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Abstract

Cross correlation function (CCF) of signals is an important tool of multi-sensors signal processing. Parabola functions are
commonly used as parametric models of the CCF in time delay estimation. The parameters are determined by fitting samples near
the maximum of the CCF to a parabola function. In this paper we analyze the CCF for the stationary processes of exponential auto-
correlation function, with respect to two important types of sensor sampling kernels. Our analysis explains why the parabola is an
acceptable model of CCF in estimating the time delay. More importantly, we demonstrate that the Gaussian function is a better and
more robust approximation of CCF than the parabola. This new approximation approach leads to higher precision in time delay
estimation using the CCF peak locating strategy. Simulations are also carried out to evaluate the performance of the proposed
estimation method for different sample window sizes and signal to noise ratios. The new method offers significant improvement
over the current parabola based method.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Multiple sensors are widely used for robust estimation, communication and target tracking. When several sen-
sors of different physical characteristics and varying spatial locations sample a continuous time signal, they produce
correlated time sequences. The cross correlation between any two of the sampled signals contains vital information
about the original signal, and can play an important role in applications such as multi-sensor data fusion and tracking
[1,2], and sonar [3]. The cross correlation function (CCF) is a powerful tool for time delay estimation that registers
different signals sampled by different sensors in time domain. An accurate time registration is crucial in processing of
multi-sensor signals such as sonar [3], seismic data processing and tracking [4]. Similar problem arises in superres-
olution signal reconstruction, a process of creating a higher resolution representation of a signal from multiple lower
resolution observations [5].

Time delay estimation of two analog signals through cross-correlation has been studied by many authors [6–13].
Knapp and Carter gave a maximum likelihood estimator of the relative delay between two continuous signals [6].
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Azaria and Hertz [7] further reexamined this method for stationary signals. However, this method needs to know the
spectra of signals and noise, and it applies to analog signals only. For digital systems a popular approach of time delay
estimation is to locate the peak of CCF of the two discrete signals. The amount of delay is generally not an integral
multiple of the sampling period. To estimate the delay in arbitrary precision, a common technique is to fit the CCF
by a parabola with three samples in the neighborhood of the peak correlation value [9–11]. As alternatives to CCF,
some methods use the average square difference function (ASDS) and the average magnitude difference function
(AMDF) to estimate the time delay [9,11]. Other time delay estimation techniques exploit the high-order statistics of
the data [14], or employ wavelet transform to whiten the data [13], or determine the time delay through a parameter
optimization procedure in frequency domain [15].

In this paper we are interested in the analysis of CCF and the estimation of the time delay by locating the CCF’s
peak position with a small number of observed points of the CCF. We will derive the analytical forms of CCFs for
Gaussian and box sensor kernels and for the class of stationary signals that have an exponentially decaying auto-
correlation function (ACF). Our analysis explains why the parabola function can fit the CCF reasonably well, as
previously believed in the literatures. More importantly, we establish Gaussian function to be a better and more
robust approximation of CCF than the parabola function for all signals in the class considered above. Indeed, the new
Gaussian model leads to superior performance in time delay estimation to the parabola-based method.

This paper is organized as follows. Section 2 introduces the discrete signal generation system and the problem
of time delay estimation. Section 3 analyzes the CCF of signals sampled by two important types of sensor kernels:
Gaussian and box. Section 4 proposes and justifies the use of the Gaussian function as a parametric model to fit the
CCF. In Section 5, this new Gaussian CCF model is applied to time delay estimation, and compared with the existing
method. Section 6 reports the simulation results to verify the superior performance of the proposed method. Section 7
concludes the paper.

2. Preliminaries

Consider a continuous information source s(t), which is observed by two sensors with a relative time delay Δ. The
discrete sampling procedure is illustrated by Fig. 1. The original signal s(t) and its shift s(t − Δ) pass through sensor
kernel filters g1(−t) and g2(−t) respectively to get two smoothed signals:

s1(t) = s(t) ∗ g1(−t), s2(t − Δ) = s(t − Δ) ∗ g2(−t), (2.1)

where “∗” is the convolution operator. Kernels g1(t) and g2(t) depend on the physical characteristics of the two
sensors. s1(t) and s2(t − Δ) are sampled by two Dirac sequences with period T :

x1(k) = s1(kT ), x2(k) = s2(kT − Δ). (2.2)

Finally the discrete measurements

y1(k) = x1(k) + υ1(k), y2(k) = x2(k) + υ2(k) (2.3)

are obtained, where υi(k), i = 1,2, are zero-mean observation noises. Here we assume that noises υ1 and υ2 are
mutually uncorrelated and also uncorrelated with x1 and x2.

Fig. 1. The sampling process of digital signals y1(k) and y2(k).
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Assume that s(t) is a stationary process, then its autocorrelation function (ACF) is

Rs(τ) = Rs(−τ) = E
{
s(t)s(t + τ)

}
. (2.4)

The CCF of signals s1(t) and s2(t) is given by [16]:

R12(τ ) = E
{
s1(t)s2(t + τ)

} = Rs(τ) ∗ g1(−τ) ∗ g2(τ ). (2.5)

In practice, only the observations of s1(t) and s2(t), discrete signals y1(k) and y2(k), are available. With y1(k)

and y2(k), which are noisy and sample length limited, we can compute some approximate values of R12(τ ). Since υ1
and υ2 are uncorrelated, there is

�12(n) = 1

N

N∑
k=1

y1(k)y2(k + n) ≈ E
{
s1(t)s2(t + nT − Δ)

} = R12(nT − Δ), (2.6)

where N is the length of samples used in calculation. �12(n) is an approximation of the Dirac sampled value of
continuous function R12(τ ) at time nT − Δ. The accuracy of �12(n) is affected by the level of measurement noises
υ1 and υ2 and the sample length N .

The ACF Rs(τ) peaks at τ = 0. If g1(t) and g2(t) are approximately viewed as Dirac functions, then R12(τ ) =
Rs(τ). A widely used method to estimate Δ is to find the peak position of the CCF function approximated by sam-
ples �12(n). Suppose that �12(n) takes on its maximum value at position n0. If Δ is an integer multiple of sampling
period T , then we simply have Δ = n0T . However, estimating Δ becomes non-trivial, if Δ is a fractional multiple of
T and an arbitrary precision of Δ is desired. The current technique is to fit a parabola function with points �12(n0 −1),
�12(n0) and �12(n0 + 1), and estimate Δ by the peak position of the fitted parabola [9–11]. This practice is justified
if one can show that the parabola is a good approximation of R12(τ ) in the neighborhood of its peak.

The time delay estimation technique of finding the maximum position of CCF is simple, efficient, and can po-
tentially estimate Δ to good precision. But two problems remain open: what is the exact expression of the cross
correlation R12(τ ) given some prior knowledge of the auto-correlation Rs(τ) and sensor kernels, and what is the best
model to be used to fit R12(τ ) by the available observations �12(n) given a constraint on the model complexity? These
are the issues to be addressed in the next sections.

3. Analysis of cross correlation functions

We consider the class of processes of exponential ACF:

Rs(τ) = α · exp
(−β|τ |), (3.1)

where parameters α and β are real numbers. This class of processes can model many natural information sources such
as the Gaussian Markov processes. Doob [17] showed that the ACF of any random process which is both Gaussian
and Markov can be modeled as an exponential function.

Given ACF Rs(τ), the form of CCF R12(τ ) depends on the sensor kernels g1(t) and g2(t). Ideally, g1(t) and g2(t)

should be the Dirac functions so that g1(t) and g2(t) are full-pass filters. Dirac has the shortest support to get the
highest time resolution. Due to the physical limitation of sensors, however, in real systems g1(t) and g2(t) are smooth
low-pass filters. In many applications, the sensor kernels are approximated by Gaussian functions or the box functions.
Next we analyze R12(τ ) in three important cases respectively: both of the kernels are Gaussian; both of the kernels
are box functions; one kernel is Gaussian function and the other is box function.

3.1. Two Gaussian kernels

Suppose that kernel gi(t) is a Gaussian function centered at t = 0 with standard deviation νi , i.e.,

gi(t) = 1√
2πνi

exp

(
− t2

2ν2
i

)
. (3.2)

Without loss of generality, we let the sampling period T = 1. We assume that gi(t) is nearly zero outside [−T/2, T /2].
(But the following development is independent of this condition.) To ensure this, we let standard deviation νi � 1/4.
Apparently, when νi → 0, gi(t) will approach to a Dirac function.
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Since both kernels g1(t) and g2(t) are Gaussian, their convolution is also Gaussian. Let

G(t) = g1(−t) ∗ g2(t) = 1√
2π(ν2

1 + ν2
2)

exp

(
− t2

2(ν2
1 + ν2

2)

)
= 1√

2πν
exp

(
− t2

2ν2

)
, (3.3)

where ν =
√

ν2
1 + ν2

2 is the standard deviation of G(t). For all ν1, ν2 � 1/4, we have ν �
√

2/4. From (2.5) and (3.1),
the CCF R12(τ ) is

R12(τ ) = Rs(τ) ∗ G(τ) = α√
2πν

( ∞∫
0

exp

(
−βt − (τ + t)2

2ν2

)
dt +

∞∫
0

exp

(
−βt − (τ − t)2

2ν2

)
dt

)
. (3.4)

The first item of (3.4) is
∞∫

0

exp

(
−βt − (τ + t)2

2ν2

)
dt = √

π/2 · ν · exp

(
ν2β2 + 2τβ

2

)
erfc

(
ν2β + τ√

2ν

)
,

where erfc(x) = 2√
π

∫ ∞
x

exp(−t2) dt is the complementary error function. Similarly, we can derive the second item
of (3.4) to be

∞∫
0

exp

(
−βt − (τ − t)2

2ν2

)
dt = √

π/2 · ν · exp

(
ν2β2 − 2τβ

2

)
erfc

(
ν2β − τ√

2ν

)
.

Let

fl(τ ) = exp(τβ) erfc

(
ν2β + τ√

2ν

)
and fr(τ ) = exp(−τβ) erfc

(
ν2β − τ√

2ν

)
(3.5)

and

f (τ) = fl(τ ) + fr(τ ). (3.6)

Then R12(τ ) can be re-written as

R12(τ ) = C · f (τ) (3.7)

where C = α · exp(ν2β2/2)/2 is a constant independent of τ . Since the shape of R12(τ ) is determined by f (τ), we
turn to examine f (τ).

In Fig. 2, we plot the curves of fl(τ ), fr(τ ) and f (τ) by setting β = 1 and ν = √
2/4. Since f (τ) is an even

function, it suffices to discuss the case when τ � 0. Note that the decreasing speed of erfc( ν2β+τ√
2ν

) is faster than the

increasing speed of exp(τβ) along the positive abscissa. Therefore, when τ is greater than some positive number,

fl(τ ) → 0 and erfc( ν2β−τ√
2ν

) → 2 and thus

f (τ) ≈ fr(τ ) = exp(−τβ) erfc

(
ν2β − τ√

2ν

)
→ 2 exp(−τβ).

From Fig. 2 (where β = 1 and ν = √
2/4) we can clearly see this. That is to say, when |τ | is large, f (τ) and in turn

R12(τ ) can be approximately modeled by an exponential function.
However, in time delay estimation by locating the peak of R12(τ ) we are more interested in the behavior of R12(τ )

in the neighborhood of its peak. The shapes of f (τ) as well as R12(τ ) depend on two parameters, β , the decaying
parameter of Rs(τ), and ν, the standard deviation of G(t). Fig. 3(a) plots the curves of f (τ) for β = 1 in conjunction
with varying ν = 0.15,0.2,0.25,0.3,0.35, whereas Fig. 3(b) shows the curves of f (τ) for ν = 0.25 and in conjunc-
tion with varying β = 0.5,1,2,4,8. Referring to the figures, given β,f (τ) is determined by ν. When ν decreases,
Gaussian function G(x) shapes more like a Dirac function, hence R12(τ ) approaches to Rs(τ) because of the con-
volution operation R12(τ ) = Rs(τ) ∗ G(τ). Similarly, when ν is fixed and β increases, Rs(τ) approaches to a Dirac
function and then the shape of R12(τ ) approaches to the Gaussian function G(x).
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Fig. 2. The curves of f (τ) (solid), fr (τ ) (dashed) and fl(τ ) (dotted) by setting β = 1 and ν = √
2/4.

Fig. 3. (a) The curves of f (τ) by setting β = 1 and ν = 0.15,0.2,0.25,0.3,0.35, respectively. (b) The curves of f (τ) by setting ν = 0.25 and
β = 0.5,1,2,4,8, respectively.

3.2. Two box kernels

When the sensor kernels are box functions, i.e. kernels gi(t), i = 1,2, are constant in [−T/2, T /2], the sensors
sample the observed process as an integrator in each sampling period. As in the previous subsection, we normalize
the sampling period to be T = 1 and write gi(t) as

gi(t) =
{

1, −1/2 � t � 1/2,

0, |t | > 1/2.
(3.8)

The convolution of box kernels g1(t) and g2(t) is

G(t) = g1(−t) ∗ g2(t) =
⎧⎨
⎩

1 + t, −1 � t � 0,

1 − t, 0 � t � 1,

0, |t | > 1.

(3.9)

Since both G(t) and Rs(τ) are even functions, the CCF R12(τ ) = Rs(τ) ∗ G(τ) is also an even function, hence we
only consider the case for τ � 0.
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Fig. 4. The curves of R12(τ ) by setting α = 1 and β = 0.5,1,2,4,8, respectively.

When 0 � τ � 1, after some tedious computations, we have

R12(τ ) = α

(
2

1 − τ

β
+ 1

β2
exp(−β + βτ) + 1

β2

(
exp(−β) − 2

)
exp(−βτ)

)
. (3.10)

When τ > 1, we have

R12(τ ) = α

β2

(
exp(β) + exp(−β) − 2

)
exp(−βτ), τ > 1. (3.11)

It can be seen that when |τ | > 1, R12(τ ) is an exponential function of τ , and when |τ | � 1, R12(τ ) is a linear
combination of exponential terms exp(−βτ) and exp(βτ) and linear term τ .

The shape of R12(τ ) is controlled by parameter β . (Parameter α only affects the magnitude scale of R12(τ ).)
With the increasing of β,Rs(τ ) approaches to a Dirac function so that CCF R12(τ ) approaches to G(t) defined
in (3.9), which is actually the first order spline function. In Fig. 4 we show the curves of R12(τ ) in interval [−3,3] for
β = 0.5,1,2,4,8. (The scale parameter α is set to 1.)

3.3. One Gaussian and one box kernels

Suppose sensor kernel g1(t) is Gaussian function as defined in (3.2) and the other sensor kernel g2(t) is box
function as defined in (3.8), then the convolution of g2(t) and g1(t) is

G(t) = g2(−t) ∗ g1(t) = 1

2
erf

(
t + 1/2√

2ν1

)
− 1

2
erf

(
t − 1/2√

2ν1

)
, (3.12)

where erf(x) = 2√
π

∫ x

0 exp(−t2) dt is the error function. Apparently G(t) is an even function and takes its maximum

at t = 0. The CCF R12(τ ) is computed to be

R12(τ ) = Rs(τ) ∗ G(τ) = α

∞∫
0

exp(−βt) · (G(τ + t) + G(τ − t)
)
dt. (3.13)

Since error function erf(x) is not integrable, we cannot express R12(τ ) in terms of a finite number of elementary
functions.

The shape of CCF R12(τ ) is controlled by two parameters: ν1, the deviation of Gaussian kernel g1(t), and β , the
decay speed of ACF Rs(τ). Let constant α = 1, Fig. 5(a) plots R12(τ ) for β = 1 and ν1 = 0,0.15,0.25, respectively.
We see that R12(τ ) does not vary much on ν1 in the interval ν1 ∈ [0,0.25]. Fig. 5(b) plots R12(τ ) for β = 0.5,1,2,4,8,
respectively by setting ν1 = 0.25. When β increases, Rs(τ) approaches to a Dirac function, so that the shape of R12(τ )

is close to that of G(τ).
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Fig. 5. (a) The curves of R12(τ ) by setting β = 1 and ν1 = 0,0.15,0.25, respectively. (b) The curves of R12(τ ) by setting ν1 = 0.25 and
β = 0.5,1,2,4,8, respectively.

4. Parametric models of cross correlation function

Unfortunately, the precise CCF R12(τ ) does not have a simple closed form, as revealed by the analyses in the
previous section. But we have shown that R12(τ ) is a smooth even function. Furthermore, an inspection of Figs. 3–5
indicates that R12(τ ) exhibits a quadratic-like behavior near the peak for Gaussian and/or box sensor kernels. This
explains the past success of fitting three points �12(n0 −1), �12(n0) and �12(n0 +1) to a parabola as an approximation
of R12(τ ) near the peak of R12(τ ) [9–11], where �12(n0) is the maximum point of the computed CCF samples
(referring to (2.6)).

Denote the parabola function as fp(x) = ax2 + bx + c. Parameters a, b and c are determined by

[
a

b

c

]
=

[1 −1 1
0 0 1
1 1 1

]−1 ⎡
⎣�12(n0 − 1)

�12(n0)

�12(n0 + 1)

⎤
⎦ . (4.1)

The next natural question is if there exists a better model of R12(τ ) than parabola function given the same number
of model parameters. A causal revisit of Figs. 3–5 suggests that Gaussian function

fg(x) = a · exp
(−b(x − c)2) (4.2)

is a good candidate model of R12(τ ) in the interval around its peak position. The three parameters are determined as
follows. Let �12(n0 − 1) = fg(−1), �12(n0) = fg(0) and �12(n0 + 1) = fg(1), we have⎧⎪⎨

⎪⎩
ln�12(n0 − 1) = lna − b(1 + c)2,

ln�12(n0) = lna − bc2,

ln�12(n0 + 1) = lna − b(1 − c)2.

(4.3)

Solving the above equation set, we get

a = exp

{
ln�12(n0) + (ln�12(n0 + 1) − ln�12(n0 − 1))2

16 ln�12(n0) − 8 ln�12(n0 − 1) − 8 ln�12(n0 + 1)

}
, (4.4a)

b = 2 ln�12(n0) − ln�12(n0 − 1) − ln�12(n0 + 1)

2
, (4.4b)

c = ln�12(n0 + 1) − ln�12(n0 − 1)

4 ln�12(n0) − 2 ln�12(n0 − 1) − 2 ln�12(n0 + 1)
. (4.4c)
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Fig. 6. The true CCF R12(τ ) (solid) compared with the fitted CCFs by parabola model (dashed) and Gaussian model (dotted) for the case that
(a) both sensor kernels are Gaussian (β = 1 and ν = 0.25); (b) both sensor kernels are box (β = 1); (c) one sensor kernel is Gaussian and the other
is box (β = 1 and ν1 = 0.2).

Let �12(n0) = R12(0),�12(n0 −1) = R12(−1) and �12(n0 +1) = R12(1), in Fig. 6 we plot true curves of R12(τ ) in
the neighborhood of its peak together with the fitted curves of R12(τ ) by the parabola and Gaussian models. Fig. 6(a)
is for the case that both sensor kernels are Gaussian, β = 1 and ν = 0.25. Fig. 6(b) is for the case that both sensor
kernels are box and β = 1. Fig. 6(c) is for the case that one sensor kernel is Gaussian and the other is box, β = 1 and
ν1 = 0.2. We see that the curves fitted by the Gaussian model are closer to the true CCF functions than those fitted by
the parabola model.

5. Time delay estimation

In this section we apply the above Gaussian model of R12(τ ) to time delay estimation, and evaluate its performance
against the parabola model. Suppose that �12(n) are the true discrete samples of the continuous function R12(τ ),
i.e., �12(n) = R12(nT − Δ). The task of time delay estimation is to determine Δ from the model fitted by points
�12(n0 − 1), �12(n0) and �12(n0 + 1).

If Δ is an integer multiple of sampling period T , then R12(n0T − Δ) is the maximum value of R12(τ ), hence
n0T − Δ = 0 or Δ = n0T . However, in practice Δ has an arbitrary real value. The fractional part of Δ can
be written as Δε = Δ − n0T . With the parabola model, the fractional part Δε is estimated as Δ̂p = − b

2a
T ,

where a and b are determined by (4.1). For Gaussian model, the fractional part Δε is estimated as Δ̂g = cT ,
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Fig. 7. The curves of Δ̂p (dashed), Δ̂g (dotted), Dp (long-dashdotted) and Dg (short-dashdotted) vs. Δε (the solid diagonal line) for β = 1 and
ν = 0.25.

where c is determined by (4.4c). Denote by Dp and Dg the estimation errors of the two different fitting mod-
els:

Dp = Δ̂p − Δε and Dg = Δ̂g − Δε. (5.1)

Next we compare the estimation errors Dp and Dg via numerical computations.

5.1. Results for Gaussian sensor kernels

If sensor kernels g1(t) and g2(t) are Gaussian, the CCF R12(τ ) is determined by (3.5)–(3.7). The shape of R12(τ )

is controlled by parameters β and ν. Normalize the sampling period T = 1, so that the fractional part of Δ is Δε ∈
[−0.5,0.5]. We increase Δε from −0.5 to 0.5, and sample �12(n0 − 1), �12(n0) and �12(n0 + 1) from R12(τ ) to
compute the parabola and Gaussian estimates of Δε , i.e. Δ̂p and Δ̂g , as well as their estimation errors Dp and Dg .
In Fig. 7, we plot the curves of Δ̂p , Δ̂g , Dp and Dg for β = 1 and ν = 0.25. We see that the magnitude of estimation
error Dp is always higher than that of Dg . Comparisons for other values of β and ν draw the same conclusion. We
define the mean absolute errors (MAS) of Δ̂p and Δ̂g as

Ep =
0.5∫

−0.5

∣∣Dp(Δε)
∣∣dΔε and Eg =

0.5∫
−0.5

∣∣Dg(Δε)
∣∣dΔε. (5.2)

Fig. 8 plots Ep and Eg as two-dimensional functions over ν ∈ [0.05,0.35] and β ∈ (0,10]. Clearly, the estimation
error Ep is higher than Eg in the entire range of (ν,β). Both Ep and Eg decrease in ν. However, with the increas-
ing of β,Ep increases rapidly but Eg decreases. These observations can be explained as follows. First, a smaller ν

makes G(t) (referring to (3.3)) sharper and closer to a Dirac function, so that R12(τ ) shapes more like the ACF Rs(τ),
which is an exponential function, due to the convolution operation R12(τ ) = Rs(τ) ∗ G(τ). Therefore the fitting error
between R12(τ ) and parabola fp(x) or Gaussian function fg(x) increases in ν, so does the MAS Ep or Eg . Second,
a larger β drives Rs(τ) closer to a Dirac function, so that R12(τ ) approaches to G(t), which is a Gaussian function,
due to the convolution operation, then the fitting error between R12(τ ) and Gaussian function fg(x) decreases in β ,
whereas the fitting error between R12(τ ) and parabola fp(x) increases. This is the reason why MAS Ep and Eg have
opposite trends in β .

Finally, we point out that, as being evident in Figs. 8(a) and (b), the Gaussian approximation of CCF R12(τ ) is
more robust than the parabola approximation in time delay estimation, for the former consistently achieves smaller
estimation error than the latter over different Gaussian kernels.

5.2. Results for box sensor kernels

When both kernels g1(t) and g2(t) are box functions, the CCF R12(τ ) is given by (3.10), (3.11) and its shape
is controlled by parameter β only. As in (5.2), we denote by Ep and Eg the MAS of estimates Δ̂p and Δ̂g . Fig. 9
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Fig. 8. (a) The Ep surface vs. parameters ν and β . (b) The Eg surface vs. parameters ν and β .

Fig. 9. The curves of Ep (solid) and Eg (dashed) versus parameter β .

plots the curves of Ep and Eg versus parameter β in interval (0,20]. We see that Ep increases in β and it flattens
out when β > 10. In a wide range of β , Eg is much less than Ep , and becomes greater than Ep only when β > 26.
In real applications β is usually small, rarely greater than 10. A large value of β means the considered process is
nearly a white process whose ACF is a Dirac pulse. Eg reaches the minimum around β = 3.3. At this position Eg is
very close to zero, and here R12(τ ) can be almost perfectly approximated by a Gaussian function. Eg decreases when
β ∈ (0,3.3], but increases when β ∈ [3.3,∞]. As β gets larger, the ACF Rs(τ) becomes closer to a Dirac function so
that the R12(τ ) approaches to function G(t) in (3.9). Consequently the fitting error between R12(τ ) and the Gaussian
function fg(x), as well as the MAS Eg , increases in β .

5.3. Results for hybrid Gaussian and box sensor kernels

When one sensor kernel g1(t) is Gaussian while the other kernel g2(t) is a box function, the CCF R12(τ ) is
determined by (3.13) and its shape controlled by parameters ν1 and β . In Fig. 10 we plot Ep and Eg over ν1 ∈
[0.01,0.25] and β ∈ (0,10]. Clearly, Ep lies above Eg for all (ν1, β), and is far more sensitive than Eg to parameters
ν1 and β . Although the time delay estimation of Gaussian model is more robust than the parabola model, the behavior
of Eg is more complex than Ep in the (ν1, β) plane. Interestingly, Fig. 10(b) shows that on the surface of Eg there is
a curve along which Eg is nearly zero and reaches its minimum point with respect to ν1 or β .
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Fig. 10. (a) The mesh figure of Ep in the plane determined by parameters ν1 and β . (b) The mesh figure of Eg in the plane determined by parameters
ν1 and β .

6. Simulation results

The above analytical results were obtained under the assumption that �12(n0 − 1), �12(n0) and �12(n0 + 1) are
ideally sampled from R12(τ ), i.e., �12(n) = R12(nT − Δ). In practice, �12(n) is a noisy observation and hence
only an approximation of the true value of R12(nT − Δ). In this section, we simulate the noisy data y1(k) and
y2(k) and evaluate the performance of the proposed time delay estimation method in comparison with the parabola
model.

First the continuous process s(t) is simulated by a first order Gaussian Markov process, whose ACF is an expo-
nential function Rs(τ) = Rs(0) · aτ with 0 < a < 1. Then smoothed signals si(t), i = 1,2, are obtained by passing
s(t) and its shift s(t − Δ) through the sensor kernels gi(t): s1(t) = s(t) ∗ g1(−t) and s2(t) = s(t − Δ) ∗ g2(−t).
Let the sampling period T = 1. The discrete signals xi(k) are obtained by directly sampling si(t): x1(k) = s1(k) and
x2(k) = s2(k − Δ). The corresponding measurement yi(k) is made to be yi(k) = xi(k)+υi(k), where υi is a sequence
of zero mean Gaussian white noises which is uncorrelated with xi . Noise sequences υ1 and υ2 are also uncorrelated.
Denote by σ1 and σ2 the standard deviations of υ1 and υ2. The signal to noise ratio (SNR) of y1 or y2 is computed
as

SNR = 10 · log10

(
Var(xi)/σ

2
i

)
, (6.1)

where Var(xi) is the variance of xi . The approximated samples of CCF R12(τ ) are computed by

�12(n) = 1

N

N∑
k=1

y1(k)y2(k + n), (6.2)

where N is the number of used samples to compute �12(n).
In the following experiments, we set the parameter a = 0.95 in generating s(t) and let the relative time delay Δ

vary from −0.5 to 0.45 with a step length 0.05. For each Δ, we compute the time delay estimation errors Dp(Δ) and
Dg(Δ) by the method described in Section 5 and compute the MAS by

Ep = 1

20

0.45∑
Δ=−0.5

∣∣Dp(Δ)
∣∣ and Eg = 1

20

0.45∑
Δ=−0.5

∣∣Dg(Δ)
∣∣. (6.3)

We first conduct experiments to observe the effect of parameter N on Ep and Eg . Fixing the SNR of y1 and y2 to
be 20 dB, we exponentially increase N from 24 to 29. For each value of N we performed 1000 times the simulation
and computed the average values of Ep and Eg . Fig. 11(a) shows the curves of Ep and Eg versus log2 N for the case
that both sensor kernels are Gaussian. (The standard deviations of the Gaussian kernels are ν1 = ν2 = 0.2.) Fig. 11(b)
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Fig. 11. The curves of Ep (solid) and Eg (dashed) vs. sample
window size log2 N for (a) two Gaussian kernels; (b) two box
kernels; (c) one Gaussian kernel and one box kernel.

Fig. 12. The curves of Ep (solid) and Eg (dashed) vs. SNR for
(a) two Gaussian kernels; (b) two box kernels; (c) one Gaussian
kernel and one box kernel.

is the result for the case that both kernels are box functions. Fig. 11(c) is the result for case that one sensor kernel is
Gaussian (ν1 = 0.2) and the other sensor kernel is box. As expected, Ep and Eg decrease with the increasing of the
sample window size N , and flatten out near N = 26. For any value of N,Eg is always less than Ep .

Next we compute Ep and Eg for varying SNRs of y1 and y2. We fix the sample length N to be 256, and increase the
SNR of y1 and y2 from −5 dB to 25 dB. For each SNR level we performed 1000 times the simulation and computed
the average values of Ep and Eg . Figs. 12(a)–(c) illustrate the curves of Ep and Eg versus SNR for the three cases
of sensor kernels. We see that Ep and Eg decrease with the increasing of SNR. When SNR � 6 dB, Ep and Eg are
nearly constants. Over the entire range of SNR, Eg is consistently smaller than Ep . It can be readily observed from
the figures that the proposed time delay estimation method based on Gaussian approximation of CCF is more robust
than the existing method, and its advantage becomes more significant as noise level increases.
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7. Conclusion

The cross correlation function (CCF) of two signals observed by different sensors was studied in this paper. Ana-
lytic forms of CCFs were derived and their behaviors were examined for stationary processes whose auto-correlation
function is exponential and for two important types of sensor sampling kernels: Gaussian and box. A Gaussian ap-
proximation model of CCF was proposed and shown to be more accurate and robust than the current parabola-based
model. The proposed model was investigated in the application of time delay estimation. Simulations were conducted
to verify the analytical findings. The new method outperforms the existing one, with the improvement being more
significant on highly noisy signals.
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