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The following materials are provided in this supplementary file:

• The proofs of Theorem 1 and Lemmas presented in the main paper (cf. Section 3 in the main paper).

• The detailed algorithms of SGDM BK and AdamW BK (cf. Section 4 in the main paper).

• The hyper-parameter settings of different optimizers and some ablation studies of the proposed method (cf. Section 5
in the main paper).

A. Proofs of Theorem 1 and Lemmas
Lemma 1 [1, 2]. For any sequence of matrices {Ht ⪰ 0}Tt=1, the regret of online mirror descent holds that

R(T ) ≤ 1

2η

∑T

t=1

(
||wt −w∗||2Ht

− ||wt+1 −w∗||2Ht

)
+

η

2

∑T

t=1

(
||gt||∗Ht

)2
. (1)

If we further assume D = maxt≤T ||wt −w∗||2, then we have

R(T ) ≤ D2

2η
Tr(HT ) +

η

2

∑T

t=1

(
||gt||∗Ht

)2
. (2)

The proof of Lemma 1 can be found in [1, 2].

A1. Proof of Theorem 1

Before proving Theorem 1, let’s first prove the following Proposition 1.

Proposition 1. For any x1 ≥ 0 and x2 ≥ 0, it holds that

2
√
x2 +

x1 − x2√
x1

≤ 2
√
x1. (3)

Proof. Let f(x) =
√
x. Because it is a concavity function, for any x1 ≥ 0 and x2 ≥ 0, we have

f(x2) ≤ f(x1) + f(x1)
′(x2 − x1), (4)

which is √
x2 ≤

√
x1 +

x2 − x1

2
√
x1

. (5)

Therefore, Eq. (3) holds. The proof is completed. ■

Theorem 1. For any cone constraint Ψ ⊆ Rd×d, we define a guide function FT (S) on Ψ as

FT (S) =
∑T

t=1
(||gt||∗S)2, (6)
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and then define the matrix HT as
HT = CTST , ST = arg min

S∈Ψ,S⪰0,Tr(S)≤1
FT (S), (7)

where CT =
√

f(ST ). The regret of online mirror descent holds that

R(T ) ≤ (
D2

2η
+ η)CT = (

D2

2η
+ η)

√
min

S∈Ψ,S⪰0,Tr(S)≤1
FT (S). (8)

Proof. According to Lemma 1, we have

R(T ) ≤ D2

2η
Tr(HT ) +

η

2

T∑
t=1

(
||gt||∗Ht

)2
. (9)

For the first term on the right side of Eq. (9), according to the definition of HT and ST , we have
Tr(HT ) = Tr(CTST ) = CT Tr(ST ) ≤ CT . (10)

Then we only need to prove
T∑

t=1

(
||gt||∗Ht

)2 ≤ 2CT = 2

√√√√ T∑
t=1

(||gt||∗ST
)2. (11)

Since
T∑

t=1

(||gt||∗HT
)2 =

T∑
t=1

(||gt||∗CTST
)2 =

1

CT

T∑
t=1

(||gt||∗ST
)2 =

√√√√ T∑
t=1

(||gt||∗ST
)2, (12)

in order to prove Eq. (11), we need to prove that

T∑
t=1

(
||gt||∗Ht

)2 ≤ 2

T∑
t=1

(
||gt||∗HT

)2
. (13)

The above equation can be proved by mathematical induction. For T = 1,
(
||gt||∗H1

)2 ≤ 2
(
||gt||∗H1

)2
holds obviously.

Suppose it holds that
T−1∑
t=1

(
||gt||∗Ht

)2 ≤ 2

T−1∑
t=1

(
||gt||∗HT−1

)2
, (14)

then we have
T∑

t=1

(
||gt||∗Ht

)2
=

T−1∑
t=1

(
||gt||∗Ht

)2
+
(
||gt||∗HT

)2
≤ 2

T−1∑
t=1

(
||gt||∗HT−1

)2
+
(
||gt||∗HT

)2
= 2

√√√√T−1∑
t=1

(
||gt||∗ST−1

)2
+

1

CT

(
||gt||∗ST

)2
≤ 2CT−1 +

1

CT

(
||gt||∗ST

)2
.

(15)
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Meanwhile, we can prove that

C2
T − C2

T−1 =

T∑
t=1

(
||gt||∗ST

)2 − T−1∑
t=1

(
||gt||∗ST−1

)2
=

T−1∑
t=1

(
||gt||∗ST

)2 − T−1∑
t=1

(
||gt||∗ST−1

)2
+
(
||gT ||∗ST

)2
=

T−1∑
t=1

(
||gt||∗ST

)2 − min
S∈Ψ,S⪰0,Tr(S)≤1

T−1∑
t=1

(||gt||∗S)
2
+
(
||gT ||∗ST

)2
≥
(
||gT ||∗ST

)2
.

(16)

Therefore, for Eq. (15), we have

T∑
t=1

(
||gt||∗Ht

)2 ≤ 2CT−1 +
1

CT

(
||gt||∗ST

)2
≤ 2CT−1 +

C2
T − C2

T−1

CT
.

(17)

According to Proposition 1 and let x1 = C2
T , x2 = C2

T−1, we have

T∑
t=1

(
||gt||∗Ht

)2 ≤ 2CT−1 +
C2

T − C2
T−1

CT

≤ 2CT

= 2

√√√√ T∑
t=1

(
||gt||∗ST

)2
= 2

T∑
t=1

(||gt||∗HT
)2.

(18)

Now Eq. (13) is proved. Combining it with Eqs. (9), (10) and (11), we obtain the regret bound Eq. (8). The proof is
completed. ■

A2. Proof of Lemma 3

We then prove Lemma 3 in the main paper. To prove it, we first present the following Propositions 2 ∼ 5.

Proposition 2. It holds that
1

n

n∑
i=1

gig
⊤
i ⪰ gg⊤, where g =

1

n

n∑
i=1

gi. (19)

Proof. For any x, it holds that x⊤( 1n
∑n

i=1 gig
⊤
i )x = 1

n

∑n
i=1(x

⊤gi)
2 and x⊤gg⊤x = ( 1n

∑n
i=1 x

⊤gi)
2. By using the

convexity of α 7→ α2, we have ( 1n
∑n

i=1 αi)
2 ≤ 1

n

∑n
i=1 α

2
i . Then there is ( 1n

∑n
i=1 x

⊤gi)
2 ≤ 1

n

∑n
i=1(x

⊤gi)
2, which

means

x⊤(
1

n

n∑
i=1

gig
⊤
i )x ≥ x⊤gg⊤x.

Hence, we have
1

n

n∑
i=1

gig
⊤
i ⪰ gg⊤.

The proof is completed. ■
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According to Proposition 2, we also have

1

n

T∑
t=1

n∑
i=1

gtig
⊤
ti ⪰

T∑
t=1

gtg
⊤
t , where gt =

1

n

n∑
i=1

gti. (20)

Proposition 3. If A ⪰ B, then for any S ⪰ 0, Tr(SA) ≥ Tr(SB).

Proof. Tr(SA)− Tr(SB) = Tr(S(A−B)). Let C = A−B ⪰ 0, then C is PSD. We can find a matrix Q, which meets
C = QQ⊤. Therefore, Tr(SC) = Tr(SQQ⊤) = Tr(Q⊤SQ) =

∑d
i=1 q

⊤
i Sqi ≥ 0. The proof is completed. ■

Proposition 4. If xi ≥ 0 and yi ≥ 0 for i=1,2,...,n, we have
∑n

i xiyi ≤ (
∑n

i xi)(
∑n

i yi).

Proof. (
∑n

i xi)(
∑n

i yi) = (
∑n

i xi)(
∑n

j yj) =
∑n

i=j xiyj +
∑n

i ̸=j xiyj ≥
∑n

i xiyi. The proof is completed. ■

The following proposition summarizes some properties of the Kronecker product, which can be found at [3].

Proposition 5 [3]. Let A, B, A′, B′ be the matrices with appropriate dimensions. Then the following properties hold:

(1) (A⊗B)⊤ = A⊤ ⊗B⊤, (A⊗B)−1 = A−1 ⊗B−1 (if A and B are invertible);

(2) (A⊗B)(A′ ⊗B′) = (AA′)⊗ (BB′);

(3) if A ⪰ 0 and B ⪰ 0, A⊗B ⪰ 0;

(4) Tr(A⊗B) = Tr(A)Tr(B).

We then prove Lemma 3 in the main paper.

Lemma 3. Denote by LT =
∑T

t=1

∑n
i=1 δtiδ

⊤
ti and RT =

∑T
t=1

∑n
i=1 xtix

⊤
ti, there is

FT (S) ≤ Tr

(
(S−1

1 ⊗ S−1
2 )

1

n

T∑
t=1

n∑
i=1

gtig
⊤
ti

)

≤ 1

n
Tr(S−1

1 LT )Tr(S−1
2 RT ).

(21)

Proof. From Proposition 2, we have

1

n

T∑
t=1

n∑
i=1

gtig
⊤
ti ⪰

T∑
t=1

gtg
⊤
t , where gt =

1

n

n∑
i=1

gti. (22)

Together with Proposition 3, we have

Tr

(
(S−1

1 ⊗ S−1
2 )

T∑
t=1

gtg
⊤
t

)
≤ Tr

(
(S−1

1 ⊗ S−1
2 )

1

n

T∑
t=1

n∑
i=1

gtig
⊤
ti

)
. (23)

Finally, according to the properties of Kronecker Product in Proposition 5, we have
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Tr

(
(S−1

1 ⊗ S−1
2 )

1

n

T∑
t=1

n∑
i=1

gtig
⊤
ti

)
= Tr

(
(S−1

1 ⊗ S−1
2 )

1

n

T∑
t=1

n∑
i=1

(δti ⊗ xti)(δti ⊗ xti)
⊤

)

= Tr

(
(S−1

1 ⊗ S−1
2 )

1

n

T∑
t=1

n∑
i=1

(δtiδ
⊤
ti )⊗ (xtix

⊤
ti)

)

= Tr

(
1

n

T∑
t=1

n∑
i=1

(S−1
1 δtiδ

⊤
ti )⊗ (S−1

2 xtix
⊤
ti)

)

=
1

n

T∑
t=1

n∑
i=1

Tr(S−1
1 δtiδ

⊤
ti )Tr(S−1

2 xtix
⊤
ti)

≤ 1

n
(

T∑
t=1

n∑
i=1

Tr(S−1
1 δtiδ

⊤
ti ))(

T∑
t=1

n∑
i=1

Tr(S−1
2 xtix

⊤
ti)), (Proposition 4)

=
1

n
(Tr(S−1

1

T∑
t=1

n∑
i=1

δtiδ
⊤
ti ))(Tr(S−1

2

T∑
t=1

n∑
i=1

xtix
⊤
ti))

=
1

n
Tr(S−1

1 LT )Tr(S−1
2 RT ).

(24)

The proof is completed. ■

A3. Proof of Lemma 4

We first present the following Propositions 6 ∼ 7 before we prove Lemma 4.

Proposition 6. Suppose D ∈ Rd×d is a diagonal matrix and D ⪰ 0, then

min
U∈Rd×d,UU⊤=I

||UD||12 = Tr(D), (25)

where ||A||12 =
∑

i

√∑
j A

2
ij is the matrix L12-norm, and U = I is the optimal point.

Proof. For any orthogonal matrix U ∈ Rd×d, denote by {ui}di=1 the row vectors of U , we have

Tr(D) = Tr(UDU⊤)

=

d∑
i=1

u⊤
i Dui

=

d∑
i=1

⟨Dui,ui⟩

=

d∑
i=1

||Dui||2cos⟨Dui,ui⟩

≤
d∑

i=1

||Dui||2

=

d∑
i=1

||u⊤
i D||2

= ||UD||12.

(26)

When U = I , cos⟨Dui,ui⟩ = 1 for i = 1, 2, ..., d, and the equality holds. The proof is completed. ■
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Proposition 7. Suppose A ∈ Rd×d, A ⪰ 0, D ∈ Rd×d and D is a diagonal matrix, then

arg min
D⪰0,Tr(D)≤1

Tr(D−1A) =
1

||A 1
2 ||12

Diag((A
1
2 )⊙21)⊙

1
2 (27)

and
min

D⪰0,Tr(D)≤1
Tr(D−1A) = ||A 1

2 ||212. (28)

Proof. Let D = Diag(d) and B = A
1
2 , then we have

min
D⪰0,Tr(D)≤1

Tr(D−1A) = min
D⪰0,Tr(D)≤1

Tr(D−1BB⊤) =

d∑
i=1

d∑
j=1

b2ij
di

. (29)

By introducing multipliers λ ⪰ 0 and θ ≥ 0, we can write the Lagrangian of the constrained problem in Eq. (29) as

L(d,λ, θ) =

d∑
i=1

d∑
j=1

b2ij
di

− ⟨λ,d⟩+ θ(1⊤d− 1). (30)

Obviously, di ̸= 0. According to the complementarity conditions, we know λi = 0. Then, we have

di = θ−
1
2 (

d∑
j=1

b2ij)
1
2 . (31)

With the constraint 1⊤d ≤ 1, we can choose a proper θ so that

di =
(
∑d

j=1 b
2
ij)

1
2∑d

i=1(
∑d

j=1 b
2
ij)

1
2

(32)

meets the constraint. Therefore, d = (B⊙21)⊙
1
2

1⊤(B⊙21)⊙
1
2

, D = 1

||A
1
2 ||12

Diag((A
1
2 )⊙21)⊙

1
2 ) and the minimum value of the

objective function is

Tr(D−1A) =

d∑
i=1

d∑
j=1

b2ij
di

= (

d∑
i=1

(

d∑
j=1

b2ij)
1
2 )

d∑
i=1

d∑
j=1

b2ij

(
∑d

j=1 b
2
ij)

1
2

= (

d∑
i=1

(

d∑
j=1

b2ij)
1
2 )2

= ||B||212
= ||A 1

2 ||212.

(33)

The proof is completed. ■

Then we prove Lemma 4 in the main paper.

Lemma 4. If A ≻ 0, we have
arg min

S⪰0,Tr(S)≤1
Tr(S−1A) = A

1
2 /Tr(A

1
2 ). (34)

Proof. Because
min

S⪰0,Tr(S)≤1
Tr(S−1A) = min

D=Diag(d),d⪰0,1⊤d≤1,UU⊤=I
Tr(UD−1U⊤A)

= min
UU⊤=I

min
D=Diag(d),d⪰01⊤d≤1,

Tr(UD−1U⊤A),
(35)
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we can find the optimal diagonal matrix D and orthogonal matrix U to obtain the optimal S by S = UDU⊤. We first fix
U to find the optimal D. Since

min
D=Diag(d),d⪰0,1⊤d≤1,

Tr(UD−1U⊤A) = min
D=Diag(d),d⪰0,1⊤d≤1,

Tr(D−1U⊤AU), (36)

according to Proposition 7, we know the optimal D is

D =
1

||U⊤A
1
2 ||12

Diag((U⊤A
1
2 )⊙21)⊙

1
2 . (37)

Meanwhile, we have
min

D=Diag(d),d⪰0,1⊤d≤1,
Tr(UD−1U⊤A) = ||U⊤A

1
2 ||212. (38)

We then minimize Eq (38) w.r.t. U . Suppose the SVD decomposition of A is A = UADAU
⊤
A , there is

||U⊤A
1
2 ||212 = ||U⊤UAD

1
2

AU
⊤
A ||212 = ||U⊤UAD

1
2

A||
2
12. (39)

According to Proposition 6, we know that when U⊤UA = I , i.e., U = UA, Eq (39) reaches its minimal value. Therefore,
we have the optimal D as follows

D =
1

||U⊤
AA

1
2 ||12

Diag((U⊤
AA

1
2 )⊙21)⊙

1
2

=
1

||U⊤
AUAD

1
2

AU
⊤
A ||12

Diag((U⊤
AUAD

1
2

AU
⊤
A )⊙21)⊙

1
2

=
1

||D
1
2

AU
⊤
A ||12

Diag((D
1
2

AU
⊤
A )⊙21)⊙

1
2

=
1

||D
1
2

A||12
Diag((D

1
2

A)
⊙21)⊙

1
2

=
1

Tr(D
1
2

A)
Diag(D

1
2

A).

(40)

Then, the optimal S is
S = UDU⊤

=
1

Tr(D
1
2

A)
UADiag(D

1
2

A)U
⊤
A

=
1

Tr(UAD
1
2

AU
⊤
A )

UADiag(D
1
2

A)U
⊤
A

=
1

Tr(A
1
2 )

A
1
2 .

(41)

The proof is completed. ■

A4. Proof of Lemma 2

Finally, we prove Lemma 2 in the main paper.

Lemma 2. Suppose Ψ is the set of either diagonal matrices or full-matrices, according to the definition of ST and HT

in Eq. (7), we have

HT = Diag
(( T∑

t=1

gt ⊙ gt
)⊙ 1

2
)
, HT =

( T∑
t=1

gtg
⊤
t

) 1
2 . (42)
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Proof. Because HT = CTST , we see that we only need to solve ST . We first prove the case when Ψ is the set of diagonal
matrices. Let S = Diag(s) and H = Diag(h), where s and h are the diagonal vectors of S and H , respectively, we have

sT = arg min
s⪰0,1⊤s≤1

T∑
t=1

d∑
i=1

g2ti
si

, (43)

where s ⪰ 0 means all the coefficients of vector s are non-negative. By introducing multipliers λ ⪰ 0 and θ ≥ 0, we can
have the Lagrangian of the above constrained optimization problem:

L(s,λ, θ) =

T∑
t=1

d∑
i=1

g2ti
si

− ⟨λ, s⟩+ θ(1⊤s− 1). (44)

Taking the partial derivatives w.r.t. si, we have

∂L(s,λ, θ)

∂si
= −

T∑
t=1

g2ti
s2i

− λi + θ = 0. (45)

Obviously, si ̸= 0, and according to the complementarity conditions, we know λi = 0. Then, we have

si = θ−
1
2 (

T∑
t=1

g2ti)
1
2 . (46)

With the constraint 1⊤s ≤ 1, we can choose a proper θ so that

sTi =
(
∑T

t=1 g
2
ti)

1
2∑d

i=1(
∑T

t=1 g
2
ti)

1
2

(47)

meets the constraint. Meanwhile, we can derive that

CT =

√√√√ T∑
t=1

d∑
i=1

g2ti
sTi

=

√√√√ d∑
i=1

(

T∑
t=1

g2ti)
1
2

d∑
i=1

T∑
t=1

g2ti

(
∑T

t=1 g
2
ti)

1
2

=

√√√√ d∑
i=1

(

T∑
t=1

g2ti)
1
2

d∑
i=1

∑T
t=1 g

2
ti

(
∑T

t=1 g
2
ti)

1
2

=

d∑
i=1

(

T∑
t=1

g2ti)
1
2 .

(48)

Therefore,

hTi = CTsTi =

d∑
i=1

(

T∑
t=1

g2ti)
1
2

(
∑T

t=1 g
2
ti)

1
2∑d

i=1(
∑T

t=1 g
2
ti)

1
2

= (

T∑
t=1

g2ti)
1
2 , (49)

and finally we have HT = Diag
((∑T

t=1 gt ⊙ gt
)⊙ 1

2
)
.

When Ψ is the set of full matrices, we have

ST = arg min
S⪰0,Tr(S)≤1

T∑
t=1

(||gt||∗S)2 = arg min
S⪰0,Tr(S)≤1

Tr

(
S−1

T∑
t=1

gtg
⊤
t

)
. (50)
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Algorithm 1: SGDM BK
Input: Ts, Tir , α, ϵ, β, W0, L0, R0, η
Output: WT

1 for t=1:T do
2 Xt = [xti]

n
i=1, ∆t = [δti]

n
i=1, Gt = ∇WtL;

3 if t%Ts = 0 then
4 Lt = αLt−1 + (1 − α)∆t∆

⊤
t ;

5 Rt = αRt−1 + (1 − α)XtX
⊤
t

6 else
7 Lt = Lt−1,Rt = Rt−1

8 end
9 if t%Tir = 0 then

10 Compute λL
max and λR

max by Power Iteration;

11 Compute L̂t = (Lt + λL
maxϵI)

− 1
2 and

R̂t = (Rt + λR
maxϵI)

− 1
2 by Schur-Newton Iteration;

12 else
13 L̂t = L̂t−1 and R̂t = L̂t−1

14 end
15 Ĝt = L̂tGtR̂t, G̃t = Ĝt

||Gt||2
||Ĝt||2

Mt = βMt + (1 − β)G̃t;

16 Wt+1 = Wt − ηMt;
17 end

Algorithm 2: AdamW BK
Input: Ts, Tir , α, ϵ, ϵ′, β1, β2, W0, L0, R0, η
Output: WT

1 for t=1:T do
2 Xt = [xti]

n
i=1, ∆t = [δti]

n
i=1, Gt = ∇WtL;

3 if t%T = 0 then
4 Lt = αLt−1 + (1 − α)∆t∆

⊤
t ;

5 Rt = αRt−1 + (1 − α)XtX
⊤
t

6 else
7 Lt = Lt−1,Rt = Rt−1

8 end
9 if t%Tir = 0 then

10 Compute λL
max and λR

max by Power Iteration;

11 Compute L̂t = (Lt + λL
maxϵI)

− 1
2 and

R̂t = (Rt + λR
maxϵI)

− 1
2 by Schur-Newton Iteration;

12 else
13 L̂t = L̂t−1 and R̂t = L̂t−1

14 end
15 Ĝt = L̂tGtR̂t, G̃t = Ĝt

||Gt||2
||Ĝt||2

Mt = β1Mt−1 + (1 − β1)G̃t;
16 Vt = β2Vt−1 + (1 − β2)G̃t ⊙ G̃t;
17 M̂t =

Mt
1−β⊤

1

, V̂t =
Vt

1−β⊤
2

;

18 Wt+1 = Wt − η
M̂t√
V̂t+ϵ′

;

19 end

According to Lemma 4, we have

ST = (

T∑
t=1

gtg
⊤
t )

1
2 /Tr

(
(

T∑
t=1

gtg
⊤
t )

1
2

)
. (51)

Meanwhile, there is

CT =

√√√√ T∑
t=1

(||gt||∗ST
)2

=

√√√√Tr

(
S−1
T

T∑
t=1

gtg⊤
t

)

=

√√√√Tr

(
(

T∑
t=1

gtg⊤
t )

− 1
2

T∑
t=1

gtg⊤
t

)
Tr

(
(

T∑
t=1

gtg⊤
t )

1
2

)

= Tr

(
(

T∑
t=1

gtg
⊤
t )

1
2

)
.

(52)

Therefore,
HT = CTST

= Tr

(
(

T∑
t=1

gtg
⊤
t )

1
2

)
(

T∑
t=1

gtg
⊤
t )

1
2 /Tr

(
(

T∑
t=1

gtg
⊤
t )

1
2

)

= (

T∑
t=1

gtg
⊤
t )

1
2 .

(53)

The proof is completed. ■

B. The Algorithms of SGDM BK and AdamW BK
By embedding our proposed AdaBK into the commonly used algorithms SGDM and AdamW, we obtain two new opti-

mizers, namely SGDM BK and AdamW BK, which are described in Algorithm 1 and Algorithm 2, respectively.
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Table 1. Settings of learning rate (LR), weight decay (WD) and WD methods for different optimizers on CIFAR10/100. Here, the WD
methods include L2 regularization weight decay (L2 in short) and weight decouple (decouple in short).

Optimizer SGDM AdamW Adagrad RAdam Adabelief Shampoo KFAC SGDM BK AdamW BK
LR 0.1 0.001 0.01 0.001 0.001 0.001 0.01 0.05 0.001
WD 0.0005 0.5 0.0005 0.5 0.5 0.0005 0.005 0.001 0.5

WD method L2 decouple L2 decouple decouple L2 decouple L2 decouple

Table 2. Settings of learning rate (LR), weight decay (WD) and WD methods (L2 and decouple) for different optimizers on ImageNet.

Optimizer SGDM AdamW Adagrad RAdam Adabelief Shampoo KFAC SGDM BK AdamW BK

ResNet18 LR 0.1 0.001 0.01 0.001 0.001 0.001 0.01 0.1 0.001
WD 0.0001 0.1 0.0001 0.1 0.05 0.0001 0.001 0.0001 0.1

ResNet50 LR 0.1 0.001 0.01 0.001 0.001 0.001 0.01 0.05 0.0005
WD 0.0001 0.1 0.0001 0.05 0.1 0.0001 0.001 0.0003 0.3

WD method L2 decouple L2 decouple decouple L2 decouple L2 decouple

Table 3. Testing accuracies (%) of DNNs with different dampening ϵ.

Ts = 50 and Tir = 500

ϵ 0.1 0.01 0.001 0.0001 0.00001 0.000001

ResNet18
SGDM BK 78.60± .23 79.26± .12 79.21± .22 79.53± .22 79.35± .29 79.36± .22
AdamW BK 77.80± .23 78.38± .10 78.43± .15 78.61± .26 78.78± .15 78.55± .20

ResNet50
SGDM BK 79.89± .31 80.66± .30 80.89± .27 81.00± .17 81.10± .19 81.15± .23
AdamW BK 79.57± .15 80.11± .21 80.10± .14 79.97± .31 80.13± .15 80.11± .19

Ts = 200 and Tir = 2000

ϵ 0.1 0.01 0.001 0.0001 0.00001 0.000001

ResNet18
SGDM BK 78.47± .17 78.97± .22 79.31± .23 79.24± .05 79.30± .07 79.17± .16
AdamW BK 77.84± .14 78.39± .18 78.63± .16 78.39± .17 78.66± .34 78.57± .29

ResNet50
SGDM BK 80.07± .16 80.80± .09 80.94± .30 80.95± .31 81.26± .20 81.04± .15
AdamW BK 79.36± .11 79.78± .16 80.06± .23 80.11± .05 80.15± .19 79.95± .29

Table 4. Testing accuracies (%) and training time (h) with different updating intervals.

ResNet18
Baseline Ts 5 10 20 50 100 200 500

Tir 50 100 200 500 1000 2000 5000
SGDM 77.20 ± .30 SGDM BK 79.35 ± .20 79.23 ± .18 79.37 ± .23 79.47 ± .24 79.37 ± .11 79.30 ± .07 79.29 ± .13
Time 1.12 Time 3.66 2.85 2.08 1.62 1.46 1.39 1.34

AdamW 77.23 ± .10 AdamW BK 78.43 ± .17 78.58 ± .32 78.36 ± .15 78.38 ± .23 78.62 ± .16 78.66 ± .34 78.53 ± .10
Time 1.16 Time 3.68 2.87 2.10 1.65 1.49 1.42 1.36

ResNet50
SGDM 77.78 ± .43 SGDM BK 81.21 ± .21 81.09 ± .18 81.10 ± .18 81.06 ± .14 80.86 ± .10 81.26 ± .20 81.00 ± .26
Time 3.78 Time 7.57 6.35 5.23 4.58 4.33 4.21 4.16

AdamW 78.10 ± .17 AdamW BK 80.02 ± .07 80.08 ± .18 80.00 ± .13 80.07 ± .29 80.06 ± .13 80.15 ± .19 80.06 ± .30
Time 3.83 Time 7.57 6.36 5.26 4.60 4.38 4.26 4.20

C. Hyper-parameter Settings and Ablation Studies
We first give the hyper-parameter settings of all optimizers in the image classification task, then give the tuning results

of the hyper-parameters of AdaBK, including the dampening parameter ϵ and the statistics updating intervals Ts and Tir.
Meanwhile, we provide some ablation studies of SGDM BK and AdamW BK on memory usage and training time.

The CIFAR100 dataset is employed for the ablation studies of AdaBK. The initial learning rate (LR) and weight decay
(WD) of SGDM BK and AdamW are 0.05 and 0.001, and 0.001 and 0.5, respectively. The training schedule is the same as
that in the main paper. Our experiments are conducted with NVIDIA GeForce RTX 2080Ti GPUs under the PyTorch 1.11
framework. All the experiments, if not specified, are repeated 4 times, with the performance reported in a ”mean ± std”
format and the training time reported in average.

LR and WD Settings. We first introduce the hyper-parameters of different optimizers we evaluated in Section 5 of our main
paper. We tune the LR and WD of all optimizers by grid search. On CIFAR100/10, we tune the LR in {1e−4, 5e−45e−4, 1e−3,
5e−3, 1e−2, 5e−2, 0.1} and WD in {1e−4, 3e−4, 5e−4, 1e−3, 3e−3, 5e−3, 1e−2, 3e−2, 5e−2, 0.1, 0.3, 0.5}, and choose the
best combination of them for all optimizers. The final settings are described in Table 1. While for SGDM BK, we use a
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learning rate of 0.1 and weight decay of 0.0005 for DenseNet. On ImageNet, we refer to the strategies in [4] to tune the LR
and WD on ResNet18 and ResNet50, respectively.

The final settings are described in Table 2. For Swin transformer in ImageNet, AdamW uses the default LR (0.001) and
WD (0.05) of MMClassification, while AdamW BK uses an LR of 0.002 and WD of 0.025.

Dampening. Table 3 shows the testing results for different dampening parameters under different updating intervals, i.e.,
Ts = 50 with Tir = 500, and Ts = 200 with Tir = 2000. From the testing results, we can see that our optimizer is relatively
stable for different choices of dampening. The maximum performance fluctuation does not exceed 1.19%. We then set ϵ to
0.00001 in the experiments.

Statistics Updating Intervals. The testing accuracies and training time of different settings of intervals Ts, Tir are reported
in Table 4. In these experiments, we set the dampening parameter ϵ to 0.00001. We can see that the increase of statistics
update interval can greatly reduce the time required for training DNNs while keeping similar accuracy. We then set Ts = 200
with Tir = 2000 in the experiments.
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