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A B S T R A C T

By extracting image luminance channel and separating it into a base layer and a detail layer, the Retinex theory
has been widely adopted for tone mapping to visualize high dynamic range (HDR) images on low dynamic range
display devices. Many edge-preservation filtering techniques have been proposed to approximate the base layer
for Retinex image decomposition; however, the associated tone mapping methods are prone to halo artifacts and
false colors because filtering methods are limited in adapting the complex image local structures. We present a
statistical clustering based tone mapping method which can more faithfully adapt image local content and
colors. We decompose each color patch of the HDR image into three components, patch mean, color variation and
color structure, and cluster the patches into a number of clusters. For each cluster, an adaptive subspace can be
easily learned by principal component analysis, via which the patches are transformed into a more compact
domain for effective tone mapping. Comparing with the popular edge-preservation filtering methods, the pro-
posed clustering based method can better adapt to image local structures and colors by exploiting the image
global redundancy. Our experimental results demonstrate that it can produce high-quality image with well-
preserved local contrast and vivid color appearance. Furthermore, the proposed method can be extended to
multi-scale for more faithful texture preservation, and off-line subspace learning for efficient implementation.

1. Introduction

The dynamic range (i.e., the ratio of maximum to minimum irra-
diance) of a natural scene is usually very high, approximately 14 orders
of magnitude (Duan et al., 2010; Reinhard et al., 2010). However, the
generic camera sensors have limited dynamic range, often resulting in
under-exposure or over-exposure regions in a captured picture. High
dynamic range imaging (HDR) has thus been an important topic in the
field of computer vision and computational photography. One widely
used strategy to extend the camera dynamic range is to take a sequence
of images under different exposures (Ma et al., 2017; 2015b; Wu et al.,
2016). With this strategy, there are two categories of approaches to
obtain the HDR-like images: multi-exposure image fusion (MEF)
(Wu et al., 2016) in image domain, and HDR content reconstruction in
radiance domain (Badki et al., 2015; Debevec and Malik, 1997;
Mitsunaga and Nayar, 1999).

MEF directly fuses the sequence of images into one image, which is
easy to operate but suffers from the problem of ghosting artifacts and
the severe dependency on the selection of exposure sequences
(Mahmoudabadi et al., 2017; Wu et al., 2016). HDR content re-
construction methods first establish the radiance map by recovering the

camera response function (CRF) and fuse the pixel values in radiance
domain (Debevec and Malik, 1997). However, the calculation of CRF is
complex and prone to reconstruction errors (Chakrabarti et al., 2014).
With the improvement of sensor response sensitivity, high-end cameras
can directly generate high-bit raw data without the recovery of CRF.

With the high-bit HDR image available, one important issue is how
to display the HDR data. The standard display devices such as LCD,
CRT, projectors and printers mostly have a low dynamic range (LDR)
and cannot display HDR images directly. To fill in the gap between HDR
data and LDR display, techniques have been developed to compress the
dynamic range of HDR data for effective display, which are called tone
mapping or tone reproduction (Drago et al., 2003; Fattal et al., 2002). A
good tone mapping algorithm should faithfully preserve the image
detailed features and colors while reducing the irradiance level. In the
past two decades, a number of studies have been conducted to develop
effective tone mapping algorithms. Generally speaking, the tone map-
ping methods fall into two primary categories: global tone mapping
methods (Drago et al., 2003; Tumblin and Rushmeier, 1993) and local
tone mapping methods (Fattal et al., 2002; Reinhard et al., 2002).

Due to the limited computational resources, early studies (Drago
et al., 2003; Larson et al., 1997; Tumblin and Rushmeier, 1993; Ward,
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1994) focus on designing simple global tone mapping operators.
Tumblin and Rushmeier (1993) proposed a non-linear tone mapping
algorithm according to the brightness perception of human visual
system. Ward (1994) compressed image contrast instead of
absolute luminance using a simple linear compression function.
Larson et al. (1997) applied histogram adjustment to tone mapping by
preserving the histogram distribution of the original HDR data. The
adaptive logarithmic mapping in Drago et al. (2003) compresses the
dynamic range with different logarithmic bases. The higher irradiance
is compressed via log2, whereas the lower irradiance via log10, to
achieve desirable contrast and detail preserving. Reinhard and
Devlin (2005) proposed a simple and practical s curve for global tone
mapping in independent channels. The global operators are computa-
tionally efficient without halo artifacts. However, the local contrast and
visibility of details in the produced LDR images are not satisfactory.

Recent studies focus more on local tone mapping techniques.
Fattal et al. (2002) designed a novel local tone mapping operator based
on gradient attenuation. They compressed the drastic irradiance
changes by reducing the large gradients under a multi-scale framework.
Reinhard et al. (2002) classified the dynamic range of display devices
into 11 zones according to the different irradiance in HDR data.
Li et al. (2005) put forward a multi-resolution image decomposition
method using symmetrical analysis-synthesis filter banks for local tone
mapping. The gain map of each subband is calculated to alleviate the
halo artifacts. Shan et al. (2010) developed a globally local optimiza-
tion method with a locally linear model, where the guidance map is
constructed via local statistical information. Gu et al. (2012) replaced
the linear assumption (Shan et al., 2010) with the local non-linear
gamma correction. Ma et al. (2015a) designed a tone mapped image
quality index (TMQI) and performed dynamic range compression by
optimizing this index. Chen et al. (2005) segmented the HDR image into
different regions via the earth movers distance (EMD), and applied local
tone mapping operation on each component. Ferradans et al. (2011)
proposed a two-stage tone mapping method: human visual system
based global tone mapping, followed by optimization based local con-
trast enhancement. Duan et al. (2010) improved the tone mapping
performance of Larson et al. (1997) by applying adaptive local histo-
gram adjustment on non-overlapped blocks. In general, local tone
mapping methods are spatially adaptive, and can reproduce the local
details and contrast well. However, these local operators have higher
computational cost and are prone to producing halo artifacts (Li et al.,
2005) and ringing effect (Shibata et al., 2016).

In recent years, researchers have been focusing on the design of
various edge-preserving filters for tone mapping. The main principle is
to decompose an HDR image into a detail layer and a base layer, and
impose different operations on the two layers. In particular, the base
layer image can be obtained by filtering the HDR data. Tumblin and
Turk (1999) made the first attempt to design edge-preserving filters by
using anisotropic diffusion to replace Gaussian filtering based on the
Retinex theory (Jobson et al., 1997). Durand and Dorsey (2002) de-
veloped a fast implementation of bilateral filtering for tone mapping,
which can efficiently generate smoothed images while preserving the
edges. Based on this framework, many subsequent works (Farbman
et al., 2008; Guarnieri et al., 2011; He et al., 2013; Kou et al., 2015; Li
and Zheng, 2014; Li et al., 2015; Xu et al., 2011) have been proposed to
better remap the HDR data. In Farbman et al. (2008), a weighted least
squares based global optimization method was proposed to smooth the
HDR data, where a larger weight is given to local details and contours,
while a smaller weight is distributed to strong edges. An iterative
method was proposed in Guarnieri et al. (2011) to improve the solving
of weighted least squares. By minimizing the global gradient of an HDR
image, Xu et al. (2011) used the l0 norm as the regularizer to smooth the
HDR image. He et al. (2013) proposed a guided filtering based method
for edge preservation. A linear relationship is assumed between the
guided image and the image to be filtered to avoid large edge loss.
Some works (Kou et al., 2015; Li and Zheng, 2014; Li et al., 2015)

introduce the gradient information as the weight to balance the data
term and regularizer term in a local window, which share the similar
idea to global weighted least squares.

The luminance edge-preservation filtering based tone mapping al-
gorithms mentioned above can improve the visual quality of tone
mapped image; however, the nonlinear filters used by them are not
flexible and adaptive enough to fit the various edges and structures in
natural images, resulting in halo artifact and false colors. Different from
those luminance filtering based methods, in this paper we develop a
statistical clustering based tone mapping method to more effectively
exploit the image local and global redundancy. We do not separate an
image into luminance and chrominance channels to process; instead,
we work on image patches, and decompose a color patch into three
components: patch mean, color variation and color structure. It is well-
known that there exist repetitive patterns/structures in natural images
(Dong et al., 2011; Zhang et al., 2010). Based on the color structure
component, we group similar patches into clusters, and use statistical
signal processing tools such as principal component analysis (PCA) to
define a subspace of the patches in a cluster. Consequently, we can
project each patch into a more compact domain, where the tone map-
ping operation can be more effectively performed. Compared with the
edge-preservation filtering based methods, our proposed statistical
clustering based method is more local content and color adaptive and
robust since it exploits the image global redundancy to decompose local
structures.

The main contributions of our paper lie in the following aspects. (1)
Instead of using the deterministic edge-preserving filters, we leverage
statistical clustering methods to better represent the local color struc-
tures of HDR images. Each patch will be adaptively processed based on
its cluster. (2) We perform tone mapping in the PCA transformed do-
main other than the intensity domain, where the coefficients have ex-
plicit physical meanings and can be more effectively compressed. (3)
Different from previous methods which extract luminance channel and
perform layer separation on it, we do not extract luminance channel but
process image luminance and chrominance information simultaneously.

The rest of our paper is organized as follows. Section 2 presents the
proposed method in detail. Section 3 presents extensive experimental
results and discussions. Section 4 concludes the paper.

2. Content and color adaptive tone mapping

2.1. The proposed tone mapping framework

Most previous tone mapping methods process luminance and
chrominance separately. A typical framework of conventional tone
mapping methods is shown in Fig. 1(a). Given an HDR image in
RGB format, the luminance channel is first extracted as

= + +L R G B0.2126· 0.7152· 0.0722· for the XYZ color space
(Fattal et al., 2002), or = + +L R G B0.299· 0.587· 0.114· for the YUV
color space (Li and Zheng, 2014). In some literature (Gu et al., 2013),
the average of R, G, B channels = + +L R G B1/3( ) is employed as the
luminance. After dynamic range compression on luminance, the chro-
minance is processed based on the compressed luminance to reproduce
the tone mapped image. The widely used color processing operation is

= ( )C L· ,out
C
L

s
out

in
in

where C represents the chrominance channel, Lin and
Lout denote the luminance before and after HDR processing, and s ad-
justs the color saturation of the tone mapped image. The empirical
value of s is between 0.5 and 0.9 (Gu et al., 2013).

In our proposed method, we do not separate image into luminance
and chrominance channels to process. Instead, we propose a very dif-
ferent approach, whose framework is shown in Fig. 1(b). We partition
the input RGB image into overlapped color patches, and decompose
each patch into three nearly uncorrelated components. The color pat-
ches are clustered into a number of clusters, and statistical analysis is
used to compress each HDR patch to an LDR one. The flowchart of the
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proposed method is shown in Fig. 2. The main procedures of the pro-
posed method include: logarithmic transform, patch decomposition,
clustering and PCA transform, range adjustment, patch reconstruction,
aggregation and post-processing. The details of the proposed method
are presented in the following.

2.2. Patch decomposition

Like in many existing tone mapping methods (Duan et al., 2010; Gu
et al., 2013; Meylan and Susstrunk, 2006), our method needs a simple
global tone curve for initialization. Considering the characteristics of
human visual system, the logarithmic function is used to this end:

= +i j c i j cL I( , , ) log( ( , , )·10 1)6 (1)

where I is the input HDR image, (i, j) refers to the spatial location, and
c∈ {r, g, b} represents the R, G, and B channels. We then apply patch

decomposition to L. We partition the HDR image L into many over-
lapped patches (e.g., of size 7×7) with stride q (e.g., =q 2 in our
implementation). Denoted by x an extracted color patch and by xc the
patch in channel R, G or B. The local mean of each channel xc, denoted
by mc, is calculated by averaging all pixels in xc. We then subtract the
mean from xc:

= − mx x 1·c cc (2)

where 1 is a vector with all elements being 1 and it has the same size as
xc. One can see that xc contains the direct current (DC) removed detail
structure of xc.

The mean mc is a scalar representing the DC amount of patch x in
channel c. The variation of mc across channels can reflect the color
appearance in that patch. For example, if all the three values of mc are
the same, that patch will be a gray level patch. We can calculate the
color variation across channels as:

= −m m mc c (3)

where = + +m m m m( )/3r g b is the average of the three mc. Clearly, m
is the average of all pixels in the color patch x.

With the m, m ,c and xc defined above, for each patch we can de-
compose it into three components:
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(4)

We call the 1st component =x x x x[ ; ; ]r g b the color structure since it
preserved the detailed local structural information in the three chan-
nels, the 2nd component = m m mm 1 1 1[ · ; · ; · ]r g b the color variation
since it reflects the color differences across three channels, and the 3rd
component m the patch mean since it is the mean value of all pixels in
the three channels.

2.3. Clustering and PCA transform learning

Given an input HDR image, a large number of patches x will be
extracted. For example, we extract 185,754 7×7 patches with stride 2
for an image of size 1000× 750. It has been widely accepted that there
will be many patches sharing a similar structure in an image (Dong
et al., 2011; Xu et al., 2015; Zhang et al., 2010). After removing the DC
component, some patches with different intensity levels may also have
similar structure. Therefore, we can cluster the patches into different

Fig. 1. (a) The traditional tone mapping framework
and (b) our proposed framework.

Fig. 2. Flow chart of the proposed tone mapping method.
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clusters based on the color structure component x. The classical clus-
tering methods such as K-means (Zhang et al., 2010) and Gaussian
Mixture Model (GMM) (Xu et al., 2015) can be used to this end. We
choose K-means because it has much lower computational cost while
leading to similar tone mapping results to GMM based on our experi-
ments. We stretch each x to a vector, and apply K-means clustering to
the vectorized color structure components x (note that x contains the
detailed features from all the R, G and B channels). Suppose that K
clusters are obtained. For each cluster, we calculate the covariance
matrix of the vectors x within it, denoted by Φ. Since the covariance
matrix Φ is positive semidefinite, we can have its eigenvalue decom-
position as:

= −Φ QΛQ 1 (5)

where the orthogonal matrix Q is composed of the eigenvectors of Φ.
The so-called principal component analysis (PCA) transform matrix can
be easily obtained as (Zhang et al., 2010):

=P QT (6)

Since the patches in one cluster are similar in structure, the eigen-
vectors associated with the first a few largest eigenvalues will be able to
represent the most important common structures in that cluster (i.e.,
the principal components). With the PCA transform matrix P, for each
patch x within that cluster, we can transform it into the PCA domain as:

=y Px (7)

Note that the coefficients in y will be much sparser than those in x. The
small coefficients correspond to noise interference and trivial struc-
tures. The modest coefficients correspond to image fine-scale details.
The large coefficients correspond to image principle structures. Usually,
only the first a few coefficients in y will be significant, while the re-
maining being close to zero. Therefore, compressing the dynamic range
of y will be much easier and more robust than that of x. This is one of
the essential reasons that why our method works for tone mapping.

2.4. Dynamic range adjustment and patch reconstruction

To achieve the tone mapping of patch x, we need to adjust the va-
lues of m, m, and x. For component x, we transform it into the PCA
domain via Eq. (7) and process y . The smallest coefficients in y are
usually produced by the trivial structures, fluctuations and even noise
in x, and therefore we first remove them for a more stable tone map-
ping. Denote by max the maximal absolute value of all coefficients in y .
Since noise mostly corresponds to the smallest PCA coefficients, a
simple empirical threshold is good enough to suppress the noise. In
order to keep the details of the original data as much as possible while
removing noise, a small threshold is empirically selected. We set those
coefficients whose absolute value is smaller than 0.1 max to 0.

For the task of tone mapping, the large PCA coefficients (corre-
sponding to image large scale structures) in y should be compressed,
while the smaller coefficients (corresponding to image fine scale tex-
tures) should be maintained or enhanced slightly. To this end, an s-
shaped curve could be employed to adjust the coefficients. The com-
monly used s-shaped curves include arctan and sigmod functions. We
choose the arctan function to adjust coefficients because it exhibits
stronger transition ability in both shadows and highlights, and the
adjusting function should be symmetrical to 0 to process the negative
coefficients in the PCA transform domain. With the arctan function, we
adjust the coefficients in y as:

= π arctan ay y(1.6/ )· ( . )a (8)

where a is a parameter to control the shape of the curve. Some example
curves are plotted in Fig. 3. One can see that the smaller the a is, the
stronger compression effect on y will be.

For the color variation component m, we also use the arctan func-
tion but with a different parameter to adjust it:

= π arctan bm m(1.2/ )· ( . )b (9)

where b is the shape parameter. The patch mean component m changes
slowly, which can be linearly compressed by multiplying a weight w.
After range adjustment on m, m and y , the tone mapped patch of x,
denoted by xt, can be reconstructed as

= + + w mx P y m 1 1 1[ ; ; ] .t
T

a b (10)

where w is a scalar ranging from 0 to 1.

2.5. Aggregation and post-processing

The operations described in Sections 2.3 and 2.4 are applied to each
extracted patch for the input HDR image, and aggregation of the pro-
cessed patches is needed to reconstruct the tone mapped LDR image.
Each tone mapped patch is put back to its original location, while the
overlapped pixels in adjacent patches are averaged. In the post-pro-
cessing stage, the 1% pixels of lowest and highest values are clamped to
enhance the primary contrast. Finally, every patch pixel is linearly
stretched to −0 1 to fully take advantage of the dynamic range of target
display device to show the result.

2.6. Extension to multi-scales

In the proposed patch clustering based tone mapping method, each
patch will have a mean component (scalar value). The means of all
patches will form a smoothed gray level image of the original image.
Fig. 4 shows an example. Fig. 4(a) is the original image (the tone
mapped image is shown here for better visibility), and Fig. 4(b) is the
mean image after patch decomposition. Note that the resolution of
mean image is 1/4 of that of the original image because we use a stride
factor of 2 (in both horizontal and vertical directions) to extract the
patches (size: 7× 7×3).

One can see that there is still certain amount of textures in the mean
image. If we compress the mean image by a weight w as shown in
Eq. (10), some detailed texture information can be lost in the final tone
mapped image. To solve this problem, we could extend the proposed
method to multi-scales. More specifically, we extract patches from the
mean image, and decompose each patch into two components: patch
mean and patch structure. The patch mean is the average of all pixels in
a patch, while the patch structure component is obtained by subtracting
the mean from the patch. Note that we do not have a color variation
component here since the mean image is gray scale. The clustering and
PCA transform can then be applied to the patch structure components.
By embedding such operations into the framework in Fig. 2, we could
have a two-scale implementation of the proposed method, which is il-
lustrated in Fig. 5.

Our method can be easily extended to more scales by further de-
composing the mean image generated on the 2nd scale. Nonetheless,
our experiments show that a 2-scale decomposition is enough for most
of our test images. In Fig. 6(a) and (b), we show the single-scale and
two-scale tone mapping results by our method. One can see that some
detailed structures of the cloud region are lost in the single-scale result
image, but they can be preserved in the two-scale result image. In ad-
dition, since the mean image is gray scale and has a lower resolution,
the two-scale decomposition scheme has similar implementation time
to the single-scale scheme.

2.7. Offline PCA transform learning

The color structure clustering step is the most time-consuming part
in our proposed method. With the K-means clustering algorithm, it will
take about 147 s to process an image of size 1000×750×3 (patch
size: 7× 7×3) under the MATLAB R2014a programming environment
on a PC equipped with an i7-4790K CPU, 4G HZ and 32GB memory.

To reduce the computational cost, we can pre-calculate the clusters
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and their PCA transform matrices using an external dataset, as illu-
strated in Fig. 7. We use the Kodak database1 as the training dataset.
About 300,000 patches (patch size: 7× 7×3) are extracted and their
color structure components are computed for clustering. For each
cluster, we have a cluster mean and its PCA transform matrix. In the test
stage, for each patch of the input HDR image, we determine its corre-
sponding cluster based on the minimum Euclidean distance between its
color structure component and the centroids of clusters. Then the PCA
transform matrix of that cluster is used to process that patch. Without
the online clustering, the running time of our method is significantly
improved. On average, it costs about 7 seconds to process an image of
size 1000×750×3, about 21 times faster than the online version of
our method. In Fig. 6(c) and (d), we show the single-scale and two-scale
tone mapping results by our offline method. We can see that the offline

method achieves similar tone mapping results to the online method in
terms of objective assessment (See Tables 2 and 3).)

3. Experimental results and discussions

3.1. Implementation details

Our method is a patch based approach, and we need to fix the patch
size first. Based on our experimental experience, setting the patch size

−1 −0.5 0 0.5 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

 

 

a=20
a=12
a=4

Fig. 3. The arctan function in Eq. (8) with different parameters.

Fig. 4. (a) The original HDR image (the tone mapped image is shown here for better
visibility). (b) The mean image formed by the patch means.

Fig. 5. The two-scale implementation flow chart of the proposed method.

1 http://r0k.us/graphics/kodak/ .
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from 5×5×3 to 8× 8×3 will lead to similar results, and we set the
patch size to 7× 7×3 in all our experiments. We extract the patches
from an image with stride 2 in both horizontal and vertical directions.
For clustering, we use the K-means algorithm (Dong et al., 2011; Zhang
et al., 2010) with initial cluster number 100 for scale 1 and 50 for scale

2. Note that some small clusters will be merged in the clustering process
so that the final number of clusters will be less than 100 and 50 on the
two scales. For our offline clustering method, the final numbers of
clusters are 83 (scale 1) and 13 (scale 2), respectively.

The parameter a in Eq. (8) controls the adjustment of local

Fig. 6. (a) and (b) are the tone mapped images by single-scale and two-scale decompositions, respectively, and (c) and (d) are the single-scale and two-scale results by off-line pre-learning
of the PCA transforms.

Fig. 7. Top box: the offline patch clustering and PCA transform learning by using an external dataset. Bottom box: the online cluster selection and tone mapping.
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structures. For simplicity, we set a the same for both the two scales.
Fig. 8 shows the tone mapping results by letting a be 2, 6, 10, 20, re-
spectively. We can see that a bigger a will make the local contrast
stronger, but a too big a will make local structures and colors unnatural.
We choose =a 6 in our experiment to achieve a good balance between

contrast enhancement and color/structure preservation. The parameter
b in Eq. (9) controls the adjustment of local color appearance. Fig. 9
shows the tone mapping results by letting b be 2, 4, 8, 16, respectively.
We can see that a too big b will lead to over-saturation, while a too
small b will lead to under-saturation. We choose =b 4 in our

Fig. 8. The impact of parameter a on the reconstruction of image local structure.

Fig. 9. The impact of parameter b on the reconstruction of local color appearance.

Fig. 10. Source image scenes used in our experiment. The HDR data are represented by the tone mapped results for better visualization.

Table 1
Average execution time in seconds on 5 scenes of size 713×535×3.

Alg Drago Fattal Kuang Frabman Shan Shibata Our

Env MATLAB MATLAB MATLAB MATLAB MATLAB MATLAB MATLAB
Time (s) 0.13 1.15 1.23 2.89 10.28 15.01 3.86
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experiments.
Finally, the parameter w∈ [0, 1] in Eq. (10) is used to adjust the

luminance of the tone mapped image. Clearly, the image luminance will
be lower with a smaller w. We set =w 0.8 based on experimental ex-
perience.

3.2. Test data and comparison algorithms

To verify the effectiveness of the proposed method, we collect 17
sets of widely used HDR image data from links2,3,4 and capture 3 sets of
HDR image data by two digital cameras (Sony a7 and DJI Phantom3).
The scenes of the 20 sets of HDR images are shown in Fig. 10. These 20
images cover both outdoor and indoor scenes, as well as different ob-
jects such as trees, sky, sun, cloud, books, and windows.

We compare our algorithm with 7 representative tone mapping al-
gorithms, including “Mantiuk” (Mantiuk et al., 2008), “Drago”
(Drago et al., 2003), “Fattal” (Fattal et al., 2002), “Kuang” (Kuang et al.,
2007), “Farbman” (Farbman et al., 2008), “Shan” (Shan et al., 2010),
and “Shibata” (Shibata et al., 2016). The source codes of these com-
parison methods are publicly available in the“HDR-Toolbox”
(Banterle et al., 2011) or provided in the authors’ homepages5,6,7. We
use the default parameters of those codes which were optimized by the
authors. The running time of competing algorithms are summarized in
Table 1, from which we can see that our two-scale offline method is
slower than “Drago” (Drago et al., 2003), “Fattal” (Fattal et al., 2002),
“Kuang” (Kuang et al., 2007), and “Farbman” (Farbman et al., 2008),
but faster than “Shan” (Shan et al., 2010), and “Shibata” (Shibata et al.,
2016). Since “Mantiuk” (Mantiuk et al., 2008) et al.’s method is im-
plemented by HDR Luminance8, we do not report it in running time
comparison.

3.3. Objective evaluation

Since there is not a groundtruth LDR image for the HDR data,
classical objective measures such as PSNR cannot be used to evaluate
the quality of tone mapped images and the performance of a tone
mapping algorithm. Recently, researchers have proposed some objec-
tive measures (Aydin et al., 2008; Gu et al., 2016; Kundu et al., 2017;
Nafchi et al., 2015; Song et al., 2016; Yeganeh and Wang, 2013) to
evaluate the tone mapping results. The objective metrics TMQI
(Yeganeh and Wang, 2013) and FSITM (Nafchi et al., 2015) are em-
ployed in our manuscript and they are based on structural similarity
(SSIM) (Wang et al., 2004) and feature similarity(FSIM) (Zhang et al.,
2011). TMQI combines SSIM-motivated structural fidelity with statis-
tical naturalness to assess the tone mapped images. FSITM measures
local phase similarity of the original HDR and the tone mapped LDR
image. Apart from the 7 representative methods (Drago et al., 2003;
Farbman et al., 2008; Fattal et al., 2002; Kuang et al., 2007; Mantiuk
et al., 2008; Shan et al., 2010; Shibata et al., 2016), we also list the
results of the baseline Log and Exp operators in the “HDR-toolbox”
(Banterle et al., 2011). The TMQI and FSITM results are shown in
Tables 2 and 3, respectively, where Ours1, Ours2 and Ours3 represent
the single-scale, two-scale and the off-line two-scale implementations of
our method. For each image, the best result is highlighted in bold face.

3.4. Subjective comparison

Let’s then present some visual comparisons of the competing
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Fig. 11. Mean and std of subjective rankings of the 8 competing tone mapping algo-
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Fig. 13. The number of lowest subjective scores obtained by different methods.

2 http://www.ok.ctrl.titech.ac.jp/res/IC/ProxPoisson/ProxPoisson.html.
3 http://cadik.posvete.cz/tmo/.
4 https://people.csail.mit.edu/sparis/publi/2011/siggraph/.
5 http://www.cse.cuhk.edu.hk/leojia/programs/optimize_tone_mapping_code.zip.
6 http://www.cs.huji.ac.il/~danix/epd/.
7 http://www.ok.ctrl.titech.ac.jp/res/IC/ProxPoisson/ProxPoisson.html.
8 http://qtpfsgui.sourceforge.net/.
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methods. For our method, we present the results by the offline two-
scale implementation. Figs. 14–17 show the tone mapped images of
scenes 7, 9, 17, and 18 (see Fig. 10), respectively.

The results by “Mantiuk” (Mantiuk et al., 2008) present the loss of
details especially in dark regions. For example, in the close-up images in
Figs. 14 and 17, the books and trees cannot be seen. The adaptive global
method “Drago” (Drago et al., 2003) presents better results, but it
suffers from the loss of local contrast. One can see from Fig. 16 that the
contrast of tree branches and cloud background is low. Fattal et al.s
method (Fattal et al., 2002) has the problem of detail and contrast loss
such as the wall in Fig. 14 and green tree in Fig. 17. Kuang et al.s
method (Kuang et al., 2007) shows much distortion of color appear-
ance, although it preserves well local details and contrasts. For in-
stance, it produces a purple color of sky in Fig. 16, which is not natural.
The tone mapped images by multi-scale decomposition based method
“Farbman” (Farbman et al., 2008) suffer from information loss in some
regions, such as the sky in Figs. 16 and 17. Shan et al.s method
(Shan et al., 2010) over-smooths much the image local textures. There
are neither clear contours of the cloud in Fig. 16 nor fine structures of
tree leaves in Fig. 17. Shibata et al.s method (Shibata et al., 2016)
shows good local contrast but meanwhile generates much visual arti-
facts. The surfaces of the wall and desk in Fig. 14 and the roofs in
Fig. 15 are over-exaggerated.

Compared with the above methods, our method demonstrates
competitive visual quality with good local structure preservation and
color reproduction. For instance, in Fig. 14 the local details and contrast
labeled in the red box can be seen clearly with decent overall visual

effect. Furthermore, the colors of trees, cloud and grass look natural and
saturated. This is mainly because our method clusters image patches
based on their local colors and structures and it processes each patch
adaptively based on the color and structure statistical information in
that cluster.

3.5. Subjective study

A formal subjective study is conducted to further evaluate the
proposed tone mapper and compared methods. The subjective testing
was operated in an indoor environment with stable illumination. We
adopted the strategy in Ma et al. (2015b) in our subjective testing. The
tone mapped images of 20 scenes by 8 representative algorithms are
shown on a PA328 Display, 32 inch (7680*4320), controlled by a Mac
Pro-with Intel Core i5 2.9 GHz CPU. A total number of 17 volunteer
subjects, including 8 females and 9 males, were asked to give an integer
score ranging from 1 to 10 to each image shown on the display, where 1
means the worst visual quality and 10 means the best visual quality.
The mean and std of mean opinion score (MOS) values are shown in
Fig. 11. It can be seen that our method and Shibata et al.s method have
much better performance than other competing methods. The MOS of
our method is 7.50 with std 0.56, while that of Shibata et al.s method is
7.42 with std 0.71. In the subjective experiments, our method obtains
118 highest subjective scores and 0 lowest subjective score among 340
highest and lowest scores. The distributions of numbers of highest and
lowest scores by different methods are shown in Figs. 12 and 13.
Overall, our method demonstrates highly competitive and stable tone

Fig. 14. The tone mapping results on image 7 (refer to Fig. 10) by competing tone mapping operators. From (a) to (h): results by “Mantiuk” (Mantiuk et al., 2008), “Drago” (Drago et al.,
2003), “Fattal” (Fattal et al., 2002), “Kuang” (Kuang et al., 2007), “Farbman” (Farbman et al., 2008), “Shan” (Shan et al., 2010), “Shibata” (Shibata et al., 2016), and ours. From (i) to (p):
the close-ups of (a)–(h). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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mapping performance.
It should be pointed out that the subjective testing results are not

well consistent with the objective metrics used in this paper. Existing
objective metrics for tone mapping operators are primarily focused on
structural similarity (Yeganeh and Wang, 2013), feature similarity
(Nafchi et al., 2015), visibility (Aydin et al., 2008; Kundu et al., 2017;
Song et al., 2016), contrast (Kundu et al., 2017; Song et al., 2016),
naturalness (Nafchi et al., 2015; Yeganeh and Wang, 2013), and chro-
minance (Song et al., 2016). These quality measures are derived from
general image quality assessment methods and they may not be suitable
for the tone mapping problem. It is still a challenging issue to design a
faithful perceptual quality measure to assess tone mapping operators. In
addition, we found that the naturalness index should not be over-em-
phasized for evaluating tone mapping methods via our subjective ex-
periments, and that the color information plays an important role in
assessing tone mapped images.

4. Conclusion

In this paper, we presented a clustering based content and color
adaptive tone mapping method. Different from previous methods which
are mostly filtering based, our method works on image patches, and it
decomposes each patch into three components: patch mean, color
variation and color structure. Based on the color structure component,
we clustered image patches into clusters, and calculated the PCA
transform matrix for each cluster. The patches were then transformed
into its PCA domain, and the s-shaped arctan function was used to
adjust their PCA coefficients. We further extended our method to two
scales and proposed an offline clustering implementation to improve its
fine-texture preservation and efficiency. Experiments on 20 sets of HDR
data demonstrated the superior performance of our method to re-
presentative tone mapping methods.

Fig. 15. The tone mapping results on image 9 (refer to Fig. 10) by competing tone mapping operators. From (a) to (h): results by “Mantiuk” (Mantiuk et al., 2008), “Drago” (Drago et al.,
2003), “Fattal” (Fattal et al., 2002), “Kuang” (Kuang et al., 2007), “Farbman” (Farbman et al., 2008), “Shan” (Shan et al., 2010), “Shibata” (Shibata et al., 2016), and ours.
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Fig. 16. The tone mapping results on image 17 (refer to Fig. 10) by competing tone mapping operators. From (a) to (h): results by “Mantiuk” (Mantiuk et al., 2008), “Drago” (Drago et al.,
2003), “Fattal” (Fattal et al., 2002), “Kuang” (Kuang et al., 2007), “Farbman” (Farbman et al., 2008), “Shan” (Shan et al., 2010), “Shibata” (Shibata et al., 2016), and ours.

Fig. 17. The tone mapping results on image 18 (refer to Fig. 10) by competing tone mapping operators. From (a) to (h): results by “Mantiuk” (Mantiuk et al., 2008), “Drago” (Drago et al.,
2003), “Fattal” (Fattal et al., 2002), “Kuang” (Kuang et al., 2007), “Farbman” (Farbman et al., 2008), “Shan” (Shan et al., 2010), “Shibata” (Shibata et al., 2016), and ours. From (i) to (p):
the close-ups of (a)–(h). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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