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When light is reflected from object surface, its spectral characteristics will be affected by the surface’s
elemental composition, and its polarimetric characteristics will be governed by the surface’s roughness
and conductance. Polarimetric and multispectral imaging can provide complementary discriminative
information in applications such as object separation. However, few methods have been proposed to fuse
the information provided by polarimetric and multispectral imagery for better object separation results.
Considering that the metal and dielectric materials, and the manmade objects and natural background
have different polarimetric and multispectral features, in this paper we propose a simple yet powerful
method for object separation by using the polarimetric and spectral characteristics of specular and diffuse
reflected light. A polarimetric imagery fusion algorithm is first proposed based on the degree of linear
polarization modulation to distinguish different objects. Then the spectral and polarimetric information,
which can be extracted from the specular and diffuse reflected light, is fused by using the HSI color space
mapping for more robust object separation. Experiments on real outdoor and indoor images are per-
formed to evaluate the efficiency of the proposed scheme.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The human visual system perceives scenes in terms of intensity
and color in visual band of the electromagnetic spectrum. As a fun-
damental property of light, polarization is not available to the
human visual system and it is ignored in most automated vision
systems. However, the polarization of light can provide much
new information, other than the intensity of light, for automated
vision systems. Based on the Fresnel theory [15], polarization can
reflect the object surface characteristics and it has been used for
surface modeling [1], shape recovery [2,3] and reflectance analysis
[4]. According to the principle that the backscatter in scatter media
is partially polarized, polarimetric imaging can be used to remove
degradation effects in underwater vision and acquire the scene
structure (distances) information [5]. At the same time, polariza-
tion can significantly simplify some important visual tasks, which
are too complicated to accomplish or even infeasible by using only
intensity and color information, for instance, dielectric and metal
discrimination, and quantitative separation of specular and diffuse
reflection components, etc. [6–8].
ll rights reserved.
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A couple of polarimetry based dielectric and metal separation
methods have been proposed [6–9]. Since specular reflection usu-
ally leads to polarized light, the image of an object through a pola-
rizer will exhibit changing intensities of the specular component as
the polarizer is rotated. If we assume that the diffuse reflection is
uniform in the highlight area, i.e. the area where strong specular
reflection exists, separation of the specular component and diffuse
component is possible [6]. Umeyama and Godin [1] analyzed the
diffuse and specular components of surface reflection and applied
ICA (independent component analysis) to the images observed by a
polarizer of different orientations to separate diffuse and specular
components. Wolff [6] presented a Fresnel reflectance model to esti-
mate polarization Fresnel ratio to discriminate metal and dielectric
surfaces from specular reflection. In [11] Wolff et al. proposed a
scheme to classify the solder metal and plastic dielectric by thres-
holding the ratio Imax/Imin, where Imax is the intensity when pola-
rizer orientation is aligned parallel to the orientation of the
linear polarized component, and Imin is the intensity when pola-
rizer orientation is aligned perpendicular to the orientation of
the linear polarized component.

The other type of object separation approaches exploits the
spectra of the reflected light. Because metal and dielectric surfaces
are composed of different materials, their reflective spectra are dif-
ferent. Therefore, the surfaces can be distinguished using the spec-
tra of the reflected light. Tominaga and Okamoto [24] proposed a
reflectance based method to distinguish plastics and metals but
this method needs two illumination directions. Nayar et al. [12]
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proposed an object separation method by using the spectral infor-
mation in Red, Green and Blue bands and the polarization proper-
ties of the reflected light simultaneously. This method can separate
the specular and diffuse components without assuming the unifor-
mity of the diffuse reflection.

The above object separation methods use only a rotating pola-
rizer (or multiple filters) and thresholding operations. They are sim-
ple and effective, however, only in indoor and ideal lighting
situations. For outdoor scenes, the lighting conditions are much
more complex and the above methods will not work well. Nonethe-
less, in computer vision applications, outdoor scene understanding
is very important. It is necessary to develop new polarimetric tech-
niques to effectively separate the different objects in outdoor scenes.

Despite the fact that both polarimetric and spectra information
can be used to discriminate objects, few methods have been
reported to exploit the two types of characteristics simultaneously
for better results. In this paper, a novel object separation scheme is
presented by fusing the polarimetric and multispectral imagery.
We first propose a polarimetric imagery fusion algorithm to distin-
guish different objects based on the degree of linear polarization
modulation. We then fuse the spectral and polarimetric informa-
tion by using HSI color space mapping for better and more robust
object separation results. The proposed scheme is robust to illumi-
nation conditions. It can effectively separate dielectric and metal
objects, and it is also able to distinguish manmade objects from
natural background based their different surface roughness.

The rest of the paper is organized as follows. Section 2 intro-
duces the concepts of polarization and spectra. Section 3 describes
the spectral and polarization imagery fusion algorithm in detail.
Section 4 presents experimental results and Section 5 concludes.

2. Polarization and spectra

According to the refraction index g = n � ik of materials, most
object surfaces can be classified as one of the two broad material
classes: metals (n – 0 and k – 0) or dielectrics (n – 0 and k � 0).
Metals have low electrical resistivity due to the free movement
of electrons between atoms and thus they are very good conduc-
tors. Comparatively, dielectric materials are very poor conductors
of electricity. Since all light is electromagnetic radiation, the differ-
ences in the electrical characteristics between metals and dielec-
trics lead to differences in how light reflects off these materials.
Dielectric surfaces partially polarize light upon specular reflection
for most specular angles of incidence [11,14–15]. At the same time,
the refraction index g is a function of wavelength, which means
that the intensity of reflected light will vary accompany with the
variation of wavelength. This section introduces the basic concepts
of polarimetry and spectrometry. For more information, please
refer to [10,15,16].

2.1. The Fresnel reflectance coefficients for dielectrics and metals

The Fresnel equations give the ratios of the reflected wave
amplitude to the incident wave amplitude for incident light that
is linearly polarized perpendicular to, or parallel to, the plane of
specular incidence [15]. These ratios depend upon the angle of inci-
dence and the refractive index of the reflecting medium. Since the
incident light can always be resolved into components perpendic-
ular to and parallel to the plane of incidence, the Fresnel equations
are applicable to all incident polarization states.

The amplitude reflection coefficient for light polarized parallel
to the plane of incidence at a boundary between two media is
given by

rkðni;g; hi; hrÞ ¼
Erkðni;g; hi; hrÞ

Eik
¼ g cos hi � ni cos hr

g cos hi þ ni cos hr
: ð1Þ
For light polarized perpendicular to the plane of incidence,
there is

r?ðni;g; hi; hrÞ ¼
Er?ðni;g; hi; hrÞ

Ei?
¼ ni cos hi � g cos hr

ni cos hi þ g cos hr
; ð2Þ

where hi and hr are the angles of incidence and refraction, respec-
tively. E? is the polarization component perpendicular to the spec-
ular plane and Ek is the polarization component parallel to the
specular plane. The relation between hi and hr is determined by
the Snell’s law:

ni sin hi ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e� i

r
x

� �
l

r
sin hr ¼ ðn� ikÞ sin hr ¼ g sin hr ; ð3Þ

where ni = 1 is the refractive index of air, e is the permittivity of
material, x is the frequency of light, r is the electrical conductivity
of material surface, l is the permeability of material surface, n is the
simple index of refraction, and term k is called the coefficient of
extinction.

2.2. Polarimetry

Reflection of light from surfaces can be classified into two broad
categories: diffuse and specular. The measured intensity of light is
composed of the two parts and the polarized light can be described
by three elements: total intensity (Int), the degree of polarization
(DoLP) and the phase of polarization (Orient). If we assume that
the diffuse component is unpolarized, the three parameters can
be described as follows.

First the total intensity can be defined as

Intðk;g; hiÞ ¼ Iminðk;g; hiÞ þ Imaxðk;g; hiÞ; ð4Þ

where

Imaxðk;g; hiÞ ¼
1
2

Id þ
r2
?ðk;g; hiÞ

r2
?ðk;g; hiÞ þ r2

k ðk;g; hiÞ
Is; ð5Þ

Iminðk;g; hiÞ ¼
1
2

Id þ
r2
k ðk;g; hiÞ

r2
?ðk;g; hiÞ þ r2

k ðk;g; hiÞ
Is: ð6Þ

The degree of polarization is defined as

DoLPðk;g; hiÞ ¼
Imaxðk;g; hiÞ � Iminðk;g; hiÞ
Imaxðk;g; hiÞ þ Iminðk;g; hiÞ

¼
r2
?ðk;g; hiÞ � r2

k ðk;g; hiÞ
r2
?ðk;g; hiÞ þ r2

k ðk;g; hiÞ
� 1
1þ Id

Is

¼
r2
?ðk;g; hiÞ � r2

k ðk;g; hiÞ
r2
?ðk;g; hiÞ þ r2

k ðk;g; hiÞ
� 1
1þ DSratio

ð7Þ

where DSratio = Id/Is is the ratio between diffuse and specular com-
ponents of reflection. Fig. 1(a) shows the DoLP for poorly conducting
glass (n = 1.89), intermediately conducting iron (n� ik ¼ 1:51
�1:63i, k = 0.589 lm) and highly conducting copper (n� ik ¼
0:82� i5:99, k = 0.65 lm), illustrating the DoLP’s variation along
incident angle and refraction index. Fig. 1(b) shows the DoLP’s var-
iation along incident angle and DSration, illustrating that the ratio
between diffuse and specular components will affect the value of
DoLP but will not change the difference of DoLP among different
materials.

The phase of polarization is defined as

Orient ¼ 1
2

arctanðcosðdÞ: tanð2aÞÞ; ð8Þ

where tana = Eoy/Eox, d is the relative phase shift, and Eox and Eoy are
the maximum amplitudes in the x and y directions. In Fig. 1(a),
when the specular angle of incidence is greater than 75� or near
horizontal incidence, it is difficult or even impossible to distinguish



Fig. 1. (a) The degree of linear polarization vs. angle of incidence for different materials; (b) the degree of linear polarization vs. angle of incidence for specular reflection for
different DSratio (iron).
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dielectrics and metals. Orient depends on the relative phase shift d
and a = arctan(Eoy/Eox). Different a will cause different orient
changes between dielectrics and metals. Fig. 2 shows the Orient’s
variation along incident angle and the relative phase shift d and a.
Fig. 2. The Orient vs. angle of inci
From Figs. 1 and 2, it can be seen that DoLP and Orient have their
own advantages and disadvantages in discriminating dielectrics
and metals. If the DoLP and Orient information can be fused, better
object discriminate performance can be expected.
dence for different materials.
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2.3. Spectral reflectance

Spectral reflectance is the ratio of energy reflected from a sur-
face in a given waveband to the energy incident in that waveband,
which depends on the material composition [17,24]. According to
(1) and (2), the spectral reflectance at wavelength k can be repre-
sented as

rðni;g; hi; hr; kÞ ¼
Erðni;g; hi; hr ; kÞ

EiðkÞ
ð9Þ

Spectral reflectance can be divided into two parts: specular
reflectance and diffuse reflectance. Reflection from homogeneous
materials like metals is based mostly on the specular reflection.
For inhomogeneous materials like plastics and paints, the diffuse
reflectance component is meaningful [24]. From (1), (2) and (9),
it can be concluded that spectral reflectance reflects the variation
of ratios of energy at different wavelengths, while polarization
reflects the variation of ratios of energy at different vibration
directions.

In many applications measuring up to several different bands,
including the near-infrared (near-IR), will provide much more dis-
crimination information than by using a tri-chromatic (RGB)
image. The spectral reflectance rðni;g; hi; hr ; kÞ can be used to dis-
criminate the material exclusively, but it requires a huge volume
of datasets to acquire the scene’s spectral reflectance and this can-
not be performed in real time. In many practical situations, by
carefully selecting spectral bands, multispectral imaging will per-
form as well as hyperspectral imaging with the same spatial
resolution.

3. Spectral and polarimetric imagery fusion

Polarization is a more general physical characteristic of light
than intensity. It can carry additional information of the object sur-
face, thus providing a richer description of the scene [6,11]. Mean-
while, different polarimetric parameters, such as Int, DoLP and
Orient, reflect different characteristics of the interested scene and
those characteristics can be fused for a better description of the
object. In Section 3.1, an algorithm will be proposed to fuse the
Int, DoLP and Orient information to distinguish different objects.
Since polarimetric and multispectral imagery can provide comple-
mentary information for the scene, if they can be integrated, better
material and object discrimination performance can be expected.
To this end, in Section 3.2 a polarimetric and multispectral imagery
fusion algorithm will be presented.

3.1. Polarization image fusion based on DoLP modulation

Fig. 3 shows an example of the polarimetric components, i.e. Int,
DoLP and Orient, of an outdoor scene, which is composed of cars,
concrete road and plants (tree, grass and shrub). The whole scene
Fig. 3. The polarimetric components, Int,
can be divided into two groups: manmade objects (cars and road)
and natural background (plants).

From Section 2 and Fig. 3, it can be seen that for metals the
reflected light has a small value of DoLP, while for dielectrics the
reflected light has a large value of DoLP. For rough surface the
reflected light has a small value of DoLP, while for smooth surface
the reflected light has a large value of DoLP. Overall, in remote
sensing, the surface of manmade object is usually regarded as a
smooth surface and has relatively large values of DoLP, and the sur-
face of natural background is regarded as a rough surface and has
relatively small values of DoLP [7]. This can also be seen in the DoLP
image in Fig. 3, where the manmade objects (car and concrete
road) have higher DoLP magnitudes than the natural background.
Therefore, when the interested scene contains metal/dielectric or
manmade/natural objects, the diversity of its DoLP component
can be used to modulate the acquired image to enhance the con-
trast of those different objects.

A DoLP modulation coefficient can be defined to stretch the con-
trast and hence the separability of metal/dielectric or manmade/
natural objects in polarimetric images. The modulation function
should be continuous in the field of DoLP and should be monoton-
ically increasing with DoLP. The logarithmic function is a natural
choice for this purpose as pointed out by Shannon [18]. We define
the DoLP modulation coefficient MDoLP as follows:

MDoLP ¼ DoLP � logð1þ DoLPÞ ð10Þ

Fig. 4 shows the variation of DoLP modulation coefficient along inci-
dent angle and refraction index. By comparing Fig. 1 with Fig. 4, we see
that the difference between dielectrics and metals is enhanced by the
DoLP modulation coefficient, especially along those incidence angles
by which DoLP cannot distinguish dielectrics from metals.

According to the relationship between specular angle of inci-
dence and the orient of polarization as shown in Fig. 2, the Orient
varies very slowly in a local region of smooth surface but quickly
for rough surface. To make the variation more obvious between
rough and smooth surface, a local root mean square is calculated:

Orient ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0N0PM0

x¼1

PN0

y¼1ðOrientðx; yÞ � lÞ2

vuut ; ð11Þ

where l is the mean in a local region M0 � N0. In image Orient, the
pixel values in smooth regions are higher that those in rough
regions.

The DoLP image can reflect materials’ smoothness and conduc-
tance, and the image Orient can reflect surface smoothness, as can
be seen in Fig. 3. Both the two components, however, contain little
texture information of the objects. Fortunately, the Int image con-
tains abundant texture information. If the Int image can be fused
with the DoLP and Orient images, an image with better contrast
and more detailed textures can be obtained. We propose here a
false color mapping [13,19] and DoLP modulation based polarimet-
DoLP and Orient, of an outdoor scene.



Fig. 4. The DoLP modulation coefficient vs. angle of incidence for different materials.
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ric imagery fusion method to exploit the information from all the
Int, DoLP and Orient images. It integrates the texture information
of high spatial resolution Int image with the polarimetric informa-
tion from low spatial resolution DoLP and Orient images to achieve
better discriminability of metals and dielectrics, and manmade
objects and natural background. The fusion process is described
detailedly in the following Algorithm 1.

Algorithm 1

(1) Preprocess the Int, DoLP and Orient images, including image
denoising and normalization.

(2) Find the common information among Int, DoLP and Orient:
Co ¼ Int \ DoLP \ Orient; ð12Þ

where A \ Bði; jÞ ¼ minAði; jÞ;Bði; jÞ (A and B represent digital
images, and (i, j) represents the pixel coordinate).
(3) Calculate the unique part in each image:
DoLP� ¼ DoLP � Co;

Orient� ¼ Orient � Co;

Int� ¼ Int � Co:

8><
>: ð13Þ

The pairwise subtraction of multi-band images can be used to
enhance the difference between them. In formula (13), through
subtraction of the common component, the unique information
will be enhanced in each image.
(4) Adjust the images by using the unique components:
DoLP�� ¼ DoLP � Orient� � Int�;

Orient�� ¼ Orient � DoLP� � Int�;

Int�� ¼ Int � DoLP� � Orient�:

8><
>: ð14Þ

The unique components calculated by (12) are subtracted from
the original image of other modalities. This step serves to
enhance the representation of each modality’s specific details
in the final fused result.
(5) F = RGB (Int**,DoLP**,Orient**)
By transforming the Int**, DoLP** and Orient** images into RGB
space, the information contained in Int, DoLP and Orient images
is combined in image F.
(6) Modulate the fused false color image F with the normalized
DoLP modulation coefficient to get the final fused image:
Fusion ¼ MDoLP � F: ð15Þ

This step will stretch the contrast between metal and dielectric
objects in final fused image Fusion.

In Algorithm 1, the three polarimetric image components (Int,
DoLP and Orient) are viewed as three different sensor modalities
and fused through false color mapping. Fig. 5(b) shows the fusion
result of the Int, DoLP and Orient images in Fig. 3 by using the pro-
posed Algorithm 1. For comparison, Fig. 5(a) shows the image by
using the Imax/Imin method, which was proposed by Wolff and Man-
cini [11]. We can see that it is much easier to separate the man-
made objects (the car and concrete road, which are represented
in red color in Fig. 5(b)) by using the proposed method. In
Fig. 5(a), the intensities of the concrete road and part of the car
are almost the same as those of the natural background by using
the Imax/Imin method.

However, from Fig. 5(b) we can still see some limitations of
Algorithm 1. Part of the car and part of the concrete road are mis-
takenly regarded as the natural background. The main reason is
that the DoLP and Orient images of these regions are the mixture
of manmade objects and the surrounding background. Thus, it is
difficult to distinguish the desired objects in these regions by using
only the polarimetric information. This is an inherited shortcoming
of polarimetric imaging.

3.2. Spectral and polarimetric imagery fusion through false color
mapping

The difficulty of polarimetric imaging mentioned above can be
overcome by combining with multispectral imaging. Polarization
is orthogonal to wavelength and hence polarimetric imaging and
multispectral imaging are complementary. By exploiting more
information about the scene of interested, better identification per-
formance can be expected [20]. If we can find a way to fuse multi-
spectral and polarimetric imagery, better object discrimination
result can be obtained.

Wolff [6] proposed a scheme, which maps an image obtained
from partially polarized light onto an image that is encoded using
the HSI color scheme. It establishes a proper relationship between
polarimetric and spectral information. Fig. 6 illustrates the map-
ping function.



Fig. 5. Fused image by using (a) the Imax/Imin method and (b) the proposed Algorithm 1.

Fig. 6. HSI representation of partially linearized polarization images.
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In Algorithm 1, through integrating and modulating the unique
information of Int, DoLP and Orient, we have exploited the polari-
metric information to separate different objects. With the mapping
scheme in Fig. 6 and the characteristics of multispectral imagery,
here we propose a false color mapping based multispectral and
polarimetric imagery fusion algorithm as follows.

Algorithm 2

(1) Transform the multispectral image into the HSI color space.

Before the transformation, the multispectral images are regis-
tered and normalized. Then we partition the multispectral
bands into three parts, and name them the R band set, G band
set and B band set, respectively, based on their wavelengths. For
each of the R, G and B band sets, we use the principal
component analysis (PCA) to fuse the images in that set into
one image, i.e. extracting the most significant component and
taking it as the R, G or B output image. Finally, the obtained RGB
color image is transformed into the HIS color space and we have
the Intensity, Saturation and Hue components of the multispec-
tral imagery.

(2) Map the polarimetric image into HSI color space based on
Fig. 6.

Based on Fig. 6, the polarimetric Int image is taken as the Inten-
sity component; the DoLP image is taken as the Saturation com-
ponent; and the Orient image is mapped to the Hue component
as 2*Orient = Hue, respectively.
(3) Fuse the polarimetric Int image with the multispectral Inten-
sity component to get a new polarimetric image (NPI).

As the polarimetric Int image and the multispectral Intensity
component contain most details of the scene, wavelet based
image fusion [21–23] is a good choice. By using wavelet based
image fusion, the edges in multispectral and polarimetric
images can be well preserved without introducing much error
in the fused image. Meanwhile, we are interested in region fea-
tures rather than pixel features in the image and the feature
information should be incorporated into the fusion process.
With the above considerations, we used the wavelet region
based image fusion method [21,23,25] in this paper, which
use regions to represent image features and determine the
weighting coefficients. It has been reported that the region
based image fusion is more robust to small registration errors
than pixel based fusion [21].
(4) Fuse the polarimetric DoLP image with the multispectral
Saturation component for a new DoLP image (NDoLPI).
There is little detailed texture information about the scene in
the DoLP and Saturation images. Since we are interested in
region features within the image, a region based weighted
average scheme is used to fuse the DoLP and Saturation images.
The weights are determined by the importance of polarimetric
and spectral information, and in most situations they are
regarded to be of the same importance.
(5) Fuse the polarimetric Orient image with the multispectral
Hue component for a new Orient image (NOrientI).
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There is also little detailed texture information about the scene in
Orient and Hue images. The fusion strategy of Orient and Hue
images is the same as that of DoLP and Saturation images in step 3.
(6) Take the NPI, NDoLPI and NOrientI images obtained in steps
3, 4 and 5 as the inputs of Algorithm 1 to obtain the final
fused image.

In Algorithm 2, both the polarimetric and multispectral images
are mapped into the HSI color space so that they can be fused con-
veniently. Through fusing the polarimetric Int image with the mul-
tispectral Intensity component, the object detailed texture
information from the two information sources can be well pre-
served. On the other hand, by fusing the polarimetric DoLP and Ori-
ent image with the multispectral Saturation and Hue components,
the spectral difference and polarimetric difference information is
preserved. Therefore, by integrating the spectral information into
the polarimetric images, the disturbance of natural background
in the polarimetric images can be reduced. Fig. 7 shows the fusion
result of the scene in Fig. 3 by fusing multispectral and polarimet-
ric imagery using the proposed Algorithm 2. The manmade objects
are represented in blue color and the natural background is repre-
sented in green color. In Fig. 5(b) we have seen that by exploiting
only the polarimetric information, part of the car and part of the
concrete road are mistakenly regarded as the natural background.
In Fig. 7, the classification is improved a lot by exploiting both the
multispectral and polarimetric information.

4. Experimental results

With the algorithms presented in Section 3, a good separation of
manmade objects from natural background, or metals from dielec-
trics, can be obtained, especially in the region of highlight areas. In
this section, experiments on real images are performed to testify
the proposed method.

4.1. Imaging system and data acquisition

The optical setup of the polarization and multispectral imaging
system in this study is shown in Fig. 8. A non-polarization beam
splitter (BS) splits the incident beam into two parts: one is used
for multispectral measurements and the other is used for polari-
metric measurements. In the first part, the light is filtered by
Fig. 7. The polarimetric and multispectral imagery fusion result by using the
proposed Algorithm 2. Manmade objects are represented in blue color and natural
background is represented in green color. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
spectral filter wheel (FW) with six narrow band filters, whose
central wavelengths are 404, 504, 648, 780, 880 and 1062 nm, to
make it cover from visual band to near-infrared band. In the second
part, the incident light is filtered by a polarimetric filter wheel
(PW) with four polarizers, whose azimuth angles are set at 0�,
45�, 90� and 135�, respectively. The measurements are acquired
by a standard black-and-white CCD camera. Finally, multispectral
and polarimetric images are obtained simultaneously by mechan-
ically rotating SW and PW which are controlled by a computer.

Four representative scenes are captured by using the con-
structed polarimetric and multispectral imaging system: two out-
door scenes and two indoor scenes. As we will see next, the
proposed method gives better object separation result than the
existing method.

4.2. Experiments

In this section, we use four experiments to verify the perfor-
mance of the proposed method. The first two experiments are on
outdoor scenes and the manmade objects are to be separated from
the natural background. The last two experiments are on indoor
scenes and the metal materials are to be separated from the dielec-
tric materials. In the fourth experiment, the ground-truth segmen-
tation was manually labeled so that the object separation accuracy
can be quantitatively measured for performance evaluation.

To the best of the authors’ knowledge, no polarimetric and mul-
tispectral imagery fusion method has been proposed before. Actu-
ally, few object separation methods have been proposed based on
even polarimetric image fusion, among which the Imax/Imin method
proposed by Wolff and Mancini [11] is commonly used and hence
it is employed in the comparison.

Fig. 9(a) and (b) shows the multispectral and polarimetric inten-
sity images of an outdoor scene, which contains objects such as car,
pillar, concrete road, shrub and tree. Based on the Fresnel theory
[15], polarization can reflect the object’s surface characteristics
and rough surface and smooth surface will have different polarimet-
ric features. In this scene, the set of manmade objects contains car,
pillar and concrete, and the reflectance is mainly composed of spec-
ular components; while the set of natural background contains
shrub and tree, and the reflectance is mainly composed of diffuse
components. Fig. 9(d) shows the false color polarimetry of this scene.
We see that the polarimetry could give a rough separation of the
scene; however, there are many separation errors. Meanwhile, the
multispectral imagery could provide additional information for
object separation based on the different spectral signatures of differ-
ent materials. Fig. 9(c) shows the false color spectral imagery of this
scene. It is expected that more accurate object separation results can
be obtained by fusing the polarimetric and multispectral imagery.

Fig. 10 shows the output image by using the Imax/Imin method.
We can see that it is difficult to distinguish the manmade objects,
Fig. 8. Schematic of the multispectral and polarimetric imaging system.



Fig. 9. (a) Multispectral intensity image (404, 631 and 1062 nm) and (b) polarimetric intensity image at panchromatic band of an outdoor scene; (c) multispectral false color
image (R is the image at 1062 nm, G is the image at 631 nm and B is the image at 404 nm); (d) polarimetric false color image (R is the intensity image, G is the DoLP image and
B is the Orient image). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. The image by Imax/Imin.
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except for part of the car and part of the pillar, from the natural
background. The concrete road, automobile chassis and most of
the pillar are merged into the background of tree and shrubs. Un-
der different thresholds, the manmade and natural objects cannot
be distinguished in Fig. 10.

Fig. 11(a) shows the polarimetric imagery fusion result by com-
bining Int, DoLP and Orient images using the proposed Algorithm 1.
Fig. 11(b) shows the fusion result by integrating multispectral and
polarimetric imagery using the proposed Algorithm 2. In Fig. 11,
manmade object is represented in red color and natural back-
ground is represented in blue color. We can see from Fig. 11(a) that
by exploiting only the polarimetric information, part of the tree
and shrubs is mistakenly classified as manmade objects. The clas-
sification is improved a lot by exploiting both the multispectral
and polarimetric information in Fig. 11(b).

Fig. 12 shows the intensity image of another outdoor scene,
which contains five airplane models (highlighted by the red circle)
in the grass land. Fig. 13 shows the output image by using the Imax/
Imin method. Obviously, it is hard to distinguish the airplane mod-
els from grass land in Fig. 13. Fig. 14 shows the fusion results by
the proposed Algorithm 1 and Algorithm 2. In Fig. 14, manmade
object is represented in red color and natural background is repre-
sented in black and green color. We can see from Fig. 14(a) that by
exploiting only the polarimetric information, the manmade air-
plane models and a large part of the grass land cannot be well
distinguished. However, by using the proposed Algorithm 2 to
exploit both multispectral and polarimetric information, the five
airplane models can be clearly identified in Fig. 14(b).

The previous two experiments illustrate that the proposed
method is effective to separate manmade objects from natural



Fig. 11. (a) The polarimetric imagery fusion result by using the proposed Algorithm 1; (b) the polarimetric and multispectral imagery fusion result by using the proposed
Algorithm 2. Manmade object is represented in red color and natural background is represented in blue color. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 12. Intensity image of an outdoor scene. Fig. 13. The image by Imax/Imin.
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background. Next, let us test its performance in distinguishing dif-
ferent materials. Fig. 15 shows an indoor scene of circuit board.
There are three basic types of material regions, solder copper lead,
soldering tin and plastic dielectric in the circuit board, which is
illuminated under the standard fluorescent ceiling lighting.
Fig. 16 shows the Imax/Imin image, from which we can see that on
the top part of circuit board the plastic and solder copper are diffi-
cult to be distinguished from each other.
Fig. 14. (a) The polarimetric imagery fusion result by using the proposed Algorithm 1;
Algorithm 2.
Fig. 17(a) is shown in blue and purple colors, where blue corre-
sponds to soldering tin, purple correspond to solder copper lead
and plastic dielectric. As the difference of solder copper lead and
plastic dielectric is very small, their color difference is very small.
Fig. 17(b) is shown in blue, yellow and red colors, where blue cor-
responds to soldering tin, yellow corresponds to solder copper
lead, and red corresponds to plastic dielectric. Comparing
Fig. 17(a) with (b), we can clearly see that better dielectric/metal
(b) the polarimetric and multispectral imagery fusion result by using the proposed



Fig. 15. Intensity image of a circuit board.

Fig. 16. The image by Imax/Imin.
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material identification result on circuit boards can be obtained
through fusing spectral and polarimetric imagery than just using
polarimetric or spectral imagery.

To quantitatively evaluate the object separation performance of
the proposed algorithm, we made the following experiment.
Fig. 18(a) shows an indoor scene (in tent), where there are five
plates with different shapes and sizes in the grassland. These plates
are all metals and the scene is illuminated under the standard fluo-
rescent ceiling lighting. The ground-truth segmentation of the
plates is labeled manually, which is shown in Fig. 18(b).
Fig. 18(c) shows the Imax/Imin image, and Fig. 18(d) shows the polar-
imetric and multispectral imagery fusion result by using the pro-
posed Algorithm 2, where red color represents the metal plates
Fig. 17. (a) The polarimetric imagery fusion result by using the proposed Algorithm 1;
Algorithm 2.
and blue color represents the grassland. Through subtracting the
ground-truth from the segmentation results, the separation errors
by using Imax/Imin and Algorithm 2 are shown in Fig. 18(e) and (f),
respectively. It can be seen that the proposed Algorithm 2 achieves
much better object separation results than can Imax/Imin.

To quantitatively evaluate the separation performance, we
employ the overall accuracy (OA) [26] to measure the separation
accuracy of the whole scene, and employ the kappa coefficient
[26] to measure the correspondence of the separation with two
categories – metal object and grass background. The OA coefficient
is the percentage of correctly classified pixels, which is defined
as

OA ¼ NC

NT
; ð16Þ

where NT is total number of pixels and NC is the number of correctly
classified pixels.

The kappa coefficient is a statistical measure of the agreement
between the map of segmentation result and the map of ground-
truth, which is defined as

K ¼
L
PJ

j¼1xjj �
PJ

j¼1xjþxþj

L2 �
PJ

j¼1xjþxþj

; ð17Þ

where J is the number of rows in the confusion matrix, xjj is the ele-
ment of confusion matrix in the jth row and the jth column, xj+ is
the sum of the jth row in confusion matrix, x+j is the sum of the
jth column in confusion matrix, and L is the sum of all elements
in the matrix. For more information about the kappa coefficients,
please refer to [26]. The kappa coefficients of the two categories
are denoted as K-m (for metal) and K-g (for grass), respectively.
Table 1 lists the results of the OA, K-m and K-g by the two separa-
tion methods. We see that the proposed method achieves much bet-
ter result than the Imax/Imin method.

From the above experiments, we can see that there are many
potential applications of the proposed methods in manufacturing
and quality control (e.g. the 3rd experiment), object detection
and recognition (e.g. the 1st, 2nd and 4th experiments) by exploit-
ing both the surface descriptions and material composition
descriptions of the objects using spectral-polarimetric imaging. It
cannot only improve much the classification accuracy of metals
from dielectrics, but also improve the detection accuracy of man-
made objects from natural background.

5. Conclusion

In this paper, a DoLP modulation based polarimetric imagery
fusion method was first developed to separate the manmade
(b) the polarimetric and multispectral imagery fusion result by using the proposed



Fig. 18. (a) Intensity image; (b) manually labeled ground-truth; (c) the image by Imax/Imin; (d) the polarimetric and multispectral imagery fusion result by using the proposed
Algorithm 2; (e) separation errors by using the Imax/Imin; (f) separation errors by using the proposed Algorithm 2.

Table 1
Separation results by different methods.

Methods OA (%) K-m (%) K-g (%)

Imax/Imin 70.5 60.3 83.6
Proposed method 91.8 97.5 86.4
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objects from the natural background based on the different charac-
teristics of their surfaces. Then a novel spectral and polarimetric
imagery fusion method was proposed for better separation results
through fusing the spectral and polarimetric information provided
by the specular and diffuse reflected light. Experiments on real out-
door and indoor scenes were conducted to verify the performance
of the proposed algorithms. The proposed methods are simple yet
powerful, and completely passive, requiring only the sensing of
transmitted radiance of reflected light through a polarizing filter
positioned in multiple orientations, and narrow band band-pass
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spectral filters in front of a camera. They can be applied to high-le-
vel vision tasks such as object classification and recognition and
camouflage identification, etc.
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