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The following materials are provided in this supplemen-
tary file:

e Sec. A: more details of the constructed Part Object
Dataset (cf. Sec. 4.1 in the main paper).

¢ Sec. B: more details of the PartNet (cf. Sec. 3.1 in the
main paper).

* Sec. C and Sec. D: more ablation studies on PartNet
and Synthesis (cf. Sec. 4.4 in the main paper).

e Sec. E: more qualitative comparison results (cf.
Sec. 4.2 in the main paper).

e Sec. F: more quantitative comparison results (cf.
Sec. 4.3 in the main paper).

A. Object Part Dataset
A.1. Dataset

We build the object part dataset based on the Cityscapes
PPS and Pascal VOC PPS datasets proposed by Geus et
al. [3]. Specifically, each object part is cropped, resized
to 64 x64 based on its bounding box, and formed as paired
(object shape, object part map). For categories in Pascal
VOC PPS, some parts are merged as one for simplicity. For
example, we have combined the parts of quadrupeds into
four parts (i.e., head, torso, leg, and tail), while combining
the parts of cars into five parts (i.e., window, wheel, light,
license, and chassis). The final annotated parts of each cat-
egory are reported in Table. B. There is a total of 21 cate-
gories in the constructed dataset. For images in Cityscapes
PPS, we form the training/testing set based on its official
training/validation partition. For images in Pascal VOC
PPS, we merge all images and apportion them into train-
ing and testing sets, with an 80-20 split. Following [7], the
total categories are split into basis categories (20 categories,
e.g., human, car, bus, and sheep, efc.) and novel category (1
category, i.e., cat). The training set of basis categories is
used to train the PartNet, and the testing set of both basis
and novel categories are used to test it. Besides, for those
novel categories in semantic image synthesis datasets, we
have annotated k part maps manually as supports to per-
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Table A. Category split for object part dataset. We use the training
set of basis categories to train the PartNet, and test it on the testing
sets of both basis and novel (validation) categories. Novel classes
(SIS Testing) denotes the novel classes used for semantic image
synthesis.

Basis Classes ~ Aeroplane, Bicycle, Bird, Boat, Bottle, Bus,
Car, Chair, Cow, Table, Dog, Horse, Mo-
torBike, Human, PottePlant, Sheep, Sofa,

Television, Train, Truck

Novel Classes

(Validation) ~ X

Novel Classes

(SIS Testing) Washer, Van, Stop sign, Zebra, Cat
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Figure A. Examples of annotated support part maps for semantic

image synthesis.

form part prediction, including the washer, van, zebra, cat,
and stop sign. The total basis/novel/SIS categories are listed
in Table A. Fig. A also illustrates the examples of annotated
SIS support part maps.

A.2. Selection of Support Part Maps

To obtain the support object part maps for each category,
we use k-means to cluster the training object shapes into k
clusters based on the shape similarity metric [9]. To mea-
sure the similarity between two object shapes (O; and O;),
we adopt the geometric score [9] to measure shape consis-
tency,

10; — O4ll3
maz ([|Oil|1, |0;111))”

Lower ¢(0;, O;) indicates more similarity between two ob-
ject shapes. After clustering, part maps with the corre-

O'(Oi,Oj) = (1)



Table B. Part Annotation Labels

aeroplane body, stern, wing, wheel

bicycle wheel, saddle, handlebar, other

bird head, torso, leg, tail

boat boat

bottle cap, body

bus window, wheel, light, license, chassis
car window, wheel, light, license, chassis
cat head, torso, leg, tail

chair chair

COwW head, torso, leg, tail

table table

dog head, torso, leg, tail

horse head, torso, leg, tail

motorbike wheel, handlebar, saddle, headlight
human head, torso, leg, arm

pottedplant  pot, plant

sheep head, torso, leg, tail

train headlight, torso

sofa sofa

tvmonitor screen, frame

truck window, wheel, light, license, chassis
washer door glass, door, machine body

van window, wheel, light, license, chassis
stop sign word, octagon

zebra head, torso, leg, tail
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Figure B. Illustration of our PartNet. The support part map is first
decomposed into the support part shape and the support part masks
as inputs. Cross attention block is adopted to aggregate the part
information from the support features.

sponding object shape closest to the cluster center are se-
lected as support part maps.

B. Details of Part Prediction Network
B.1. Network Architecture

As shown in Fig. B, our PartNet takes the query shape
O, € R64x64x3 "support part shape Osq € RO4X64x3 and

support part masks OM € RO4x64x1 a5 inputs to predict

the part map P, € R64XG4X1 In particular, it consists of
the shape and mask encoders, cross attention blocks, and

the decoder, which will be introduced in the following.
Shape Encoder. The shape encoder is composed of 5 Conv-
BN-ReLU layers, where Conv denotes the convolutional
layer and BN is the batch normalization layer. For each con-
volutional layer, the stride is set to 2 to downsample the fea-
tures. As mentioned in the main paper, the encoders adopt
the multi-scale mechanism to perceive the pixels’ relative
position of the whole object shape. Specifically, the outputs
of the last two layers are upsampled and concatenated with
the output of the third layer as the final output. Experiments
have demonstrated its effectiveness (see Sec. C).

Mask Encoder. The mask encoder adopts the same archi-
tecture as the shape encoder except for the different input
channels.

Decoder. The decoder consists of 3 DeConv-BN-ReLU
layers, where DeConv denotes the transpose convolutional
layer. For each transpose convolutional layer, the stride is
set to 2 to upsample the features.

B.2. Learning Objective

To facilitate the PartNet learning, we adopt two losses
during training. Firstly, a BCE loss is introduced to encour-
age the predicted part map to be similar to the ground-truth
part map,

Lyre = BCE(PartNet(Oy, 5y, ), PY"), @

where qut denotes the ground-truth part map. Besides,
when the support shape is the same as the query shape, the
predict parts should also be the same as the support parts,

Lyec = BCE(PartNet(O,, PJ"), PJ"). 3)
The final learning objective for PartNet is,
Epm“t = Ep?“e + Erec- (4)

B.3. Experimental Details

We train our PartNet on one Tesla V100 GPU and adopt
Adam optimizer with 51 =0 and 32 = 0.999 where the learn-
ing rate is set to 0.0001. The number of support part maps
is set to k = 3. Our PartNet is pre-trained for 30 epochs and
fixed during the synthesis training. Pixel ACcuracy (AC) is
adopted as the metric to evaluate the PartNet.

C. More Ablation Studies on PartNet

Effectiveness of Multi-Scale Encoder. =~ We first con-
duct the ablation study on PartNet to verify the effective-
ness of the introduced multi-scale encoder. For comparison,
we also train the PartNet without the multi-scale mecha-
nism that the encoders only consist of 3 layers. As shown
in Fig. C, without the multi-scale encoder to perceive the



Table C. Ablation studies on the multi-scale encoder. With or w/o
MS denotes the PartNet with or without the multi-scale encoder.
Basis AC and Novel AC denote the testing accuracy on the basis
and novel categories of the object part dataset, respectively.

Object Loss Basis AC (1) Novel AC (1)
w/o MS 94.05 83.21
with MS 94.38 85.00
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Figure C. Visual comparisons on the effect of the multi-scale en-
coder. With or w/o MS denotes the PartNet with or without the
multi-scale encoder.
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Figure D. Visual comparisons on the effect of different numbers
of cross attention blocks.

Table D. Ablation study on the number of cross attention blocks.
n denotes the number of blocks.

Methods n=1 n=2 n=3 n=4

Basis AC (1) 94.10 94.25 94.38 94.34
Novel AC (1) 82.28 83.76 85.00 83.41

whole object shape, the predicted part maps are usually in-
complete and discontinuous. In contrast, with the multi-
scale encoder, our PartNet predicts more plausible and re-
alistic part maps, and also achieves better performance on
both basis and novel categories (see Table. C).

Effectiveness of the number of CA blocks. Furthermore,

Table E. Ablation study on the object-level CLIP style loss, and
we further compare it with an object-level VGG loss.

Object Loss FID(]) mlIOU(T) AC(T)
VGG Loss 41.6 68.6 81.7
CLIP Loss 41.3 70.6 82.2

Table F. Ablation studies of losses and part map on Cityscapes.

Part & PSM CG/D Latyie FID(l) mIOU(T) AC(f) objFID ()
477 66.9 81.5 44.1
v 442 69.0 81.8 36.8
v 43.6 66.7 81.9 39.2
v 452 69.1 81.2 38.9
v v 42.8 70.5 82.1 37.5
v v 43.1 70.6 82.0 355
v v v 41.3 70.6 82.2 30.4

the effect of the number of cross attention (CA) blocks is
also analyzed. We train the PartNet with the different num-
ber of CA blocks, and the results are listed in Fig. D and
Table D. From Table D, more cross attention blocks bring
more prediction capabilities to the PartNet, resulting in bet-
ter prediction accuracy on both basis and novel categories.
However, when the number n > 3, the PartNet tends to
be overfitting, and adding more cross attention blocks will
not bring more performance gain. Thus, we choose PartNet
with three cross attention blocks as our final part prediction
model.

D. More Ablation Studies on Synthesis

CLIP Style Loss vs. VGG Loss. To demonstrate the effec-
tiveness of the object-level CLIP style loss [ 1], we further
compare it with an object-level VGG loss [10]. Specifically,
for CLIP style loss, we adopt the pre-trained CLIP image
encoder (VIT-32) [5] as the feature extractor, and the to-
kens of the eighth layer are used to calculate the loss. Each
object of the generated images is cropped and resized to
224 x 224 as input. For VGG loss, we adopt the pre-trained
VGG19 [8] as the feature extractor, and the intermediate
features are used to calculate the loss. Each object of the
generated images is cropped and resized to 128 x 128 as in-
put. The results are listed in Fig. E and Table E. As shown in
Fig. E, benefited from the large-scale pre-training of CLIP,
our iPOSE trained with CLIP style loss achieves better vi-
sual quality. Besides, it has the ability to refine the part map
to generate images with more realistic parts. From Table E,
our iPOSE with CLIP style loss also performs better than
VGG loss, demonstrating its effectiveness.

Predicted Part Map vs. SPD. We have conducted the ex-
periment by replacing our part map with SPD feature [4] on
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Figure E. Visual comparisons between CLIP style loss and VGG loss.
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Figure F. Visual comparisons between the images generated with predicted part maps and the images generated with ground-truth part

maps.

Table G. Comparison of our part map and SPD feature [4].

Method  FID(}) mIOU(t) AC(1) | Method FID(}) mIOU(1) AC(1)

Ours 41.2 70.6 82.2 ‘Ours w/SPD  43.1 70.3 82.0

Input Ours SPD

Figure G. Visual comparisons between the images generated with
predicted part maps and the images generated with SPD [4].

Cityscapes, while keep same network architecture. From
Fig. G(a) and Table G, our iPOSE generates more realistic
parts, and also performs favorably against SPD, especially
on FID.

Predicted Part Map vs. GT Part Map. We also compare
the predicted part maps with the ground-truth part maps.

Table H. Quantitative comparisons between the results generated
by the predicted part maps and the results generated by the ground-
truth part maps.

Part Map FID(]) mlIOU(T) AC(T)
Ours 413 70.6 82.2
GT 40.8 70.9 82.3

Since there are part annotations on Cityscapes [3], we ad-
ditionally train a model with ground-truth part maps as in-
puts for comparison. The results are listed in Fig. F and Ta-
ble H. As shown in Fig. F, with the ground-truth part map as
guidance, the model generates images with accuracy parts.
While our iPOSE with the predicted part map can also gen-
erate images with realistic parts, even for those objects with
extreme poses (the first row in Fig. F). From Table H, our
iPOSE achieves comparable performance compared to the
ground-truth part map as input.

More ablations on losses and Part&PSM. We have con-
ducted the experiments by adding Part&PSM, Ly, and
L7, to baseline respectively, and the results are reported
in Table F (first 4 rows). Among them, our Part&PSM con-



Table I. Object-level user study on different datasets. The numbers
indicate the percentage (%) of volunteers who favor the results of
our method over those of the competing methods.

Dataset Ours vs. Ours vs. Ours vs. Ours vs.
" SPADE CC-FPSE OASIS SAFM
Cityscapes [2] 85.3 81.1 80.1 79.2
ADE20K [12] 81.0 74.5 71.7 60.7
COCO-Stuff [1] 75.2 63.1 66.5 72.0

tributes most to the object synthesis and bring a significant
performance improvement, especially on object-level FID.
L% /D brings more improvement on FID, because it im-
proves not only objects, but also the background. We have
further conducted the experiments by adding Part&PSM,
Lstyie, and LY, sequentially. From Table F (rows 1, 2,
6, and 7), our Part&PSM enables to generate photo-realistic
object parts and obtains a significant improvement on FID,
mlOU, and obj FID. L. and EQG /p can further boost the
performance.

E. More Qualitative Results

Fig. H, Fig. I and Fig. J illustrate the qualitative com-
parisons between our iPOSE and state-of-the-art meth-
ods [4,6]. As shown in the figures, our iPOSE generates
images with more realistic parts, further demonstrating its
superiority. Moreover, as shown in Fig. K, by sampling dif-
ferent noises for each object, our method can synthesize di-
verse object results.

F. More Quantitative Results

We have also conducted the object-level user study to
evaluate the effects of our iPOSE on object synthesis.
Specifically, we cropped and resized each object to 128 X
128 to perform the object-level human evaluation. From
Table I, users tend to favor our results on all the datasets.
Besides, compared to the global-level evaluation (Table 2
in main paper), our iPOSE obtains a better preference in
object-level.
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Figure H. More qualitative comparison results on Cityscapes [2].
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Figure I. More qualitative comparison results on ADE20K [12].
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Figure J. More qualitative comparison results on COCO [1].
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Figure K. Object-level diversity. By sampling different noises for each object, our method can synthesize diverse object results.
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