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In this supplementary file, we provide:

– The proof that the solution of Eq. (2) in the main paper is the ZCA whitening
transformation (please refer to Section 3.1 in the main paper);

– Summary of the proposed W-SGDM and W-Adam algorithms (please refer
to Section 4.2 in the main paper);

– Hyperparameter settings on CIFAR100/CIFAR10 and ImageNet, and the
tuning of momentum α (please refer to Section 4.2 in the main paper).

1 ZCA Transformation

The solution of the following objective function

minT||X− Φ(X)||22, s.t. Φ(X) = TX,
1

N
Φ(X)Φ(X)T = I (1)

is T = (XXT /N)−
1
2 , which is just the ZCA whitening formulation.

Proof. Suppose that UDUT is the SVD decomposition of Σ = XXT /N .
From the constraint that 1

NΦ(X)Φ(X)T = I, we know TΣTT = I, and conse-

quently we have T = MD− 1
2UT , where M is an arbitrary orthogonal matrix

with MMT = MTM = I.

The objective to be minimized in Eq. (1) is

||X−TX||22
=tr((X−TX)(X−TX)T )

=tr(XXT −XXTTT −TXXT +TXXTTT )

=tr(XXT ) + tr(TXXTTT )− 2tr(TXXT )

=N · tr(Σ) +N · tr(I)− 2N · tr(TΣ).

(2)

The first two terms of Eq. (2) are independent of T. Therefore, minimizing the
objective in Eq. (1) w.r.t. T is to maximize the last term in Eq. (2):
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max
T

tr(TΣ)

= max
MMT=I

tr(MD− 1
2UTUDUT )

= max
MMT=I

tr(MD
1
2UT )

= max
MMT=I

tr(D
1
2UTM)

= max
Q=UTM,QQT=I

tr(D
1
2Q)

= max
Q=UTM,QQT=I

C∑
i

D
1
2
iiQii,

(3)

where Dii and Qii are the i
th diagonal elements of D and Q, respectively. Please

note that D
1
2
ii is positive definite. Since Q is an orthogonal matrix, its diagonal

elements Qii ≤ 1. Therefore,
∑C

i D
1
2
iiQii ≤

∑C
i D

1
2
ii. When Q = I, the equality

holds, and the maximum value
∑C

i D
1
2
ii is reached. Meanwhile, according to

Q = UTM = I, we have M = U. Therefore, the optimal whitening matrix for
Eq. (1) is T = UD− 1

2UT . ■

2 Algorithms of W-SGDM and W-Adam

We apply EFW to the two commonly used DNN optimizers, i.e., SGDM and
Adam (or AdamW), and name them as W-SGDM and W-Adam, respectively.
The detailed algorithms of W-SGDM andW-Adam are summarized in Algorithm
1 and Algorithm 2.

It can be seen that it is easy to embed EFW to common DNN optimizers. We
first apply the EFW step to modify the gradient of weight, and then follow the
updating rule of the optimizer to update the weight with the modified gradient.

3 Hyperparameter Setting

3.1 Learning rate and weight decay

As we mentioned in Section 3.5 of the main paper, with the gradient norm recov-
ery operation, W-SGDM and W-Adam can directly adopt the default learning
rate and weight decay of SGDM and Adam (or AdamW), respectively. The re-
sults of W-SGDM and W-Adam on CIFAR100/10 with the same learning rate
and weight decay as SGDM and AdamW, respectively, are shown in Table 1.
We can see that W-SGDM and W-Adam indeed achieve remarkable performance
gains over SGDM and AdamW.

Of course, finetuning the learning rate (LR) and weight decay (WD) of W-
SGDM and W-Adam around the default settings of SGDM and Adam/AdamW
can further boost the performance. The finetuned settings of LR and WD, as
well as the used weight decay methods (L2 regularization or weight decouple), of
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Algorithm 1: W-SGDM

Input: Txx, Tsvd, α, ϵ, β,M
0
xx, T

0

Output: W(T )

1 for t=1:T do
2 Gt = ∇WtL;
3 if t%Txx = 0 then

4 Mt
xx = αMt−1

xx + (1 − α)XtXtT

5 else
6 Mt

xx = Mt−1
xx

7 end
8 if t%Tsvd = 0 then

9 UDUT = Mt
xx

10 Tt = U(D + ϵdmaxI)
−1/2UT

11 else
12 Tt = Tt−1

13 end

14 Ĝt = GtTt

15 G̃t = Ĝt ||Gt||2
||Ĝt||2

;

Mt
G = βMt−1

G + (1 − β)G̃t;

16 Wt+1 = Wt − ηMt
G;

17 end

Algorithm 2: W-Adam

Input: Txx, Tsvd, α, ϵ, β1, β2,M
0
xx, T

0

Output: W(T )

1 for t=1:T do
2 Gt = ∇WtL;
3 if t%Txx = 0 then

4 Mt
xx = αMt−1

xx + (1 − α)XtXtT

5 else
6 Mt

xx = Mt−1
xx

7 end
8 if t%Tsvd = 0 then

9 UDUT = Mt
xx

10 Tt = U(D + ϵdmaxI)
−1/2UT

11 else
12 Tt = Tt−1

13 end

14 Ĝt = GtTt

15 G̃t = Ĝt ||Gt||2
||Ĝt||2

;

Mt
G = β1M

t−1
G + (1 − β1)G̃

t;

16 Vt
G = β2V

t−1
G + (1 − β2)G̃

t ⊙ G̃t;

17 M̂t
G =

Mt
G

1−βt
1
, V̂t

G =
Vt

G
1−βt

2
;

18 Wt+1 = Wt − η
M̂t

G√
V̂t

G
+ϵ2

;

19 end

different optimizers on CIFAR100/CIFAR10 are shown in Table 2. These settings
are applied to all backbone networks.

The fintuned settings of LR and WD on ImageNet are shown in Table 3.
On ImageNet, we tune the LR and WD on ResNet18 and ResNet50, respec-
tively. We also give the the training and validation accuracy curves on ImageNet
with ResNet50 in Fig. 1. It can been seen that both the training and valida-
tion accuracies are improved by W-SGDM and W-AdamW over their original
counterparts.
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Fig. 1. The training and validation accuracy curves on ImageNet with ResNet50 back-
bone.
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Table 1. Testing accuracies (%) of W-SGDM and W-Adam on CIFAR100/CIFAR10
by adopting the same learning rate and weight decay as SGDM and AdamW, respec-
tively. The numbers in red color indicate the improvement of W-SGDM/W-Adam over
SGDM/AdamW, respectively.

CIFAR100

Model SGDM AdamW W-SGDM W-Adam

R18 77.20±.30 77.23±.10 78.73 ±.25(↑1.53) 78.35±.18(↑1.12)
R50 77.78±.43 78.10±.17 80.58 ±.58(↑2.80) 80.13±.12(↑2.03)
V11 70.80±.29 71.20±.29 72.90 ±.18(↑2.10) 72.93±.43(↑1.73)
D121 79.53±.19 78.05±.26 81.30 ±.19(↑1.77) 80.25±.08(↑2.20)

CIFAR10

R18 95.10±.07 94.80±.10 95.27±.04 (↑0.17 ) 95.20±.12 (↑0.40 )
R50 94.75±.30 94.72±.10 95.67±.22 (↑0.92 ) 95.57±.04 (↑0.85 )
V11 92.17±.19 92.02±.08 92.98±.24 (↑0.81 ) 92.83±.17 (↑0.81 )
D121 95.37±.17 94.80±.07 95.87±.19 (↑0.50 ) 95.50±.08 (↑0.70 )

Table 2. The learning rate (LR), weight decay (WD) and weight decay methods for
different optimizers on CIFAR100 and CIFAR10. The weight decay methods include
L2 regularization weight decay (WD1) and weight decouple (WD2).

Optimizer SGDM AdamW RAdam Ranger Adabelief AdaHessian Apollo W-SGDM W-Adam

LR 0.1 0.001 0.001 0.001 0.001 0.15 0.01 0.05 0.0005
WD 0.0005 0.5 0.5 0.5 0.5 0.0005 0.05 0.001 1

WD method WD1 WD2 WD2 WD2 WD2 WD2 WD2 WD1 WD2

Table 3. The learning rate (LR), weight decay (WD) and weight decay methods and for
different optimizers on ImageNet.The weight decay methods include L2 regularization
weight decay (WD1) and weight decouple (WD2).

Optimizer SGDM AdamW RAdam Ranger Adabelief AdaHessian Apollo W-SGDM W-Adam

R18
LR 0.1 0.001 0.001 0.001 0.001 0.15 1 0.1 0.001
WD 0.0001 0.1 0.1 0.1 0.05 0.0005 0.0001 0.0001 0.1

R50
LR 0.1 0.001 0.001 0.001 0.001 - 1 0.1 0.001
WD 0.0001 0.1 0.05 0.1 0.1 - 0.0001 0.002 0.2

WD method WD1 WD2 WD2 WD2 WD2 WD2 WD1 WD1 WD2


