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Abstract: Single-sensor digital video cameras use a color filter array (CFA) to capture video and a 

color demosaicking (CDM) procedure to reproduce the full color sequence. The reproduced video 

frames suffer from the inevitable sensor noise introduced in the video acquisition process. This paper 

presents a spatial-temporal denoising and demosaicking scheme that works without explicit motion 

estimation. We first perform patch based denoising on the mosaic CFA video. For each CFA patch to 

be denoised, similar patches are selected within a local spatial-temporal neighborhood. The principal 

component analysis is performed on the selected patches to remove noise. We then apply an initial 

single-frame CDM to the denoised CFA data, and subsequently post-process the demosaicked frames 

by exploiting the spatial-temporal redundancy to reduce the color artifacts. The experimental results 

on simulated and real noisy CFA sequences demonstrate that the proposed spatial-temporal CFA video 

denoising and demosaicking scheme can significantly reduce the noise-caused color artifacts and 

effectively preserve the image edge structures. 
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1. Introduction 

Most of the cost-effective digital video cameras use a single sensor with a color filter array (CFA) [1] 

to capture visual scenes in color. At each pixel only one of the three primary colors is sampled and the 

missing color components need to be interpolated. The color interpolation process is usually called 

color demosaicking (CDM) [2-8]. For video sequences, the temporal correlation in adjacent frames 

can also be exploited to improve the CDM performance [9-10]. Most of the CDM algorithms assume 

that the CFA data are noise-free. This assumption, however, is unrealistic and the presence of noise in 

CFA data will cause serious CDM artifacts that are hard to remove by a subsequent denoising process. 

Many available denoising algorithms [11-18] are designed for monochromatic/full-color 

images/videos and they are not directly applicable to the CFA data. Therefore, it is of high demand to 

develop new algorithms for full-color video reconstruction from noisy CFA sequences. 

A commonly used strategy is to demosaick the CFA video first and denoise the demosaicked 

video later. However, the noise-caused color artifacts generated in the CDM process can be difficult to 

remove in the following denoising process. Some joint demosaicking and denoising approaches were 

also proposed. In the joint demosaicking-denoising algorithm [19], both demosaicking and denoising 

are treated as an estimation problem and solved by the total least square technique. One 

computationally more efficient joint demosaicking-denoising scheme was developed in [20]. It first 

performs demosaicking-denoising on the green channel, and then uses the restored green channel to 

estimate the noise statistics to restore the red and blue channels. Inspired by the directional linear 

minimum mean square-error estimation based CDM scheme in [4], Paliy et al. [21-22] proposed a 

nonlinear and spatially adaptive filter by using local polynomial approximation for CDM and then 

adapted this scheme to noisy CFA inputs for joint demosaicking-denoising.  

Apart from the above two strategies, another approach to reproducing full-color images from 

noisy CFA data is to perform denoising before demosaicking. However, due to the mosaic structure of 

CFA, existing monochromatic image/video denoising methods cannot be applied to the CFA data 

directly. The CFA image can be divided into several monochromatic sub-images using the approach 

known from the CFA image compression literature, e.g. [23]. Nonetheless, such a scheme does not 

exploit the inter-channel correlation which is useful to reduce noise. A wavelet based CFA image 
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denoising method was proposed in [24]. Recently, Zhang et al. [25] proposed a principal component 

analysis (PCA) based CFA image denoising scheme. A CFA block, which contains color samples 

from different channels, is employed to analyze the local CFA image structure. By transforming the 

noisy signal into the PCA domain, the signal energy can be better clustered and the noise can be more 

effectively removed. The PCA based CFA image denoising algorithm effectively exploits the spatial 

and spectral correlation in each frame. This scheme was later extended to gray level images [26].  

   

 

Fig. 1: The three stages of the proposed video denoising and demosaicking scheme for noisy CFA video. 

 
This paper presents a spatial-temporal denoising and demosaicking algorithm for noisy CFA 

videos. The proposed algorithm has three stages, as illustrated in Figure 1. The first stage is to denoise 

the CFA video. We extend the PCA-based CFA image denoising method in [25] to a spatial-temporal 

one and apply it to CFA videos. Since the CFA video frames are red, green and blue color interlaced 

mosaic images, we consider each CFA patch, which contains pixels from all the three channels, as the 

basic unit in the denoising. By performing patch matching in the current frame and adjacent frames, 

the similar patches to the given one can be located. By viewing the elements in the CFA patch as 

variables and viewing the pixels in the matched patches the samples of them, the PCA transformation 

matrix can be computed and the denoising is then performed in the PCA domain. In the second stage, 

an initial CDM is applied to the denoised CFA video, resulting in a full-color video sequence. In the 

third stage, spatial-temporal post-processing is applied to the demosaicked video to reduce CDM 

artifacts, which are caused by either the limited color sampling frequency in the CFA mosaic pattern 

or the noise residual in the denoising stage.  

The rest of the paper is structured as follows. Section 2 presents the CFA video denoising method, 

and Section 3 presents the CFA video demosaicking and post-processing steps. Section 4 presents 

extensive experimental results and Section 5 concludes the paper.   
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2. CFA Video Denoising 

2.1 Noisy CFA Video Sequence  

The CFA video sequence can be represented as a three dimensional (3D) cube. We denote by 

( , , )cF i j k  a pixel locating at spatial position (i, j) and in frame k. The superscript { }, ,c r g b∈  

represents the color channel of the current pixel and c depends on the spatial position (i, j). We employ 

the widely used Bayer CFA pattern [1] for discussion in this paper. There is: 

2 1; 2
2 ; 2 1

other positions

i j

i j

r i z j z
c b i z j z

g

= ⋅ + = ⋅⎧
⎪= = ⋅ = ⋅ +⎨
⎪
⎩

                                                (2-1) 

where iz  and jz  are non-negative integers. In the Bayer pattern, the R (red), G (green) and B (blue) 

samples are interlaced, with the double sampling frequency of G compared to the R and B channels.  

Noise will be inevitably introduced in the CFA video sequence, which makes digital video 

visually unpleasing. It is widely accepted that the corrupted noise in CCD and CMOS sensors is 

signal-dependent [27-28]. In [19], Hirakawa modeled the raw sensor output as 0 1( )y x k k x υ= + + , 

where x  is the desired noiseless signal, υ∈Ν(0,1) is unit Gaussian white noise and k0 and k1 are sensor 

dependent parameters. Although this noise model is quite realistic, the design of denoising algorithms 

will be very complex and computationally expensive. One simple and widely used noise model is the 

additive noise model y x υ= + . In [20], Zhang et al. proposed a channel-dependent noise model for 

CFA data, which is adopted in this paper. The noisy video can be represented as  

( , , ) ( , , ) ( , , )c c
cF i j k F i j k i j kυ υ= + , { }, ,c r g b∈                               (2-2) 

where rυ , gυ  and bυ  are the noise signals in the red, green and blue channels. We assume that rυ , 

gυ  and bυ  are zero-mean white and mutually uncorrelated in the spatial-temporal domain. The 

standard deviations of rυ , gυ  and bυ  are denoted by gσ , rσ  and bσ , respectively. 
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2.2 The Denoising Strategy 

As mentioned in the introduction, if we perform denoising after CDM of the CFA sequence, the noise-

caused color artifacts generated in the CDM process can be hard to remove in the denoising process. 

Recently, a denoising method which works directly on the CFA image was developed in [25]. To fully 

exploit the spectral correlation in the red, green and blue channels, the CFA block that contains pixels 

from all the three channels is taken as the basic denoising unit. The elements in the CFA block are 

modeled as a vector variable, and then the principal component analysis (PCA) is used to remove 

noise from the block. This method has shown promising denoising performance. In this paper, we 

adopt this denoising strategy and extend it to CFA videos.  

 

Fig. 2. A CFA block to be denoised in a frame.  

 
Referring to Figure 2, for a current CFA frame to be denoised, we partition it into many blocks, 

e.g. 4×4 or 6×6 blocks. Denote by W the block and suppose its size is w×w. By taking each element in 

the block as a variable, we stretch the block to a variable vector 1 2[ , ,..., ]c c c T
mx x x x= , where m=w2. 

Since the real data is noise corrupted, with the channel-dependent noise model in (2-2), we have 

   1, 2, ,[ , ,..., ]c c c T
mx x x x xυ υ υ υ υ= = +                                                  (2-3) 

where ,
c c c
i i ix xυ υ= +  is the noisy variable and 1 2[ , ,..., ]c c c T

mυ υ υ υ=  is the noise vector. We denote by 

υW  the noisy block of W, i.e. υW =W+V, where V is the noise block. Now the problem is how to 

remove the noise υ  from xυ  so we can get a good estimation of x , denoted by x̂ . 
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In order to use PCA for denoising, we need a sample dataset so that the covariance matrix of the 

vector variable x  (or xυ ) can be estimated. Clearly, we can construct the dataset by searching for 

similar blocks to the given block υW  in its spatial-temporal neighborhood. Suppose n such blocks are 

found. With the condition that n>>m, the PCA based denoising can effectively remove the noise from 

the noisy CFA data. Next we discuss the sample dataset construction.  

 

2.3 Spatial-temporal Sample Dataset Construction   

We employ the simple and fast block matching (BM) technique to find similar blocks to υW . 

Although BM is limited in terms of motion estimation (ME) accuracy, it is efficient enough for the 

application of denoising, and the PCA based denoising technique is robust to small BM bias (or the 

ME errors) because it calculates the statistics of the matched samples and a certain amount of BM bias 

will not affect much the final denoising result.  To exploit both the spatial and temporal redundancy in 

denoising, we search for similar blocks to υW  in the current frame and adjacent frames. For a given 

block υW  and a reference block ,( , )
ref

i jυ Δ ΔW , where ( , )i jΔ Δ  means the spatial displacement between 

the given block and the reference block, we calculate their L2 distance as  

( )2

( , ) ,( , ) ,( , )2
1 1

1 ( , ) ( , )
w w

ref ref
i j i j i j

h l
d h l h l

wυ υ υ υΔ Δ Δ Δ Δ Δ
= =

= − = −∑∑W W W W                (2-4) 

where •  is the L2 norm operator. Due to the mosaic CFA pattern (the Bayer pattern is used here), the 

displacement ( , )i jΔ Δ  should satisfy the constraint ( , ) (2 ,2 )i ji j z zΔ Δ = , where iz  and jz  are 

integers. In practice, ( , )i jΔ Δ  will be in a suitable search range: { },i i j jZ i Z Z j ZΔ Δ− ≤ ≤ − ≤ ≤ , 

where iZ  and jZ  are even integers. To robustly construct the dataset, we select the first n most 

similar blocks (i.e. the ones who have the smallest distances ( , )i jd Δ Δ ) to the given block υW  in 

consecutive frames and within the search range. In the following PCA based denoising process, these 

n sample blocks will be used to calculate the co-variance matrix of the variable vector.   
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2.4 PCA-based Denoising  

By using the method in sub-section 2.3, we can find n blocks, including the given block and n-1 

reference blocks similar to it. These n blocks are viewed as the sample blocks for the vector variable 

xυ  (referring to Eq. (2-3)). In other words, for each element of the vector variable xυ , there are n 

samples of it. We can format these data into an m×n matrix 

, , ,
1,1 1,2 1,

, , ,
2,1 2,2 2,

, , ,
,1 ,2 ,

c c c
n

c c c
n

c c c
m m m n

X X X
X X X

X X X

υ υ υ

υ υ υ

υ υ υ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

υX                                                    (2-5) 

where each column of the matrix υX  is the vector stretched by the sample block. The superscript “υ” 

means that the samples are noise corrupted and the superscript “c” belongs to {r,g,b}, indicating the 

spectral channel of the sample. We let the first column be the sample vector to be denoised. The 

detailed PCA-based denoising procedures can be found in [25]. Denote by X̂  the denoised dataset of 

υX , the denoised CFA block can then be extracted from the first column of X̂ .  

 

3. Spatial-Temporal Color Demosaicking  

In Section 2, the noise in the CFA video sequence has been reduced. Thus CDM can be subsequently 

performed to reproduce the full color video sequence. We first apply an initial CDM to each frame, 

and then exploit the spatial-temporal redundancy to reduce the CDM errors.  

 
3.1 Initial Color Demosaicking  

 G14 R10 G15  

G13 B5 G2 B6 G16

R9 G1 R0 G3 R11

G20 B8 G4 B7 G17

 G19 R12 G18  

 
Fig. 3. A CFA block centered on a red pixel.  
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In [2], Adam and Hamilton proposed the well-known second order Laplacian correction (SOLC) 

filtering algorithm for CDM. In SOLC, the horizontal and vertical gradients of each pixel are first 

calculated. If the horizontal gradient is less than that in the vertical direction, then CDM is performed 

along the horizontal direction by using the SOLC filter, vice versa. Such a strategy avoids 

interpolating across edges. In this section, we improve the SOLC scheme by fusing the filtering 

outputs at horizontal and vertical directions, instead of keeping only one of them.     

The missing green color components are first interpolated. Refer to Figure 3, considering a CFA 

block centered on a red pixel R0, where the green color is to be estimated. (The missing green colors 

on blue pixels can be similarly interpolated.) By using the SOLC filter, we can interpolate the missing 

green color G0 along horizontal direction as ( ) ( )0 1 3 0 9 11
1 1ˆ 2
2 4

hG G G R R R= + + ⋅ − − . Similarly, we 

can interpolate G0 along vertical direction as ( ) ( )0 2 4 0 10 12
1 1ˆ 2
2 4

vG G G R R R= + + ⋅ − − . The two 

estimates 0
ˆ hG  and 0

ˆ vG  can be fused for a more accurate estimation of G0 as follows: 

0Ĝ = 0
ˆ h

hw G 0
ˆ v

vw G+                                                          (3-1) 

where wh+wv=1. To determine the weights wh and wv, we first calculate the gradients along horizontal 

and vertical directions within the CFA block as follows 

1 1
1 3 0 9 11 5 6 7 82 2

1 1
2 13 16 4 17 202 2

2

2 2
hd G G R R R B B B B

G G G G G G

= − + ⋅ − − + − + −

+ ⋅ − − + ⋅ − −
                      (3-2) 

1 1
2 4 0 10 12 5 8 6 72 2

1 1
1 14 19 3 15 182 2

2

2 2
vd G G R R R B B B B

G G G G G G

= − + ⋅ − − + − + −

+ ⋅ − − + ⋅ − −
                     (3-3) 

In general, a bigger gradient in one direction means more variations in that direction. Therefore, if the 

horizontal gradient is bigger than the vertical gradient, it should contribute less to the final estimate; 

vice versa. We set the weights to be 

/( ); /( )h v v h v h v hw d d d w d d d= + = +                                      (3-4) 

Once all the missing green colors are estimated, we can further interpolate the missing blue (red) 

colors at red (blue) positions. For example, at position R0, the missing blue color can be estimates as 
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0B̂
8

5

1 ˆ( )
4 i i

i
B G

=

= −∑ 0Ĝ+ . Finally, the missing red and blue colors at green positions can be 

interpolated. For example, the missing red color at G1 can be interpolated as 

1R̂ 1
0 9 54

ˆ(R R R= + + 8
ˆ )R+ 1

04
ˆ(G− + 9Ĝ 5Ĝ+ 8

ˆ )G+ 1Ĝ+ . Then the initial CDM is completed.  

 

3.2 Spatial-temporal Post-processing  

After initial CDM, a full color video sequence is obtained. However, there can be many CDM errors in 

high variation areas due to the lack of spatial redundancy. Therefore, a post-processing is necessary to 

reduce the CDM errors and enhance the video quality. Inspired by the non-local means and 

collaborative filtering techniques [16-18] in image denoising, for a given pixel to be enhanced, we 

search for the similar pixels to it within the spatial-temporal neighborhood and then let the enhanced 

pixel be the weighted average of them.  

Denote by (R0, G0, B0) the triplet of the current pixel to be enhanced. We denote by W0 a local 3D 

window (e.g. 5×5×3) centered on (R0, G0, B0). For a spatial-temporal neighborhood triplet of (R0, G0, 

B0), denoted by (Ri, Gi, Bi), its local 3D window is denoted by Wi. The similarity between (R0, G0, B0) 

and (Ri, Gi, Bi) can be measured by the distance between the two blocks W0 and Wi: id = −0 iW W . 

Let 0
cW  and c

iW , { }, ,c r g b∈ , be the red, green or blue channels of W0 and Wi, we can readily have   

0 0 0
r r g g b b

i i i i

r g b
i i i

d

d d d

= − + − + −

= + +

W W W W W W
                                (3-5) 

where 0
c c c
i id = −W W , { }, ,c r g b∈ . 

In general, the smaller the distance di is, the higher the similarity between (R0, G0, B0) and (Ri, Gi, 

Bi) is. We choose the first l most similar pixels to (R0, G0, B0), including itself, in the enhancement of 

it. Suppose (Ri, Gi, Bi), i=0,1,…,l-1, are the selected most similar pixels to (R0, G0, B0). The enhanced 

pixel is the weighted average of them: 

1

0
0

ˆ
l

r
i i

i
R w R

−

=

= ∑ , 
1

0
0

ˆ
l

g
i i

i
G w G

−

=

= ∑ , 
1

0
0

ˆ
l

b
i i

i
B w B

−

=

= ∑                                    (3-6) 
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where the weights r
iw , g

iw and b
iw  are set as 

1 exp( / )c c
i i

c

w d
C

λ= − ,    { }, ,c r g b∈                                            (3-7)  

λ is a parameter to control the decay speed of weights w.r.t c
id , and constant 

1

0
exp( / )

l
c

c i
i

C d λ
−

=

= −∑  is 

to normalize the weights. Clearly, the higher the distance c
id  is, the lower the weight c

iw  is. 

Like in the spatial-temporal denoising process in Section 2, in the spatial-temporal post-processing 

of CDM there is an implicit ME process. The ME is replaced by a similar patch matching process in 

both current frame and adjacent frames. Different from the traditional ME that usually outputs a best-

matched reference block (per reference frame) to the given block, the proposed scheme find many 

similar blocks to the given one for noise reduction and image enhancement. Such an implicit ME 

could effectively exploit more spatial-temporal redundancies in couple with the subsequent denoising 

and post-processing procedures. One advantage of it is that it is robust to patch matching errors. Even 

if some of the matched blocks are inaccurately found, they would not degrade much the final results.    

 

4. Experimental Results  

The proposed spatial-temporal CDM method for noisy CFA videos is tested by using both simulated 

CFA sequences and real CFA sequences. We compare it with the following state-of-the-art schemes2: 

(1) The single frame joint denoising and color demosaicking (JDC) schemes [19] and [20].  

(2) Demosaicking first and denoising later schemes. We first use the advanced CDM algorithms [4] 

and [5] to demosaick the noisy CFA video and then use the KSVD [15] and benchmark BM3D 

[17] algorithms to denoise the demosaicked video. 

(3) Denoising first and demosaicking later scheme. We first use the CFA denoising scheme in [25] 

to denoise each frame and then use the temporal CDM scheme in [9] to demosaick the video.   

Among the above schemes, the proposed method has the highest complexity. This is mainly because it 

involves a PCA transformation stage, which needs to calculate the covariance matrix of the dataset and 

                                                 
2 We thank the authors of [19], [5], [15] and [17] for sharing their codes.  
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apply singular value decomposition (SVD). Apart from the part of PCA transformation, the proposed 

method has similar complexity to the BM3D scheme. 

We use two simulated CFA sequences and two real CFA sequences in the following experiments. 

The parameters in the proposed method are set as follows. Nine adjacent frames are used in the 

spatial-temporal denoising and demosaicking. In the denoising stage, the size of variable block is 

m= 6 6× =36 and n=150 sample blocks are used for PCA training. In the spatial-temporal post-

processing, l (refer to Eq. (3-6)) is 10 and λ is 4 (refer to Eq. (3-7)). Due to the limitation of space, 

only partial experimental results are shown here. The code and reproduced videos of the proposed 

algorithm can be downloaded at http://www4.comp.polyu.edu.hk/~cslzhang/CFA-Video-RP.htm.     

 

4.1 Experiments on Simulated CFA Videos 

 

  
(a)                                                         (b) 

Fig. 4. Scenes of the two video sequences. (a) The Car sequence; (b) the Skater sequence. 

 

Two full color video sequences3, which were first captured by a film video camera and then scanned 

by a scanner, are used in this experiment. We down-sampled them according to the Bayer pattern to 

simulate the CFA sequences. The original spatial resolution of the videos is 1024×768. We cropped 

the most difficult 256×256 portion of them and used 24 frames in the experiment. Figure 4 shows the 

scenes of the two cropped sequences. To simulate noisy CFA sequence, we added Gaussian white 

noise to each color channel. For a fair comparison with other methods, two cases were considered. In 

the first case, the noise levels in the three channels are set to be the same: 15r g bσ σ σ= = = . In the 

                                                 
3 We thank the IMAX Corporation, Toronto, Canada, for sharing the video sequences with us.  
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second case, the noise levels are channel-dependent, and we let 19, 14, 15r g bσ σ σ= = =  for the car 

sequence and 18, 19, 14r g bσ σ σ= = =  for the skater sequence. Since the denoising methods KSVD 

[15] and BM3D [17] do not use a channel-dependent noise model, we apply an equivalent noise level 

2 2 21
2 2r g bσ σ σ σ= + +  to each channel when using them in the second case.  

 
Table I. PSNR (dB) results on the Car sequence. 

Demosaicking & denoising 
methods 

15r g bσ σ σ= = =  19, 14, 15r g bσ σ σ= = =  

R G B R G B 
JDC [19] 26.6 26.4 23.7 26.2 26.4 23.6 
JDC [20] 28.3 28.9 25.9 27.8 29.0 25.9 

[5] + KSVD [15] 29.1 29.7 26.1 28.3 29.8 26.3 
[4] + KSVD [15] 29.8 29.7 26.5 28.2 29.7 25.9 

[25] + [9] 30.1 29.9 26.7 29.4 30.0 26.7 
[5] + BM3D [17] 29.2 30.8 27.1 28.8 31.1 27.2 
[4] + BM3D [17] 30.2 31.2 27.7 29.3 31.4 27.6 

Proposed (before stage 3) 30.5 30.9 27.4 30.2 30.9 27.4 
Proposed (after stage 3) 31.9 31.2 28.2 31.3 31.3 28.1 

 

Table II. PSNR (dB) results on the Skater sequence. 

Demosaicking & 
denoising method 

15r g bσ σ σ= = =  18, 19, 14r g bσ σ σ= = =  

R G B R G B 

JDC [19] 3300..66 3311..66 3322..33 30.1 31.0 32.1 
JDC [20] 3311..55 3322..66 3322..77 30.6 31.3 32.5 

[5] + KSVD [15] 3311..88 3333..66 3333..77 29.9 31.3 31.7 
[4] + KSVD [15] 3322..66 3333..66 3344..11 31.0 32.0 33.5 

[25] + [9] 32.6 32.9 33.4 31.7 31.6 32.8 
[5] + BM3D [17] 32.1 34.3 33.9 31.3 33.0 33.6 
[4] + BM3D [17] 33.1 34.5 34.5 32.2 33.2 34.6 

Proposed (before stage 3) 33.0 34.3 35.0 32.2 32.9 34.4 
Proposed (after stage 3) 34.2 34.6 35.7 33.3 33.3 35.4 

 

Tables I and II list the average PSNR results of the reconstructed color video sequences by 

different schemes. We can see that the proposed method achieves the best PSNR results. Particularly, 

the proposed method reconstructs much better the R and B channels than the other schemes. This is 

because the sampling frequency of R and B channels is half of that of G, and hence they are more 

difficult to reproduce than the G channel. If we apply CDM first, there will be more noise-caused 
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CDM errors in R and B channels than in G, and even the benchmark BM3D scheme may not denoise 

R and B very well. By using PCA based denoising on the CFA video, which is an adaptive and 

multivariate filtering technique, the proposed method reduces many noise-caused CDM artifacts, and 

hence it can reproduce R and B much better than other schemes. It can also be found that the scheme 

“LMMSE_CDM+BM3D_Denoising” (i.e. “[4]+BM3D [17]”) works the second best. This also 

validates that BM3D is powerful in denoising and it can suppress many noise-caused CDM artifacts. 

Figures 5 ~ 6 show one frame of the reproduced full color sequences by different schemes. It can 

be seen that the result by the proposed method has the best visual perception, producing the fewest 

color artifacts and preserving well the edge structures. The “LMMSE_CDM+BM3D_Denoising” 

scheme also yields reasonably good results. However, it shows more color artifacts, which are mostly 

generated in the CDM process due to the corruptive noise. The reproduced videos by the proposed 

method and the “LMMSE_CDM+BM3D_Denoising” method can be downloaded at website 

http://www4.comp.polyu.edu.hk/~cslzhang/CFA-Video-RP.htm.     

 

4.2 Experiments on Real CFA Videos 

This section presents the experimental results on two real CFA sequences (Bear and Notebook), which 

were captured by a single CCD video camera (model: Flea2 by Point Grey Research, Inc.) at a frame 

rate of 30fps. The original spatial size of the two CFA videos is 1280×960 and we cropped a 360×360 

portion of them in the experiment. 60 frames of the Bear sequence and 45 frames of the Notebook 

sequence were used. The noise levels in the sequences are estimated as follows. We divide the N×M 

CFA frame into four N/2×M/2 sub-images (two green sub-images, one red sub-image and one blue 

sub-image), and then apply one-stage orthogonal wavelet transform to each sub-image. The noise level 

is estimated as ( ) / 0.6475Medianσ = w  [11], where w  is the diagonal sub-band at the first stage. 

For the green channel, the noise level is the average of the values of σ from the two green sub-images. 

The estimated average noise levels for the Bear and Notebook sequences are 13, 12, 26r g bσ σ σ= = =  

and 15, 12, 26r g bσ σ σ= = = , respectively. 
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To save space, we only present the results by the proposed method and the “LMMSE_CDM 

+BM3D_Denoising” method in Figure 7. As in Section 4.1, we see that the proposed method achieves 

better color reproduction by reducing much the noise-caused color artifacts and preserving well the 

image edge details. The reproduced videos by the two methods can be downloaded at website 

http://www4.comp.polyu.edu.hk/~cslzhang/CFA-Video-RP.htm.     

 

5. Conclusion 

This paper presented a spatial-temporal color video reproduction algorithm from the noisy color filter 

array (CFA) sequence. The proposed method has three steps: principal component analysis based 

spatial-temporal CFA denoising, initial spatial color demosaicking (CDM) and spatial-temporal 

enhancement. The spatial-temporal redundancies existing in the CFA sequence are effectively 

exploited to reproduce and enhance the color videos. Two simulated and two real noisy CFA 

sequences were used to evaluate the proposed method in comparison with state-of-the-art denoising 

and CDM schemes, including the benchmark BM3D algorithm. The experimental results showed that 

the proposed method achieves the best color video reproduction in terms of both PSNR and subjective 

quality, preserving well the image edge structures and suppressing effectively the color artifacts.  
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(a)                                                      (b) 

   
                            (c)                                                         (d)                                                      (e)  

   
 (f)                                                         (g)                                                      (h) 

  
(i)                                                          (j) 

 
Fig. 5. One reconstructed full color frame of the Car sequence. (a) Original full-color image; (b) noisy 
CFA image ( 15r g bσ σ σ= = = ); reconstructed images by methods (c) [19]; (d) [20]; (e) [5] + KSVD [15]; 
(f) [4] + KSVD; (g) [25] + [9]; (h) [5] + BM3D [17]; (i) [4] + BM3D [17]; and (j) proposed.  
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(a)                                                          (b) 

   
(c)                                                         (d)                                                      (e) 

   
(f)                                                         (g)                                                      (h) 

  
(i)                                                          (j) 

 
Fig. 6. One reconstructed full color frame of the Skater sequence. (a) Original full-color image; (b) noisy 
CFA image ( 15r g bσ σ σ= = = ); reconstructed images by methods (c) [19]; (d) [20]; (e) [5] + KSVD [15]; 
(f) [4] + KSVD; (g) [25] + [9]; (h) [5] + BM3D [17]; (i) [4] + BM3D [17]; and (j) proposed. 
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Fig. 7. Left column: one frame of the reconstructed Bear sequence from the raw CFA sequence (estimated 
noise level: 13, 12, 26r g bσ σ σ= = = ). Right column: one frame of the reconstructed Notebook sequence 

from the raw CFA sequence (estimated noise level: 15, 12, 26r g bσ σ σ= = = ). From top to bottom: 
original noisy CFA image, reconstructed full color image by [4]+BM3D [17] and the proposed method.  


