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Abstract—This paper addresses the problem of rotation in-
variant nonrigid point set matching. The shape context (SC)
feature descriptor is used because of its strong discriminative
nature, while edges in the graphs constructed by point sets
are used to determine the orientations of SCs. Like lengths or
directions, oriented SCs constructed in this way can be regarded
as attributes of edges. By matching edges between two point sets,
rotation invariance is achieved. Two novel ways of constructing
graphs on model point set are proposed, aiming at making
the orientations of SCs as robust to disturbances as possible.
The structures of these graphs facilitate the use of dynamic
programming (DP) for optimization. The strong discriminative
nature of SC, the special structure of the model graphs, and the
global optimality of DP make our methods robust to various types
of disturbances, particularly clutters. The extensive experiments
on both synthetic and real data validated the robustness of the
proposed methods to various types of disturbances. They can
robustly detect the desired shapes in complex and highly cluttered
scenes.

Index Terms—dynamic programming, shape context, shape
representation, point set matching

I. INTRODUCTION

IN many applications of computer vision, pattern recogni-
tion and medical image analysis, one common procedure

is to match two or more point sets, and nonrigid point set
matching is particularly difficult because the possible nonrigid
deformation of the model shape is numerous [1]. In practice,
the scene is often contaminated by clutters, making the point
set matching problem more complicated. In this paper, we
focus on how to locate a deformable shape in cluttered scenes
under the nonrigid point set matching framework. The shape
may undergo arbitrary translational and rotational changes, and
it may be nonrigidly deformed and corrupted by clutters.

Various approaches have been proposed to solve the many
difficult problems in point set matching [2]. Shape context
(SC) [3] is a widely used feature descriptor for point set
matching. The SC of a point measures the distribution of the
relative positions of its neighbors. Denote by hi(k) and h′

j(k),
k = 1, . . . ,K, the SCs at point i in the model point set and
point j in the data point set, respectively. In [3], the χ2 test
statistic was used to measure their distance:
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K∑
k=1

[hi(k)− h′
j(k)]
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hi(k) + h′
j(k)

(1)
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SC is very discriminative and quite robust to various types
of disturbances, which makes it a useful tool for nonrigid
point set matching. However, unlike image feature descrip-
tors such as SIFT [4], [5], GLOH [6] and ZM phase [7],
which are rotation invariant, it is difficult to reliably enable
SC rotation invariant because point sets contain much less
redundant information than images. Prior attempts at making
SC rotation invariant are not very successful. For example, in
[3], tangent directions are used to determine the orientations
of SCs, but they are susceptible to positional noise. In [8],
the distance between two SCs is rendered rotation invariant
by trying exhaustively all relative rotations between them,
computing the corresponding distances and then selecting the
minimum distance. However, this can significantly degrade
the discriminative power of SC. In [9], the mass center of
a point set is used as the reference position to determine the
orientations of SCs, but this method requires that two point
sets’ mass centers must roughly correspond to each other.

Because of the strong discriminative power of SC, it is of
great interest to investigate the use of SC in rotation invariant
nonrigid point set matching. To this end, we propose to use
edges in the graph constructed by a point set to determine
the orientations of SCs. Like lengths or directions, oriented
SCs constructed in this way can be regarded as the attributes
of edges. By edge matching between two point sets, rotation
invariance can be achieved. Clearly, the point set matching
problem is now converted to a graph matching problem, and
one key issue is how to construct graphs on the two point sets.
To make the problem tractable, we assume that the model
point set can be embedded in the data point set, i.e., each
model point can find a counterpart in the data points. With
this assumption, an edge in the model graph is likely to be
matched to any pair of points in the data point set. Therefore,
the most appropriate graph for the data point set should be
the complete graph [10] where any two points are adjacent.
For the model point set, two novel approaches to constructing
graphs will be proposed in this paper: minimum spanning tree
(MST) induced triangulation and star graph [11].

For MST induced triangulation, there are two types of
edges: the “frame” edges formed by choosing one point
as the reference and connecting it to the rest points, and
the “boundary” edges generated in the MST constructed by
the model points except for the reference point. The graph
corresponding to MST induced triangulation is a 2-tree [10],
whose best embedding in the data point set can be found
by using dynamic programming (DP). Nonetheless, the time
complexity of such a scheme is relatively high. Star graph is
then proposed as an alternative for graph construction, and
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it involves only the frame edges generated in MST induced
triangulation. Edges in a star graph form a tree so that DP can
be used to find the best embedding of the graph in the data
point set but the time complexity is much lower than that of
MST induced triangulation.

Compared with previous attempts at enabling SC rota-
tion invariant, the proposed methods retain the discriminative
power of SC while being robust to orientation disturbances.
MST induced triangulation can be viewed as an improvement
over our previously proposed fan-shaped triangulation scheme
[12] in order to better handle the case when shapes cannot be
easily represented as simple polygons. In such cases, MST is
better than simple polygons to represent shapes. The proposed
MST induced triangulation based matching also shares simi-
larities with the method in [13] in that triangles are used to
represent shapes and DP is used to find the best embedding
of triangles in data set. However, the method in [13] is for
deformable template detection in images. Triangulation was
used to introduce nonrigid deformation in template, and the
constrained Delaunay triangulation [14] was used to maximize
the effect. In contrast, the purpose of triangulation in our
method is to enable SC rotation invariant, and a different
triangulation scheme is adopted to ensure the orientation of
SC being as robust to disturbances as possible.

The rest of the paper is organized as follows. Section II
reviews some related work. Section III and Section IV present
the shape representations based on MST induced triangulation
and star graph, and their applications in point set matching,
respectively. Section V presents extensive experiments and
Section VI concludes the paper.

II. RELATED WORK

There are mainly two categories of variables in point set
matching: point correspondence and spatial mapping. As the
methods proposed in this paper only need to model point
correspondence, we will review those previous work where
only point correspondence is concerned.

When only point correspondence is concerned, point set
matching can be formulated as a graph matching problem.
State-of-the-art graph matching methods include graduated
assignment [15], spectral methods [16]–[18] and semidefinite
relaxation [19]. Theory of dual decomposition was used to
combine several optimization techniques to solve the graph
matching problem in [20]. Point set matching was formulated
as an embedding problem in [21], where the to-be-registered
point sets were embedded in the same Euclidean space by
constructing a graph on them. The edges within individual
point set were constructed based on spatial arrangement and
the edges between different point sets were constructed based
on feature similarity. The embedding was then implemented by
solving an Eigen-value problem. In [22], the geometric neigh-
borhood (i.e., graph) of point correspondences was represented
as the categorical graph product of two point sets’ spatial
graphs. The graph Laplacian was then used to regularize point
correspondence during optimization. In [9], point set matching
was formulated as the matching of neighborhood graphs (there
is an edge between two points if they are neighbors) of two

point sets. Relaxation labeling was used for optimization. This
method exhibits good robustness to nonrigid deformation and
positional noise, but it is not robust to outliers. Besides, to
enable rotation invariance, it requires that the two point sets’
mass centers should correspond to each other. For problems
involving missing or erroneous structures, this requirement is
difficult to satisfy. Our proposed methods can be interpreted
as graph matching approaches as well, but they do not require
that two point sets’ mass centers must correspond to each
other.

Linear programming is a commonly used optimization tech-
nique in computer vision. In [23], it was used to minimize
the feature matching cost and preserve both the shape and
orientation of the model point set. The lower convex hull
property was used to speed up the method, which makes
the complexity of the method essentially independent of the
number of data points. The method was extended to be
similarity invariant in [8] by explicitly modeling the rotation
and scaling between two point sets, and was extended to be
affine invariant in [24] by using a technique similar to local
linear embedding [25]. In both the extensions, the distance
between two comparing features is required to be the same
when the two features are relatively rotated. For rotation
variant features, such as SC, the problem is solved by trying
all relative rotations between the two features, computing
the corresponding distances and then selecting the minimum
distance. However, this can significantly degrade the discrim-
inative power of features. Fortunately, the proposed methods
can circumvent this problem by converting point matching to
a graph matching problem, where edges are used to determine
the orientations of features without requiring the features being
rotation invariant.

DP is an optimization technique commonly used for match-
ing chains or trees [26], [27]. Due to the global optimality
and discrete nature of DP, matching methods based on DP
are very robust to clutters. DP can also be used to match
triangulated (i.e., chordal) graphs [28] where the perfect
elimination scheme [10] of the vertices can be used to design
recursive equations used by DP. For example, in [29], k-tree
(a subclass of chordal graph) was used to preserve rigidity of
a point set. The method was later extended to be similarity,
affine or projective invariant in [30]. Constrained Delaunay
triangulation was used to introduce deformation into template
in [13]. The complexity of DP depends exponentially on the
size of the maximal clique of a chordal graph, which restricts
the applicability of DP to graphs with large clique size. To
address this problem, speedup measures [31], [32] have been
proposed for the special case that the energy function only
contains unary and pairwise terms.

III. SHAPE REPRESENTATION BASED ON MST INDUCED
TRIANGULATION FOR POINT SET MATCHING

In our previous work [12], fan-shaped triangulation was pro-
posed for shape representation to enable SC rotation invariant.
It assumes that the model point set resembles the shape of
a simple polygon, which is obtained via finding the shortest
Hamiltonian cycle [33]. However, not all shapes can be easily
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represented as simple polygons (e.g., the Chinese characters).
Compared with the shortest Hamiltonian cycle, MST is a better
candidate for shape representation. When a point set has the
shape of a simple polygon, the shape of MST will be close
to the shortest Hamiltonian cycle (please refer to the first row
of Fig. 1). When a point set can not be easily represented as
a simple polygon, MST will work better at representing the
shape of a point set than the shortest Hamiltonian cycle (please
refer to the second row of Fig. 1).

Fig. 1. Comparison of MST and the shortest Hamiltonian cycle at repre-
senting the shapes of point sets. Left column: point sets. Middle column: the
MSTs of the point sets. Right column: the shortest Hamiltonian cycles of the
point sets.

A. MST induced triangulation
Let’s denote the 2-D model point set as X = {xi, 0 ≤ i ≤

n}, where xi is the coordinate of the ith point. Denote by vi
the vertex corresponding to the ith point. The MST induced
triangulation of X consists of the following steps. 1) A point
is chosen as the reference such that the average distance from
it to the rest points is maximized. Without loss of generality,
let’s take x0 as the reference point. We connect x0 to points
in X \{x0} with n edges (which are called “frame” edges).
2) We construct MST on X \{x0} (the resulting graph is
denoted as MSTX \{x0} and we call the edges in MSTX \{x0}
as “boundary” edges). This leads to a triangulation of X ,
where each triangle consists of two frame edges and one
boundary edge. Fig. 2 illustrates the triangulation process. The
graph constructed in this way is denoted as GX . For GX , the
deformations of individual triangles will aggregate to form the
overall nonrigid deformation of X . This mechanism is similar
to that described in [13]. Therefore our method is capable of
handling nonrigid deformation to a certain extent.

It can be proved that GX is a 2-tree. Before giving the
proof, let’s review some basic concepts in graph theory. A
k-clique is a set of k vertices where any two vertices are
adjacent. A 2-clique is simply an edge. Let G = (V,E) be a
graph, where V is the set of all vertices and E is the set of all
edges. For a subset S ⊂ V , the graph induced by S is defined
as S itself and all the edges in E having both endpoints in S.

Definition 1: A graph is called a k-tree if there is an
ordering σ = (u1, . . . , un) of its vertices such that for the
subgraph induced by S = {ui, . . . , un}, 1 ≤ i ≤ n − k, the
neighboring vertices of ui form a k-clique. The ordering σ
is called a perfect elimination scheme for the vertices of the
graph.
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Fig. 2. Steps of MST induced triangulation. (a) Frame edges (dashed line
segments) formed by connecting the reference point to all the other points. (b)
MST (solid line segments) of all the points except for the reference point. (c)
Triangulation result by combining both types of edges. The perfect elimination
scheme is indicated by the numbers associated to vertices.

Proposition 1: GX is a 2-tree.
Proof: Since MSTX \{x0} is a tree, we can get a perfect

elimination scheme for its vertices by deleting its leaves one
by one. Without loss of generality, let’s assume that this perfect
elimination scheme is (v1, . . . , vn). Then it can be verified that
(v1, . . . , vn, v0) is a perfect elimination scheme for vertices
in GX . For the subgraph induced by S = {vi, . . . , vn, v0},
1 ≤ i ≤ n − 1, the neighboring vertices of vi form an edge
(with one of the endpoints being v0), as illustrated in Fig. 2
(c).

B. Oriented SC features
We then compute oriented SC [3] for each point in

X \{x0}, whose positive x-axis is directed at x0, coincid-
ing with the direction of the corresponding frame edge, as
illustrated in Fig. 3. This operation has time complexity O(n)
and space complexity O(n). Similar to lengths or directions,
oriented SC features constructed in this way can be regarded
as attributes of frame edges. By matching edges between two
point sets, we can achieve the goal of enabling SC rotation
invariant. Due to the strong discrimination power of SC, the
robustness of our method to various types of disturbances is
greatly enhanced.

x

y

Fig. 3. Construction of oriented SC. The x-axis of SC for a point is directed
at the reference point. Frame edges are shown as dashed line segments.

The reason we use a single reference point to determine
the orientation of SC and select the reference point such that
the average distance from it to the rest points is maximized is
based on the following observation. First, directions of longer
edges are less affected by positional jitter of their endpoints.
More specifically, for an edge (x1, x2) with endpoints xi =
x̄i + ∆xi, i = 1, 2, where x̄i is the noise free position and
∆xi is noise, the direction of the edge is

x2 − x1

∥x2 − x1∥
≈ x2 − x1

∥x̄2 − x̄1∥
=

x̄2 − x̄1

∥x̄2 − x̄1∥
+

∆x2 −∆x1

∥x̄2 − x̄1∥
(2)
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Here the second term is contributed by noise. Therefore the
larger the length ∥x̄2− x̄1∥ is, the less influence the noise will
impose on the direction of the edge.

Second, using a single reference point is better than using
multiple reference points for the robustness of edge directions.
Specifically, for two edges (x1, x2) and (x1, x3), their relative
angle will be affected by positional jitter of the 3 endpoints
xi, i = 1, 2, 3. While for two edges (x1, x2) and (x3, x4),
their relative angle will be affected by positional jitter of
the 4 endpoints xi, i = 1, . . . , 4, which is less robust than
that by using 3 endpoints xi, i = 1, 2, 3. Therefore using a
single reference point is more favorable for robustness of edge
directions.

C. Shape representation for data point set

Let’s denote the 2-D data point set as Y = {yj , 0 ≤ j ≤
m}, where yj is the coordinate of the jth point. Since an
edge in X can be matched to any pair of points in Y , we
choose a complete graph from Y for matching. For each edge,
we compute the oriented SC for each endpoint of it with the
positive x-axis directed at the other endpoint of the edge. This
process has time complexity O(m2) and space complexity
O(m2).

In practice, the time of computing SC features for a point
in Y with all the rest points serving as possible references
can be reduced in the following way: for this point, the SC
features with the positive x-axis oriented respectively to angles
0, 1

M 2π, . . . , M−1
M 2π (we set M = 50 in our algorithm)

are constructed. The SC features with all the rest points
being possible references are substituted by these SC features
based on orientation proximity. With this heuristic, the time
complexity of computing SC features in Y is essentially
O(mM).

D. Energy function

Given X and Y , the task of matching is to find a mapping
ϕ : X → Y which maps the ith point in X to the lith point
in Y so that certain energy function can be minimized. Our
energy function takes the following form:

E(ϕ) =
n∑

i=1

Dsc[i, 0](li, l0)

+ λ
∑

(i,j)∈MSTX \{x0},i<j

Dtri[i, j, 0](li, lj , l0) (3)

The first term requires that the matched points should have
similar SC. The second term regularizes the deformation of
triangles. λ (λ ≥ 0) is a constant used to balance the weights
of the two terms.

In the first term, Dsc[i, 0](li, l0) denotes the distance be-
tween the oriented SC of xi and the oriented SC of yli
measured by the χ2 test statistic, as presented in Eq. (1).
The positive x-axis of SC for xi is directed at x0, and the
positive x-axis of SC for yli is directed at yl0 . The computation
of Dsc[i, 0](li, l0),∀i, li, l0, has time complexity O(nm2) and
space complexity O(nm2). If the speedup measure proposed

in subsection III-C is adopted, the time complexity is essen-
tially O(nmM).

In the second term, Dtri[i, j, 0](li, lj , l0) measures how
far the affine transformation determined by correspondences
(i, j, 0) → (li, lj , l0) is from a similarity transformation.
We adopt the measure proposed in [30]. Since either the
correspondences (i, 0) → (li, l0) or the correspondences
(j, 0) → (lj , l0) determine a similarity transformation,
Dtri[i, j, 0](li, lj , l0) is defined as the l1 norm distance be-
tween the parameters of the two transformations. Correspon-
dences (i, j) → (li, lj) also determine a similarity transforma-
tion. But we do not use them here because the length of the
boundary edge (xi, xj) is small and positional jitter of xi or
xj may lead to significant change of similarity transformation,
which will make the algorithm less robust.

E. Algorithm

Since GX is the result of connecting a single vertex
v0 to vertices in tree MSTX \{x0}, GX looks like a tree
very much. Based on this fact, the DP algorithm on a tree
[34] can be adapted to our optimization problem. In the
following, we focus on the tree MSTX \{x0} whose vertices
are {v1, v2, . . . , vn}. Let vr be an arbitrary root vertex. The
depth di of vi is defined as the number of edges between vi
and the root vr (the depth of vr is 0). The children Ci of vi
are the vertices adjacent to vi and having depth di +1. Every
vertex vi other than the root has a unique parent, which is the
vertex adjacent to vi and having depth di − 1.

We define n tables V [i, 0], i = 1, . . . , n, each having m×m
entries. The element V [i, 0](li, l0) denotes the cost of the
best placements of v0, vi and the descendents of vi with
the constraint that the placements of v0 and vi are l0 and
li, respectively. Table V [i, 0] satisfies the following recursive
equation:

V [i, 0](li, l0) =Dsc[i, 0](li, l0)

+
∑
j∈Ci

min
lj

V [j, 0](lj , l0) + λDtri[i, j, 0](li, lj , l0)

(4)

For vertices with no children, we have

V [i, 0](li, l0) = Dsc[i, 0](li, l0) (5)

For other vertices, the tables can be computed in terms of
each other in descending depth order. Note that V [r, 0](lr, l0)
is the cost of the best placement of the whole graph with
the constraint that the placements of vr and v0 are lr and l0,
respectively.

After all tables are computed, we can find the global
minimum of the energy function by picking

(l∗r , l
∗
0) = arg min

(lr,l0)
V [r, 0](lr, l0) (6)

and tracing back in order of ascending depth,

l∗i = argmin
li

V [i, 0](li, l
∗
0) + λDtri[i, j, 0](li, l

∗
j , l

∗
0) (7)

Here vj is the parent of vi.
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Since GX is a 2-tree with the maximal cliques being
triangles, and there are n − 1 triangles, the above algorithm
has time complexity O(nm3) and space complexity O(nm2).
Similar to the practice in [12], we can reduce the running
time of the algorithm based on the following observations. 1)
Since the length of a boundary edge (xi, xj) is small, given
location li, the possible candidates for lj should be the indices
of those points near yli (15 nearest points are chosen in our
algorithm) because points far from it will introduce severe
distortion in the model. 2) Given location li, the possible
candidates for l0 should be the indices of those points close to
the circle centered at yli and with a radius equal to the length
of the frame edge (xi, x0) because points far from the circle
will also introduce severe distortion in the model. With these
two heuristics, the complexity of the algorithm is essentially
O(nm).

IV. SHAPE REPRESENTATION BASED ON STAR GRAPH FOR
POINT SET MATCHING

For the algorithm described in subsection III-E, if no
speedup measure is taken, the time complexity will be
O(nm3), which is relatively high. Therefore it will be of
great interest if we could simplify the algorithm so that the
time complexity can be reduced without sacrificing much the
accuracy. Fortunately, this is possible. Due to the strong dis-
criminative nature of SC, the frame edges with SCs acting as
attributes in MST induced triangulation are already adequate
to form a strong constraint on the shape of X .

Here the shape representation for X is the same as that in
subsection III-A except that no boundary edges are used. The
graph G′

X for this shape representation is a star graph [11]
with v0 as the only internal vertex and all other vertices as
leaves, as illustrated in Fig. 4. For G′

X , the deformations of
individual edges and the changes of angles between different
edges will aggregate to generate the overall nonrigid deforma-
tion of X , and our method is capable of handling nonrigid
deformation to a certain extent.

Fig. 4. An example of star graph. From left to right: a point set and its star
graph.

The shape representation for Y is the same as that described
in subsection III-C.

A. Energy function

With the above discussion, the energy function takes the
following form:

E(ϕ) =

n∑
i=1

Dsc[i, 0](li, l0) + µ

n∑
i=1

Dframe[i, 0](li, l0) (8)

The first term is the same as that in Eq. (3). The second term
requires that the lengths of edges in model graph should be

preserved during matching. µ (µ ≥ 0) is a constant to balance
the two terms.

In the second term, Dframe[i, 0](li, l0) denotes the length
difference between edge (xi, x0) and the candidate edge
(yli , yl0). Based on the observation that shorter edges are
less distorted than longer edges under a nonrigid deformation,
the length differences of shorter edges should be penalized
more than those of longer edges, and thus we use the χ2 test
statistic instead of the Euclidean distance to measure the length
difference:

Dframe[i, 0](li, l0) =
|∥yli − yl0∥ − ∥xi − x0∥|2

∥yli − yl0∥+ ∥xi − x0∥
(9)

B. Algorithm

Since G′
X is a tree, the DP algorithm on a tree [34] can be

applied to our optimization problem. In addition, since G′
X is

a star graph, it’s convenient to take the internal vertex v0 as
the root of G′

X . We define a table V [0] with m entries such
that V [0](l0) denotes the best placements of all vertices with
the constraint that the placement of v0 is l0. V [0] satisfies the
following equation:

V [0](l0) =
∑
i

min
li

Dsc[i, 0](li, l0) + µDframe[i, 0](li, l0)

(10)
After V [0] is computed, we can find the global minimum of
the energy function by picking l∗0 = argminl0 V [0](l0) and
tracing back as follows

l∗i = argmin
li

Dsc[i, 0](li, l
∗
0) + µDframe[i, 0](li, l

∗
0) (11)

Since G′
X is a tree with n− 1 edges, the above algorithm

has time complexity O(nm2) and space complexity O(nm).
Our experimental results indicate that the algorithm is very
fast, and its running time is only a fraction of the time for
computing the SC distances.

C. Spatial mapping smoothing

For the algorithm described in subsection IV-B, since there
is no constraint on angles between different edges, it may
happen that points close to each other are mapped to points far
away from each other. An example is illustrated in the left of
Fig. 5. This problem can be remedied based on the following
observation. Because v0 is the conjunction of all edges in G′

X ,
the matching of v0 will affect the matching of all n edges in
G′

X . In contrast, the matching of any vertex vi, i ̸= 0, will
only affect the matching of the edge (vi, v0). The algorithm
in subsection IV-B is optimal. Among the locations li, i =
0, . . . , n, outputted by the algorithm, l0 is n − 1 times more
reliable than any other location. Inspired by this observation,
we can make the spatial mapping smoother via the following
steps. 1) Run the algorithm described in subsection IV-B to
obtain location l0 and discard other locations li, i = 1, . . . , n.
2) Find locations li, i = 1, . . . , n, by algorithm described in
subsection III-E with l0 predetermined. Because the algorithm
in subsection III-E preserves lengths of edges in MSTX \{x0},
the resulting spatial mapping will be smooth.
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With l0 predetermined, the problem of finding the best
embedding of GX in Y reduces to the problem of finding the
best embedding of MSTX \{x0} in Y . Since MSTX \{x0} is a
tree, the algorithm in subsection III-E with l0 predetermined
has time complexity O(nm2) and space complexity O(nm),
the same as those of the algorithm in subsection IV-B. The
difference of matching results before and after spatial mapping
smoothing is illustrated in Fig. 5 by using an example.

Fig. 5. An example of point set matching before (left) and after spatial
mapping smoothing (right). The data points are shown as blue +. The affinely
transformed model points are shown as red ∗. Point correspondences are
indicated by black line segments.

V. EXPERIMENTAL RESULTS

We compare our methods based on MST induced triangu-
lation (denoted by MSTT) and on star graph (denoted by SG)
with the following representative point set matching methods:
the local neighborhood structure preserving (LNSP) method
[9], the Viterbi algorithm (VA) based method [27], the linear
programming (LP) based method [23] and the constrained
Delaunay triangulation (CDT) based method [13]. Since CDT
can only be used for template matching in images, it is
only tested in subsection V-C where images are involved. We
also compare MSTT with our previously proposed fan-shaped
triangulation (FST) based method [12] in subsection V-A. To
make a fair comparison, the deformation regularization terms
in FST are changed to the second term in Eq. (3). LP is a
general matching algorithm and different feature descriptors
can be used. We use SC as the feature descriptor for LP. VA
and LP are not rotation invariant, and we render them rotation
invariant by evaluating them on 8 evenly quantized angles and
choosing the result with the minimum cost.

We implement all the competing methods 1 under Matlab
(version 7.6) environment on a PC with 2.4GHz CPU and 3G
memory. We use affine transformation to model a nonrigid
spatial mapping. Correspondence recovered by one method is
used to solve for affine transformation. First we use synthetic
data to evaluate various aspects of the methods. Then we
compare the methods using data acquired from real images.

A. Experiments against deformation, noise and outliers

Synthetic data can be used to test specific aspects of an
algorithm. To evaluate the improvement of MSTT over FST
comprehensively, we use two categories of shapes to generate

1The source codes of the proposed mehtods can be downloaded at
http://www4.comp.polyu.edu.hk/∼cslzhang/code.htm.

model point sets: 1) the 99 silhouettes provided by Kimia
[35], which resemble simple polygons, and 2) 100 Chinese
characters extracted from the HIT-MW database [36], which
are more complex. Fig. 6 shows the two categories of shapes.

Fig. 6. Shapes used to generate model point sets in the experiments against
deformation, noise and outliers. Left column: Kimia’s 99 silhouette dataset.
Right column: Chinese characters extracted from the HIT-MW database.

A procedure similar to the generation of Chui-Rangarajan
data set [1] is used to generate a series of data point sets
for each model shape. 1) The model shape was randomly
rotated and then nonrigidly deformed to generate the data
point set. Gaussian radial basis functions (RBF) were used to
generate nonrigid deformations with coefficients sampled from
a Gaussian distribution of zero mean and standard deviation
ranging from 0.01 to 0.05. The aim is to test one method’s
robustness against nonrigid deformation. 2) Random positional
noise (which is generated from Gaussian noise with standard
deviation ranging from 0.01 to 0.05) was added to a randomly
rotated and then moderately nonrigidly deformed model shape.
The aim is to test one method’s robustness against noise. 3)
Random outliers (outlier ratio ranging from 0.5 to 2.5) were
added to a randomly rotated and then moderately nonrigidly
deformed model shape. The aim is to test one method’s
robustness against outliers. Fig. 7 shows examples of model
point sets and their corresponding data point sets in the 3 series
of tests, respectively.

Fig. 7. Examples of model point sets (left column) and data point sets in
the deformation, noise and outlier tests, respectively (right 3 columns).

The average errors by various methods are shown in Fig
8. Here error is defined as the mean of the Euclidean dis-
tance between the affinely transformed model points and
their corresponding ground truth data points. From the figure,
it can be seen that MSTT, SG and FST perform the best
for the deformation and outlier tests, and they perform in
average compared with other methods for the noise test. The
outlier test witnesses the most significant difference between
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these 3 methods and other methods, where there is a large
margin between their results. This experiment demonstrates
the robustness of MSTT, SG and FST to various types of
disturbances, particularly outliers. Among these 3 methods,
it can be seen than MSTT performs the best, FST the second,
and SG the third.

The average running time of various methods is listed in
Table I. It can be seen that the running time of MSTT, FST
and SG is low when the number of points is small. When the
number of points becomes large (i.e., in the case of outliers),
SG is still among the fastest methods. In comparison, MSTT’s
running time is in average compared with other methods and
FST is the slowest among all the methods. This demonstrates
SG’s high computational efficiency.

TABLE I
AVERAGE RUNNING TIME (SECONDS)

Deformation Noise Outliers
MSTT 6.2470 6.4055 24.1584

SG 3.9627 3.9843 12.0901
FST 6.3847 6.1566 44.9609
VA 4.9842 5.0315 10.9152
LP 16.7982 15.8847 23.4747

LNSP 4.2650 5.1858 18.9177

The parametric robustness of MSTT and SG are illustrated
in Fig. 9. Here we only use the outlier test with outlier ratio
being 2.5 for testing. From the figure, it can be seen that SG’s
error depends mainly on the value of λ, while it is insensitive
to the value of µ. SG achieves the lowest error when (λ, µ) =
(1, 3) for Kimia’s 99 silhouette test or when (λ, µ) = (1, 2)
for the 100 Chinese character test. MSTT achieves the lowest
error when λ = 6 for Kimia’s 99 silhouette test or when λ = 2
for the 100 Chinese character test.
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Fig. 9. Average errors of SG (left column) and MSTT (right column) with
respect to different parameter values in the outlier test with outlier ratio being
2.5. Top row: Kimia’s 99 silhouette dataset. Bottom row: the 100 Chinese
character dataset.

B. Experiment against clutter

We then test the robustness of various methods against
clutter. Two shapes similar to the model (the first one is
called the ground truth target shape because it is similar to
the model, and the second one is called the disturbance shape
which is generated from the model by a mirror reflection)
are mixed together (with the disturbance shape rotated in[
0, 1

1002π, . . . ,
99
1002π

]
) to generate the data point set. Some

examples of the data point set generation are illustrated in
Fig. 10. The aim of this set up is to animate complex clutter.
Error is defined as the Hausdorff distance between the affinely
transformed model by a method and the ground truth target
shape. The average errors of various methods are shown in Fig.
11. It can be seen that MSTT performs the best. SG performs
slightly worse than MSTT but better than the rest methods.
LNSP performs the worst among all the methods. Examples
of matching results by various methods are shown in Fig. 12.
It can be found that MSTT and SG are more robust to clutter
than other methods.

Fig. 10. Set up of the experiment against clutter. From top row to bottom
row: 1) model shapes; 2) ground truth target shapes; 3) disturbance shapes;
4) the mixture of ground truth target shapes and rotated disturbance shapes.

C. Experiment on the ETHZ data set

We finally test the performance of various methods on
the ETHZ data set [37], which consists of 255 images of
5 categories: apple logo, swan, giraffe, bottle and mug. The
models for the 5 categories of images are shown in Fig. 13.
The objects in each image are often substantially different
from the corresponding model. Also, there are clutters in the
images. These facts make the data set a good test platform for
deformable matching with clutters. Each image has a ground
truth target shape (some have multiple ground truth target
shapes and we only used the largest one). Error is defined as
the Hausdorff distance between the affinely transformed model
by a method and the ground truth target shape. Because SC
is not scale invariant, we scaled both the model shape and
the ground truth target shape (with the image containing it
scaled accordingly) to be unit sized. To generate model and
data point sets, we sampled 70 points from a model and 300
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Fig. 8. Average errors of MSTT with λ = 1, SG with (λ, µ) = (1, 1), FST with λ = 1, VA, LP and LNSP in the experiment against deformation, noise
and outlier. Top row: Kimia’s 99 silhouette dataset. Bottom row: the 100 Chinese character dataset.
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Fig. 11. Average errors of MSTT with λ = 1, SG with (λ, µ) = (1, 1),
VA, LP and LNSP in the experiment against clutter.

points from the edges of an image [38]. The average errors
of various methods are shown in Fig. 14. It can be seen that
MSTT performs the best. SG performs similarly to VA and LP.
LNSP performs the worst among all the methods, and CDT’s
performance is in between LNSP and other methods. Examples
of matching results by various methods are shown in Fig. 15
to Fig. 19. One can see that MSTT matches a model more
tightly to the corresponding target shape than other methods,
as is evident for the swan and giraffe tests.

Fig. 12. Examples of matching results by MSTT (left column), SG (column
2), VA (column 3), LP (column 4) and LNSP (right column) in the experiment
against clutter. The affinely transformed model points are shown as red ∗.
Point correspondences are indicated by black line segments.

Fig. 13. The model shapes used for matching in the ETHZ data set.

VI. CONCLUSION

To address the problem of rotation invariant nonrigid point
set matching, we proposed two methods for shape represen-
tation. The shape context (SC) feature descriptor was used
and we constructed graphs on point sets where edges are
used to determine the orientations of SCs. This enables the
proposed methods rotation invariant. The structures of our
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Fig. 15. Examples of matching results by MSTT (red), SG (magenta), VA (green), LP (blue), LNSP (black) and CDT (yellow) on the apple logo images
from the ETHZ dataset. The matching results are indicated by affinely transformed model shapes by various methods.

Fig. 16. Examples of matching results by MSTT (red), SG (magenta), VA (green), LP (blue), LNSP (black) and CDT (yellow) on the swan images from
the ETHZ dataset. The matching results are indicated by affinely transformed model shapes by various methods.

shape representations facilitate the use of DP for optimization.
The strong discriminative nature of SC, the calculated robust
orientations of SCs, and the global optimality of DP make our
methods robust to various types of disturbances, particularly
clutters.

The proposed methods were tested on both synthetic and
real data in comparison with several representative methods.
The results show that our methods, especially MSTT, clearly
outperform other methods in terms of robustness against clut-
ter. The proposed methods are very useful for tasks involving
detection and matching of shapes in cluttered scenes where
the initial poses of the shapes may not be known.
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