes to alle-
viate the tracking ambiguity problem. The proposed algo-

rithm is robust to the ambiguity problem as illustrated in
Figure 7. While the target appearance changes over time, the
most “correct” positive samples (e.g., the sample in the red
rectangle in Figure 7) are similar in most frames. However,
the less “correct” positive samples (e.g., samples in yellow
rectangles of Figure 7) are much more different as they
contain some background pixels which vary much more than
those within the target object. Thus, the distributions for the
features extracted from the most “correct” positive samples
are more concentrated than those from the less “correct”
positive samples. This in turn makes the features from the
most “correct” positive samples much more stable than those
from the less “correct” positive samples (e.g., on the bottom
row of Figure 7, the features denoted by red markers are more
stable than those denoted by yellow markers). The proposed
algorithm is able to select the most “correct” positive sample
because its probability is larger than those of the less “correct”
positive samples (See the markers in Figure 7). In addition,
the proposed measurement matrix is data-independent and no
noise is introduced by mis-aligned samples.

Robustness to occlusion. Each feature in the proposed al-
gorithm is spatially localized (See Figure 3) which is less
sensitive to occlusion than methods based on holistic represen-
tations. Similar representations, e.g., local binary patterns [49],
Haar-like features [6], [10], have been shown to be effective
in handling occlusion. Furthermore, features are randomly
sampled at multiple scales by the proposed algorithm in a way
similar to [10], [50] which have demonstrated robust results
for dealing with occlusion.

Dimensionality of projected space. Bingham and Man-
nila [21] show that in practice the bound of the Johnson-
Lindenstrauss lemma (i.e., (3)) is much higher than that
suffices to achieve good results on image and text data. In [21],
the lower bound for n when ε = 0.2 is 1, 600 but n = 50 is
sufficient to generate good results for image and text analysis.
In the experiments, with 100 samples (i.e., d = 100), ε = 0.2
and β = 1, the lower bound for n is approximately 1, 600.
Another bound derived from the restricted isometry property
in compressive sensing [18] is much tighter than that from the
Johnson-Lindenstrauss lemma, where n ≥ κβ log(m/β) and
κ and β are constants. For m = 106, κ = 1, and β = 10, it
is expected that n ≥ 50. We observe that good results can be
obtained when n = 100 in the experiments.

Robustness to preserve important features. With the setting
in this work, d = 100 and β = 1, the probability that preserves
the pair-wise distances in the JL lemma (See Lemma 1)
exceeds 1 − d−β = 99%. Assume that there exists only one
important feature that can separate the foreground object from
the background. Since each compressed feature is assumed to
be generated from an identical and independent distribution,
it is reasonable to assume that each feature contains or looses
the piece of important information with the same probability,
i.e., pi(y = 1) = pi(y = 0) = 50%, i = 1, . . . , n,
where y = 1 indicates the feature contains the piece of
important information while y = 0 otherwise. Therefore, the
probability that the only important feature being lost is less
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TABLE 1: Summary of all evaluated tracking algorithms.

Trackers Object representation Adaptive appearance model1 Approach Classifier
Frag [25] local intensity histogram - generative -

IVT [7] holistic image intensity incremental principal component analysis generative -
VTD [9] hue, saturation, intensity and edge template sparse principal component analysis generative -

L1T [12], CS [11] holistic image intensity sparse representation generative -
DF [29] multi-layer distribution fields - generative -

MTT [26] holistic image intensity multi-task learning generative -
OAB [6] Haar-like, HOG, and LBP features online boosting discriminative boosting

SemiB [8] Haar-like features online semi-supervised boosting discriminative boosting
MIL [10] Haar-like features online multiple instance learning discriminative boosting
TLD [33] Haar-like features - discriminative cascaded

Struck [13] Haar-like features - discriminative structured SVM
CST [16] holistic image intensity - discriminative SVM

SCM [51] holistic image intensity and local histograms sparse representation hybrid -
ASLA [52] local image patches sparse representation generative -

CT [1], FCT, SFCT Haar-like features - discriminative naive Bayes
1For the discriminative trackers, online feature selection methods are adopted to refine appearance models where features including histogram of oriented
gradients (HOG) and local binary pattern (LBP) are used.

than p = d−β ×
∏n
i=1 pi(y = 0) = 1% × 0.5100 ≈ 0 when a

failure happens.

5 EXPERIMENTS

The proposed algorithm is termed as fast compressive tracker
(FCT) with one fixed scale, and scaled FCT (SFCT), with
multiple scales in order to distinguish from the compressive
tracker (CT) proposed by our conference paper [1]. The
FCT and SFCT methods demonstrate superior performance
over the CT method in terms of accuracy and efficiency
(See results in Table 2 and Table 3), which validates the
effectiveness of the scale invariant features and coarse-to-
fine search strategy. Furthermore, the proposed algorithm
is evaluated with other 15 state-of-the-art methods on 20
challenging sequences among which 14 are publicly available
and 6 are collected on our own (i.e., Biker, Bolt, Chasing,
Goat, Pedestrian, and Shaking 2 in Table 2). The 15 evalu-
ated trackers are the compressive sensing (CS) tracker [11],
the fragment tracker (Frag) [25], online AdaBoost method
(OAB) [6], Semi-supervised tracker (SemiB) [8], incremental
visual tracker (IVT) [7], MIL tracker [10], visual tracking
decomposition (VTD) algorithm [9], `1-tracker (L1T) [12],
TLD tracker [33], distribution field (DF) tracker [29], multi-
task tracker (MTT) [26], Struck (Struck) method [13], , circu-
lant structure tracker (CST) [16], sparsity-based collaborative
model (SCM) tracker [51] and adaptive structural local sparse
appearance (ASLA) tracker [52]. Table 1 summarizes the
characteristics of the evaluated tracking algorithms. Most of
the compared discriminative algorithms rely on either refined
features (via feature selection such as OAB, SemiB, MIL) or
strong classifiers (SVM classifier such as Struck and CST) for
object tracking. For the TLD method, it uses a detector inte-
grated with a cascade of three classifiers (i.e., patch variance,
random ferns, and nearest neighbor classifiers) for tracking.
While the proposed tracking algorithm uses Haar-like features
(via random projection) and simple naive Bayes classifier, it
achieves favorable results against other methods.

It is worth noticing that the most challenging sequences
from the existing works are used for evaluation. All parameters

in the proposed algorithm are fixed for all the experiments
to demonstrate the robustness and stability of the proposed
method. To fairly verify the effectiveness of the scale invariant
compressive feature and the coarse-of-fine search strategy, the
dimensionality of the compressive feature space for the CT
method [1] is set to 100 as the FCT and SFCT. For other
evaluated trackers, we use the source or binary codes provided
by the authors with default parameters. Note that these settings
are different in our conference paper [1] in which we either use
the tuned parameters from the source codes or empirically set
them for best results. Therefore, the results of some baseline
methods are different. For fair comparisons, all the evaluated
trackers are initialized with the same parameters (e.g., initial
locations, number of particles and search range). The proposed
FCT algorithm runs at 149 frame per second (FPS) with a
MATLAB implementation on an i7 Quad-Core machine with
3.4 GHz CPU and 32 GB RAM. In addition, the SFCT
algorithm runs 135 frames per second. Both run faster than
the CT algorithm (80 FPS) [1], illustrating the efficiency of
coarse-to-fine search scheme. The CS algorithm [11] runs 40
FPS, which is much less efficient than our proposed algorithms
because of its solving a time-consuming `1-minimization
problem. The source codes, videos, and data sets are available
at http://www4.comp.polyu.edu.hk/∼cslzhang/FCT/FCT.htm.

5.1 Experimental setup

Given a target location at the current frame, the search radius
for drawing positive samples α is set to 4 which generates
45 positive samples. The inner ζ and outer radii β for the
set Dζ,β that generates negative samples are set to 8 and 30,
respectively. In addition, 50 negative samples are randomly
selected from the set Dζ,β . The search radius γc for the set
Dγc to coarsely detect the object location is 25 and the shifting
step ∆c is 4. The radius γf for set Dγf to fine-grained search is
set to 10 and the shifting step ∆f is set to 1. The scale change
parameter δ is set to 0.01. The dimensionality of projected
space n is set to 100, and the learning parameter λ is set to
0.85.
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TABLE 2: Success rate (SR)(%). Bold fonts indicate the best performance while the italic fonts indicate the second best ones. The total
number of evaluated frames is 8, 762.

Sequence SFCT FCT CT CS Frag OAB SemiB IVT MIL VTD L1T TLD DF MTT Struck CST SCM ASLA

Animal 99 92 96 4 3 17 51 4 83 96 6 37 6 87 96 100 98 96
Biker 85 35 84 5 3 66 39 10 1 15 3 2 6 9 9 9 5 10
Bolt 99 94 90 5 41 0 18 17 92 0 2 0 1 1 8 92 1 1

Cliff bar 95 99 89 24 24 66 24 47 71 53 24 63 26 55 44 96 41 40
Chasing 88 79 47 67 21 71 62 91 65 70 72 76 70 96 85 96 64 63

Coupon book 99 98 97 17 26 98 23 98 98 17 16 31 34 39 98 81 32 71
David indoor 99 98 94 8 8 32 46 98 71 98 83 98 51 41 33 66 30 34

Dark car 75 36 53 6 0 14 19 54 48 25 46 67 78 59 18 48 47 57
Football 77 76 74 35 26 31 17 64 77 83 35 59 56 67 62 69 17 7

Goat 75 77 26 26 14 46 43 37 27 39 24 48 44 39 59 89 57 37
Occluded face 98 99 99 39 54 49 41 96 97 79 96 87 78 88 97 99 76 93

Panda 91 84 90 1 9 83 71 11 80 7 63 34 13 11 43 15 29 71
Pedestrian 82 83 13 1 0 1 3 0 1 3 4 0 7 4 1 1 5 1

Skating 96 97 83 7 11 68 39 8 21 96 65 37 19 10 84 9 76 61
Shaking 1 72 84 80 9 25 39 30 1 83 93 3 15 84 2 48 36 54 98
Shaking 2 97 88 55 12 34 74 46 39 41 80 36 56 95 93 53 43 86 82
Sylvester 83 77 69 57 34 65 66 45 77 33 40 89 32 67 80 83 76 82

Tiger 1 49 52 50 62 19 24 29 8 34 78 18 40 36 25 87 42 31 14
Tiger 2 61 72 48 11 12 36 16 19 44 13 11 24 65 34 62 37 2 24

Twinnings 72 98 70 41 73 99 23 49 83 75 82 91 82 77 95 86 89 63

Average SR 86 82 73 29 33 56 43 49 68 51 47 57 50 50 64 66 51 58

TABLE 3: Center location error (CLE)(in pixels) and average frame per second (FPS). Bold fonts indicate the best performance while the
italic fonts indicate the second best ones. The total number of evaluated frames is 8, 762.

Sequence SFCT FCT CT CS Frag OAB SemiB IVT MIL VTD L1T TLD DF MTT Struck CST SCM ASLA

Animal 13 15 16 271 100 62 26 207 32 16 122 125 252 17 19 15 16 13
Biker 6 12 6 176 107 10 14 111 44 86 89 166 76 68 95 53 227 109
Bolt 8 10 9 152 44 227 102 60 8 146 261 286 277 293 148 12 200 210

Cliff bar 7 6 8 69 34 33 56 37 14 31 40 70 52 25 46 7 99 49
Chasing 9 10 12 9 56 9 44 5 13 23 9 47 31 4 5 4 61 47

Coupon book 5 4 7 175 62 9 74 4 6 74 75 81 23 72 6 21 73 23
David indoor 8 11 14 72 73 57 37 6 19 6 17 8 56 125 64 18 150 57

Dark car 7 9 10 89 116 11 11 8 9 20 8 13 6 7 9 8 45 8
Football 8 13 14 43 144 37 58 10 13 6 39 15 33 9 26 17 200 207

Goat 20 18 103 137 140 71 77 94 109 92 88 103 86 99 22 9 75 94
Occluded face 11 12 16 29 57 36 39 14 17 36 17 24 22 19 15 13 24 20

Panda 6 6 10 157 56 8 9 58 7 61 9 16 64 47 11 46 156 9
Pedestrian 7 6 70 78 160 91 86 84 71 74 76 211 90 76 72 104 210 93

Skating 16 14 21 207 176 74 76 144 136 9 87 204 174 78 15 10 42 72
Shaking 1 13 10 14 119 55 22 134 122 12 6 72 232 10 115 24 21 47 10
Shaking 2 14 15 46 255 119 18 124 109 58 41 113 144 7 16 48 84 18 27
Sylvester 9 9 14 84 47 12 14 138 9 66 50 8 56 18 10 8 10 9

Tiger 1 13 23 25 48 39 42 38 45 27 8 37 24 30 61 8 25 146 49
Tiger 2 16 10 17 84 36 22 30 44 18 47 48 40 13 24 11 22 230 36

Twinnings 11 10 15 44 15 7 70 23 11 19 11 8 12 12 9 11 9 29

Average CLE 9 10 18 96 60 31 48 56 22 42 45 65 48 57 24 23 87 45
Average FPS 135 149 80 40 6 22 11 33 38 6 0.5 28 13 5 20 362 1 7

5.2 Evaluation criteria

Two metrics are used to evaluate the proposed algorithm with
15 state-of-the-art trackers in which gray scale videos are used
except color images are used for the VTD method. The first
metric is the success rate which is used in the PASCAL VOC
challenge [53] defined as, score = area(ROIT

⋂
ROIG)

area(ROIT
⋃
ROIG) , where

ROIT is the tracking bounding box and ROIG is the ground
truth bounding box. If the score is larger than 0.5 in one
frame, the tracking result is considered as a success. Table 2
shows the tracking results in terms of success rate. The other
is the center location error which is defined as the Euclidean
distance between the central locations of the tracked objects
and the manually labeled ground truth. Table 3 shows the
average tracking errors of all methods. The proposed SFCT
and FCT algorithms achieve the best or second best results in
most sequences based on both success rate and center location
error. Furthermore, the proposed trackers run faster than all
the other algorithms except for the CST method which uses
the fast Fourier transform. In addition, the SFCT algorithm
performs better than the FCT algorithm for most sequences,
and both achieve much better results than the CT algorithm in
terms of both success rate and center location error, verifying
the effectiveness of using scale invariant compressive features.

5.3 Tracking results

5.3.1 Pose and illumination change

For the David indoor sequence shown in Figure 8(a), the
appearance changes gradually due to illumination and pose
variation when the person walks out of the dark meeting
room. The IVT, VTD, TLD, CT, FCT and SFCT algorithms
perform well on this sequence. The IVT method uses a PCA-
based appearance model which has been shown to account
for appearance change caused by illumination variation well.
The VTD method performs well due to the use of multiple
observation models constructed from different features. The
TLD approach works well because it maintains a detector
which uses Haar-like features during tracking. In the Sylvester
sequence shown in Figure 8(b), the object undergoes large pose
and illumination change. The MIL, TLD, Struck, CST, ASLA,
FCT and SFCT methods perform well on this sequence with
lower tracking errors than other methods. The IVT, L1T, MTT,
and DF methods do not perform well on this sequence as these
methods use holistic features which are less effective for large
scale pose variations. In Figure 8(c), the target object in the
Skating sequence undergoes occlusion (#165), shape defor-
mation (#229,#280), and severe illumination change (#383).
Only the VTD, Struck, CT, FCT and SFCT methods perform
well on this sequence. The VTD method performs well as
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#50 #150 #200 #300 #460

(a) Tracking results of the David indoor sequence
#500 #600 #700 #1050 #1300

(b) Tracking results of the Sylvester sequence
#76 #165 #229 #280 #383

(c) Tracking results of the Skating sequence
#50 #60 #100 #160 #304

(d) Tracking results of the Shaking 1 sequence
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Fig. 8: Screenshots of some sample tracking results when there are pose variations and severe illumination changes.

it constructs multiple observation models which account for
some different object appearance variations over time. The
Struck method achieves low tracking errors as it maintains a
fixed number of support vectors from the former frames which
contain different aspects of the object appearance over time.
However, the Struck method drifts away from the target after
frame #350 in the Skating sequence due to several reasons.
When the stage light changes drastically and the pose of the
performer changes rapidly as she performs, only the VTD, CT,
FCT and SFCT methods are able to track the object reliably.
The proposed trackers are robust to pose and illumination
changes as object appearance can be modeled well by random
projections (based on the Johnson-Lindenstrauss lemma) and
the classifier with online update is used to separate foreground
and background samples. Furthermore, the features used in
the proposed algorithms are similar to generalized Haar-like
features which have been shown to be robust to pose and
orientation change [10].

5.3.2 Occlusion and pose variation
The target object in the Occluded face sequence in Figure 9(a)
undergoes in-plane pose variation and heavy occlusion. Over-
all, the MIL, L1T, Struck, CST, CT, FCT and SFCT algo-
rithms perform well on this sequence. In the Panda sequence
(Figure 9(b)), the target undergoes out-of-plane pose variation
and shape deformation. Table 2 and Table 3 show that only
the proposed SFCT method outperforms the other methods on

this sequence in terms of success rate and center location error.
The OAB and MIL methods work well on this sequence as
they select the most discriminative Haar-like features for object
representation which can well handle pose variation and shape
deformation. Although the Struck method uses the Haar-like
features to represent objects, no feature selection mechanism is
employed and hence it is less effective in handling large pose
variation and shape deformation. Due to the same reasons, the
Struck method fails to track the target object stably in the Bolt
sequence (Figure 9(c)). In the Bolt sequence, several objects
appear in the same scene with rapid appearance change due to
shape deformation and fast motion. Only the MIL, CST, CT,
FCT and SFCT algorithms track the object stably. The CS,
IVT, VTD, L1T, DF, MTT and ASLA methods do not perform
well as generative models are less effective to account for
appearance change caused by large shape deformation (e.g.,
background pixels are mistakenly considered as foreground
ones), thereby making the algorithms drift away to similar
objects. In the Goat sequence, the object undergoes pose
variation, occlusion, and shape deformation. As shown in
Figure 9(d), the proposed FCT and SFCT algorithms perform
well, and the Struck as well as CST methods achieve relatively
high success rate and low center location error. The CT
algorithm fails to track the target after frame #100. In the
Pedestrian sequence shown in Figure 9(e), the target object
undergoes heavy occlusion (e.g., #50). In addition, it is
challenging to track the target object due to low resolution.
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#200 #500 #600 #710 #800

(a) Tracking results of the Occluded face
#100 #250 #400 #600 #780

(b) Tracking results of the Panda sequence
#25 #125 #186 #200 #280

(c) Tracking results of the Bolt sequence
#30 #50 #100 #120 #140

(d) Tracking results of the Goat sequence
#10 #26 #50 #80 #200

(e) Tracking results of the Pedestrian sequence
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Fig. 9: Screenshots of some sample tracking results when there are severe occlusion and pose variations.

Except the FCT and SFCT algorithms, all the other methods
lose track of the target in numerous frames.

The proposed FCT and SFCT algorithms handle occlusion
and pose variation well as the adopted scale invariant ap-
pearance model is discriminatively learned from target and
background with data-independent measurement, thereby al-
leviating the influence of background pixels (See also Figure
9(c)). Furthermore, the FCT and SFCT algorithms perform
well on objects with non-rigid shape deformation and camera
view change in the Panda, Bolt and Goat sequences (Figure
9(b), (c), and (d)) as the adopted appearance model is based on
spatially local scale invariant features which are less sensitive
to non-rigid shape deformation.

5.3.3 Rotation and abrupt motion

The target object in the Chasing sequence (Figure 10(a))
undergoes abrupt movements with 360 degree out-of-plane
rotation. The IVT, MTT, Struck, CST and CT methods perform

well on this sequence. The CS method cannot handle scale
changes well as illustrated by frames #430 and #530. The
images of the Shaking 2 sequence (Figure 10(b)) are blurry
due to fast motion of the subject. The DF, MTT and SFCT
methods achieve favorable performance on this sequence in
terms of both success rate and center location error. However,
the MTT method drifts away from the target object after frame
#270. When the out-of-plane rotation and abrupt motion both
occur in the Tiger 1, Tiger 2 and Biker sequences (Figure
10(c), (d)), most algorithms fail to track the target objects
well. The proposed SFCT and FCT algorithms outperform
most of the other methods in most metrics (accuracy, success
rate and speed). The Twinings and Animal sequences contain
objects undergoing out-of-plane rotation and abrupt motion,
respectively. Similarly, the proposed trackers perform well in
terms of all metrics.
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#350 #380 #400 #430 #530

(a) Tracking results of the Chasing sequence
#50 #120 #180 #270 #287

(b) Tracking results of the Shaking 2 sequence
#5 #33 #50 #70 #100

(c) Tracking results of the Biker sequence
#50 #166 #165 #290 #364

(d) Tracking results of the Tiger 1 and Tiger 2 sequences
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Fig. 10: Screenshots of some sample tracking results when there are rotation and abrupt motion.

#83 #150 #200 #250 #320

(a) Tracking results of the Cliff bar sequence
#10 #60 #150 #200 #280

(b) Tracking results of the Coupon book sequence
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Fig. 11: Screenshots of some sample tracking results with background clutter.

5.3.4 Background clutter

The object in the Cliff bar sequence changes in scale, ori-
entation and the surrounding background has similar texture
(Figure 11(a)). As the Frag, IVT, VTD, L1T, DF, CS, MTT
and ASLA methods use generative appearance models that do
not exploit the background information, it is difficult to keep

track of the objects correctly. The object in the Coupon book
sequence undergoes significant appearance change at the 60-th
frame and then the other coupon book appears in the scene.
The CS method drifts to the background after frame #60. The
Frag, SemiB, VTD, L1T, TLD, MTT and SCM methods drift
away to track the other coupon book (#150,#200,#280 in
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Figure 11(b)) while the proposed SFCT and FCT algorithms
successfully track the correct one. The proposed algorithms are
able to track the right objects accurately in these sequences as
it extracts discriminative scale invariant features for the most
“correct” positive sample (i.e., the target object) online with
classifier update for foreground and background separation
(See Figure 7).

6 CONCLUDING REMARKS

In this paper, we propose a simple yet robust tracking al-
gorithm with an appearance model based on non-adaptive
random projections that preserve the structure of original
image space. A very sparse measurement matrix is adopted
to efficiently compress features from the foreground targets
and background ones. The tracking task is formulated as
a binary classification problem with online update in the
compressed domain. Numerous experiments with state-of-
the-art algorithms on challenging sequences demonstrate that
the proposed algorithm performs well in terms of accuracy,
robustness, and speed.

Our future work will focus on applications of the developed
algorithm for object detection and recognition under heavy
occlusion. In addition, we will explore efficient detection
modules for persistent tracking (where objects disappear and
reappear after a long period of time).

ACKNOWLEDGEMENTS

We would like to thank valuable comments from the reviewers
and associate editor. K. Zhang and L. Zhang are supported in
part by the Hong Kong Polytechnic University ICRG Grant
(G-YK79). M.-H. Yang is supported in part by the NSF
CAREER Grant 1149783 and NSF IIS Grant 1152576.

REFERENCES

[1] K. Zhang, L. Zhang, and M.-H. Yang, “Real-time compressive tracking,”
in Proceedings of European Conference on Computer Vision, pp. 864–
877, 2012.

[2] M. Black and A. Jepson, “Eigentracking: Robust matching and tracking
of articulated objects using a view-based representation,” International
Journal of Computer Vision, vol. 26, no. 1, pp. 63–84, 1998.

[3] A. Jepson, D. Fleet, and T. El-Maraghi, “Robust online appearance
models for visual tracking,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 25, no. 10, pp. 1296–1311, 2003.

[4] S. Avidan, “Support vector tracking,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 26, no. 8, pp. 1064–1072, 2004.

[5] R. Collins, Y. Liu, and M. Leordeanu, “Online selection of discriminative
tracking features,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27, no. 10, pp. 1631–1643, 2005.

[6] H. Grabner, M. Grabner, and H. Bischof, “Real-time tracking via on-
line boosting,” in Proceedings of British Machine Vision Conference,
pp. 47–56, 2006.

[7] D. Ross, J. Lim, R. Lin, and M.-H. Yang, “Incremental learning
for robust visual tracking,” International Journal of Computer Vision,
vol. 77, no. 1, pp. 125–141, 2008.

[8] H. Grabner, C. Leistner, and H. Bischof, “Semi-supervised on-line
boosting for robust tracking,” in Proceedings of European Conference
on Computer Vision, pp. 234–247, 2008.

[9] J. Kwon and K. Lee, “Visual tracking decomposition.,” in Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1269–1276, 2010.

[10] B. Babenko, M.-H. Yang, and S. Belongie, “Robust object tracking
with online multiple instance learning,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 33, no. 8, pp. 1619–1632, 2011.

[11] H. Li, C. Shen, and Q. Shi, “Real-time visual tracking using compressive
sensing,” in Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1305–1312, 2011.

[12] X. Mei and H. Ling, “Robust visual tracking and vehicle classification
via sparse representation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 33, no. 11, pp. 2259–2272, 2011.

[13] S. Hare, A. Saffari, and P. Torr, “Struck: Structured output tracking
with kernels,” in Proceedings of the IEEE International Conference on
Computer Vision, pp. 263–270, 2011.

[14] Y. Wu, J. Cheng, J. Wang, H. Lu, J. Wang, H. Ling, E. Blasch,
and L. Bai, “Real-time probabilistic covariance tracking with efficient
model update,” IEEE Transactions on Image Processing, vol. 21, no. 5,
pp. 2824–2837, 2012.

[15] Y. Wu, B. Shen, and H. Ling, “Visual tracking via online non-negative
matrix factorization,” IEEE Transactions on Circuit and Systems for
Video Technology, no. 3, pp. 374–383, 2014.

[16] J. Henriques, R. Caseiro, P. Martins, and J. Batista, “Exploiting the
circulant structure of tracking-by-detection with kernels,” in Proceedings
of European Conference on Computer Vision, pp. 702–715, 2012.

[17] J. Ho, K. Lee, M.-H. Yang, and D. Kriegman, “Visual tracking using
learned linear subspaces,” in Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, vol. 1, pp. I–782, 2004.

[18] E. Candes and T. Tao, “Decoding by linear programming,” IEEE
Transactions on Information Theory, vol. 51, no. 12, pp. 4203–4215,
2005.

[19] E. Candes and T. Tao, “Near-optimal signal recovery from random
projections: Universal encoding strategies?,” IEEE Transactions on
Information Theory, vol. 52, no. 12, pp. 5406–5425, 2006.

[20] D. Achlioptas, “Database-friendly random projections: Johnson-
lindenstrauss with binary coins,” Journal of Computer and System
Sciences, vol. 66, no. 4, pp. 671–687, 2003.

[21] E. Bingham and H. Mannila, “Random projection in dimensionality
reduction: applications to image and text data,” in International Confer-
ence on Knowledge Discovery and Data Mining, pp. 245–250, 2001.

[22] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM
Computing Surveys, vol. 38, no. 4, 2006.

[23] M.-H. Yang and J. Ho, “Toward robust online visual tracking,” in
Distributed Video Sensor Networks (B. Bhanu, C. Ravishankar, A. Roy-
Chowdhury, H. Aghajan, and D. Terzopoulos, eds.), pp. 119–136,
Springer, 2011.

[24] S. Salti, A. Cavallaro, and L. Di Stefano, “Adaptive appearance modeling
for video tracking: Survey and evaluation,” IEEE Transactions on Image
Processing, vol. 21, no. 10, pp. 4334–4348, 2012.

[25] A. Adam, E. Rivlin, and I. Shimshoni, “Robust fragments-based tracking
using the integral histogram,” in Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pp. 798–805, 2006.

[26] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja, “Robust visual tracking
via multi-task sparse learning,” in Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2042–2049, 2012.

[27] C. Bao, Y. Wu, H. Ling, and H. Ji, “Real time robust l1 tracker
using accelerated proximal gradient approach,” in Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1830–
1837, 2012.

[28] S. Oron, A. Bar-Hillel, D. Levi, and S. Avidan, “Locally orderless
tracking,” in Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1940–1947, 2012.

[29] L. Sevilla-Lara and E. Learned-Miller, “Distribution fields for tracking,”
in Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1910–1917, 2012.

[30] S. Wang, H. Lu, F. Yang, and M.-H. Yang, “Superpixel tracking,” in
Proceedings of the IEEE International Conference on Computer Vision,
pp. 1323–1330, 2011.

[31] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object track-
ing,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 25, no. 5, pp. 564–577, 2003.

[32] C. Shen, J. Kim, and H. Wang, “Generalized kernel-based visual track-
ing,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 20, no. 1, pp. 119–130, 2010.

[33] Z. Kalal, J. Matas, and K. Mikolajczyk, “Pn learning: Bootstrapping
binary classifiers by structural constraints,” in Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, pp. 49–56,
2010.

[34] D. Donoho, “Compressed sensing,” IEEE Transactions on Information
Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[35] R. Baraniuk, “Compressive sensing,” IEEE Signal Processing Magazine,
vol. 24, no. 4, pp. 118–121, 2007.



IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

[36] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof
of the restricted isometry property for random matrices,” Constructive
Approximation, vol. 28, no. 3, pp. 253–263, 2008.

[37] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 31, no. 2, pp. 210–227, 2009.

[38] L. Liu and P. Fieguth, “Texture classification from random features,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 34, no. 3, pp. 574–586, 2012.

[39] P. Li, T. Hastie, and K. Church, “Very sparse random projections,” in
International Conference on Knowledge Discovery and Data Mining,
pp. 287–296, 2006.

[40] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

[41] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (surf),” Computer Vision and Image Understanding, vol. 110,
no. 3, pp. 346–359, 2008.

[42] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, vol. 1, pp. 511–518, 2001.

[43] S. Li and Z. Zhang, “Floatboost learning and statistical face detec-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 26, no. 9, pp. 1112–1123, 2004.

[44] A. Ng and M. Jordan, “On discriminative vs. generative classifiers:
A comparison of logistic regression and naive bayes,” in Advances in
Neural Information Processing Systems, pp. 841–848, 2002.

[45] P. Diaconis and D. Freedman, “Asymptotics of graphical projection
pursuit,” The Annals of Statistics, pp. 793–815, 1984.

[46] K. Zhang and H. Song, “Real-time visual tracking via online weighted
multiple instance learning,” Pattern Recognition, vol. 46, no. 1, pp. 397–
411, 2013.

[47] F. D. la Torre and M. J. Black, “Robust principal component analysis for
computer vision,” in Proceedings of the IEEE International Conference
on Computer Vision, pp. 362–369, 2001.

[48] R. Raina, A. Battle, H. Lee, B. Packer, and A. Ng, “Self-taught learning:
transfer learning from unlabeled data,” in International Conference on
Machine Learning, pp. 759–766, 2007.

[49] T. Ahonen, A. Hadid, and M. Pietikainen, “Face description with local
binary patterns: Application to face recognition,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 28, no. 12, pp. 2037–
2041, 2006.

[50] A. Leonardis and H. Bischof, “Robust recognition using eigenimages,”
Computer Vision and Image Understanding, vol. 78, no. 1, pp. 99–118,
2000.

[51] W. Zhong, H. Lu, and M.-H. Yang, “Robust object tracking via sparsity-
based collaborative model,” in Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1838–1845, 2012.

[52] J. Xu, H. Lu, and M.-H. Yang, “Visual tracking via adaptive structural
local sparse appearance model,” in Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1822–1829, 2012.

[53] M. Everingham, L. Gool, C. Williams, J. Winn, and A. Zisserman,
“The pascal visual object class (voc)challenge,” International Journal
of Computer Vision, vol. 88, no. 2, pp. 303–338, 2010.

Kaihua Zhang is a professor in the School
of Information and Control, Nanjing University
of Information Science & Technology, Nanjing,
China. He received the B.S. degree in Technol-
ogy and Science of Electronic Information from
Ocean University of China (OUC) in 2006, the
M.S. degree in Signal and Information Process-
ing from the University of Science and Technol-
ogy of China (USTC) in 2009 and Ph.D degree
from the Department of Computing in the Hong
Kong Polytechnic University in 2013. From Aug.

2009 to Aug. 2010, he worked as a Research Assistant in the Depart-
ment of Computing, The Hong Kong Polytechnic University. His research
interests include image segmentation, level sets, and visual tracking.

 

Lei Zhang received the B.Sc. degree in 1995
from Shenyang Institute of Aeronautical Engi-
neering, Shenyang, P.R. China, the M.Sc. and
Ph.D degrees in Control Theory and Engineer-
ing from Northwestern Polytechnical University,
Xi’an, P.R. China, respectively in 1998 and 2001.
From 2001 to 2002, he was a research as-
sociate in the Dept. of Computing, The Hong
Kong Polytechnic University. From Jan. 2003 to
Jan. 2006 he worked as a Postdoctoral Fellow
in the Dept. of Electrical and Computer Engi-

neering, McMaster University, Canada. In 2006, he joined the Dept.
of Computing, The Hong Kong Polytechnic University, as an Assistant
Professor. Since Sept. 2010, he has been an Associate Professor in
the same department. His research interests include Image and Video
Processing, Computer Vision, Pattern Recognition and Biometrics, etc.
Dr. Zhang has published about 200 papers in those areas. Dr. Zhang
is currently an Associate Editor of IEEE Trans. on CSVT and Image
and Vision Computing. He was awarded the 2012-13 Faculty Award in
Research and Scholarly Activities. More information can be found in his
homepage http://www4.comp.polyu.edu.hk/∼cslzhang/.

Ming-Hsuan Yang is an associate professor in
Electrical Engineering and Computer Science
at University of California, Merced. He received
the PhD degree in computer science from the
University of Illinois at Urbana-Champaign in
2000. Prior to joining UC Merced in 2008, he
was a senior research scientist at the Honda
Research Institute working on vision problems
related to humanoid robots. He coauthored the
book Face Detection and Gesture Recognition
for Human-Computer Interaction (Kluwer Aca-

demic 2001) and edited special issue on face recognition for Computer
Vision and Image Understanding in 2003, and a special issue on real
world face recognition for IEEE Transactions on Pattern Analysis and
Machine Intelligence. Yang served as an associate editor of the IEEE
Transactions on Pattern Analysis and Machine Intelligence from 2007 to
2011, and is an associate editor of the International Journal of Computer
Vision, Image and Vision Computing and Journal of Artificial Intelligence
Research. He received the NSF CAREER award in 2012, the Senate
Award for Distinguished Early Career Research at UC Merced in 2011,
and the Google Faculty Award in 2009. He is a senior member of the
IEEE and the ACM.


