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In this file, we first provide the details of the optimization methods for filter and mapping function training. Then, we
present more visual examples of the SR results obtained by the competing methods.

1. SA-ADMM for filter and mapping function training
In this section, we first briefly introduce the algorithm of stochastic average alternating direction method of multipliers

(SA-ADMM) [34]. Then, we provide the details of how to use SA-ADMM for filter and mapping function training in our
CSC-SR model.

1.1. A Brief Introduction to SA-ADMM

Here we briefly introduce the algorithm of SA-ADMM. For more details of the algorithm and the convergence analysis,
please refer to the original paper [34].

The ADMM algorithm is proposed to solve the following problem:

min
x,y

φ(x) + ψ(y) s.t.Ax+By = c. (1)

In many real applications, φ(x) in (1) can be written as

φ(x) =
1

n

n∑
i=1

`i(x) + Ω(x), (2)

where `i is the contribution from the i-th sample, and n is the number of samples. For such a problem, the original ADMM
algorithm suffers from a heavy computation burden in the step of updating x when n is a large number.

If the function `i(x) in (2) is L-smooth1, SA-ADMM algorithm can be used to solve the problem (1). More specifically,
in our case Ω = 0. For problem (1) with φ(x) = 1

n

∑n
i=1 `i(x), the SA-ADMM algorithm updates the variable x, y and the

Lagrangian variable α alternatively:

xt+1 ← argminx
1

n

n∑
i=1

`i(xτi(t)) +5`i(xτi(t))
T (x− xτi(t)) +

L

2
‖x− xτi(t)‖

2 +
ρ

2
‖Ax+Byt − c− αt‖2,

yt+1 ← argminy ψ(y) +
ρ

2
‖Axt+1 +By − c+ αt‖2,

αt+1 ← αt +Axt+1 +Byt+1 − c,

(3)

∗This research is supported by the HK RGC GRF grant (PolyU5313/13E).
1 Let ‖ · ‖ be the Euclidean norm. For a differentiable function f , we use5f to denote its gradient. A function f is L-smooth if ‖5 f(x)−5f(y)‖ ≤

L‖x− y‖.
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where L is the scalar in the L-smooth definition, and τi(t) is defined as

τi(t) =

{
t i = k(t)

τi(t− 1) otherwise
. (4)

The updating strategy of y and α is the same as the standard ADMM algorithm. For the x subproblem, by letting its derivative
to zero, we have:

xt+1 ← (ρATA+ LI)−1[Lxt − ρAT (Byt − c+ αt)−5`t], (5)

where xt = 1
n

∑n
i=1 xτi(t), and5`t = 1

n

∑n
i=15`i(xτi(t)).

Denote by (x∗, y∗) the optimal solution of (1) , Zhong et al. have proved that

E[Φ(xT , yT )−Φ(x∗, y∗)+γ‖AxT+ByT−c‖] ≤
1

2T
{‖x∗−x0‖2Hx+nL‖x∗−x0‖2+‖y∗−y0‖2Hy+2ρ(

γ2

ρ2
+‖α0‖2)}, (6)

where ‖x‖H = xTHx for a positive semi-defined matrix H , Hx = LAI − ρATA and Hy = ρBTB. Eq. (6) shows that the
{xT , yT } generated by SA-ADMM will converge with speed O( 1

T ).

1.2. Filter training by SA-ADMM

The filter training problem in our CSC model aims to optimize the following problem:

f =arg min
f

K∑
k=1

‖ Yk −
∑N

i=1
f i ⊗ Zk,i ‖2F , s.t.‖ f i ‖2F≤ e. (7)

Note that here we do not omit the index k for the training image. Yk is the kth training image and Zk,i is the feature map
produced by the ith filter f i on Yk. Based on the properties of convolution and Kronecker product, we have the following
equation:

vec(f ⊗ Z) = F ∗ vec(Z) = (I � vec(Z))vec(FT ) = ZT ∗ vec(f), (8)

where � and vec(•) denote the Kronecker product and the vectorization operation, respectively. I is the Identity matrix and
F is the BCCB matrix corresponding to filter f . Z = Image2Patch(Z) is the output of an Image2Patch operation on matrix
Z with the size of filter f , e.g., extracting all the patches from Z with the same size of f .

Based on the above equations, the filter learning problem can be transformed to

f = arg min
f

K∑
k=1

‖ vec(Yk)− [ZTk,1,ZTk,2, . . . ,ZTk,N ] ∗ [vec(f1)T , vec(f2)T , . . . , vec(fN )T ]T ‖2F , s.t.‖ f i ‖2F≤ e. (9)

For the purpose of simplicity, we denote [ZTk,1,ZTk,2, . . . ,ZTk,N ] by Z and [vec(f1)T , vec(f2)T , . . . , vec(fN )T ]T by f , the
filter training problem with a large number of training images can be written as:

f = arg min
f

∑
k

‖yk − Zk ∗ f‖2 s.t.‖f i‖2 ≤ e. (10)

By introducing an augmented variable s = f , we can solve (10) by the SA-ADMM algorithm in (3):

f t+1 = [Lf̄ t − ρ(dt − st)−
1

K

K∑
k=1

ZTk (Zkf τj(t) − Yk)]/(ρ+ L)

st+1 = argmins
ρ

2
‖f t+1 + dt − s‖2, s.t.‖si‖2 ≤ e

dt+1 = dt + f t+1 − st+1

(11)

For our square loss function in Eq. (7), a general scalar L which satisfies the L-smooth condition is the upper bound on the
eigenvalues of ZTZ. The s problem is a proximal problem with `2-norm ball constraint, which has a closed-form solution.
Please note that, here (ρ+ L) is a scalar, and the updating of f does not need any matrix inverse calculation.
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1.3. Mapping Function Learning by SA-ADMM

The mapping function learning problem in our CSC model aims to optimize the following problem:

{W}=arg min
W

K∑
k=1

‖Xk−
M∑
j=1

fhj ⊗ g(Zlk,:; wj)‖2F , s.t. wj � 0, |wj |1 = 1. (12)

Denote by Z̃
l

i the upsampling of LR feature map

Z̃
l

k,i(x
′, y′) =

{
Zlk,i(x, y) if mod(x′, factor) = 0 and mod(y′, factor) = 0

0 otherwise
, (13)

then we have
[vec(Zhk,1), vec(Zhk,2), . . . , vec(Zhk,M )] = [vec(Z̃

l

k,1), vec(Z̃
l

k,2), . . . , vec(Z̃
l

k,N )] ∗W, (14)

where W = [w1,w2, . . . ,wM ] is the linear mapping function matrix, and wj = [wj,1, wj,2, . . . , wj,N ]T is the linear transform
vector used to predict the jth HR feature map. Utilizing the BCCB matrix corresponding to the HR filters, the original
problem (12) can be rewritten as

{W}=

K∑
k=1

arg min
W
‖vec(X)−[Fh1 , . . . ,F

h
M ]∗

 [vec(Z̃
l

k,1),. . .,vec(Z̃
l

k,N )]
. . .

[vec(Z̃
l

k,1),. . .,vec(Z̃
l

k,N )]

∗vec(W)‖2F

s.t. wj � 0, |wj |1 = 1.

Let
A =

{
Fh1 ∗ [vec(Z̃

l

1), vec(Z̃
l

2), . . . , vec(Z̃
l

N )], . . . ,FhM ∗ [vec(Z̃
l

1), vec(Z̃
l

2), . . . , vec(Z̃
l

N )]
}
, (15)

and then the mapping function training problem has the form

{W}=

K∑
k=1

arg min
W
‖vec(X)− A ∗ vec(W)‖2F s.t. wj � 0, |wj |1 = 1. (16)

We solve (16) by the SA-ADMM algorithm

vec(W)t+1 = [Lvec(W̄)t − ρ(Tt − St)−
1

K

K∑
k=1

ATk (Akvec(Wτj(t))− Xk)]/(ρ+ L)

St+1 = argminS
ρ

2
‖Wt+1 + Tt − S‖2, s.t. sj � 0,

∑
sj = 1

Tt+1 = Tt + Wt+1 − St+1

(17)

Different from the `2-norm proximal problem in (11) which has a closed-form solution, the second optimization problem in
(17) is a proximal problem with nonnegative simplex constraint. Although it does not has a closed-form solution, we have
the following Remark to show that each column of S can be solved very efficiently.

Remark 1. Let e = (1, 1, . . . , 1)T ; problem

min
a∈Rn

‖a− b‖2F s.t.eT a = 1,−a ≤ 0, (18)

has a globally optimal solution

a∗ = b−
∑r
i=1 bτi − 1

r
+ [

∑r
i=1 bτi − 1

r
e− b]+, (19)

where {τ1, τ2, . . . , τn} is an index sequence which satisfies bτ1 ≥ bτ2 ≥ · · · bτn . r is an integer which satisfies bτr >∑r
i=1 bτi−1

r and bτr+1
≤

∑r
i=1 bτi−1

r .
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Proof. The Lagrange function of (18)

L(a, λ, v) = ‖a− b‖2F + λ(eT a− 1)− vT a s.t.v ≥ 0 (20)

is a convex function. Let the partial derivative of L w.r.t. a equal to zero, we have the optimal solution of a:

a∗ = a− λ

2
e +

1

2
v. (21)

Substitute (21) into (20), we have the dual function of (18)

g(λ, v) = ‖ − λ

2
e +

1

2
v‖2F + λ(eT (b− λ

2
e +

1

2
v)− 1)− eT (e−−λ

2
e +

1

2
v)

=
n

4
λ2 +

1

4
‖v‖2F −

1

2
λeT v + λeT b− n

2
λ2 +

1

2
λeT v− λ− vT b +

λ

2
vT e− 1

2
‖v‖2F

= −n
4
λ2 − 1

4
‖v‖2F +

1

2
λeT v + λeT b− λ− vT b

= −1

4
‖λe− v‖2F + bT (λe− v)− λ.

(22)

Thus, the dual problem

maxλ,vg(λ, v) = maxλ,v −
1

4
‖λe− v‖2F + bT (λe− v)− λ

= bT b +maxλ,v −
1

4
‖λe− v− 2b‖2F − λ

(23)

is a concave function, and the optimal solution can be achieved by letting the partial derivative equal to zero. The optimal
solution of v is

v∗ = [λe− 2b]+ = max(λe− 2b, 0). (24)

We then substitute (24) into (23), and calculate its derivative w.r.t. λ:

∂{− 1
4‖λe− 2b− [λe− 2b]+‖2F − λ}

∂λ
= −1

2
I(λe < 2b)T (λe− 2b)− 1, (25)

in which

(I(x))i =

{
1 xi is true

0 xi is false
, i = 1, 2, . . . , n. (26)

Let − 1
2I(λe < 2b)T (λe− 2b)− 1 be zero, we have

λ =
2(
∑r
i=1 bτi − 1)

r
, (27)

where {τ1, τ2, . . . , τn} is an index sequence which satisfies bτ1 ≥ bτ2 ≥ · · · bτn , and r is an integer which satisfies bτr >∑r
i=1 bτi−1

r and bτr+1
≤

∑r
i=1 bτi−1

r .
Based on (21), (24) and (27), the optimal solution for problem (18) is

a∗ = b−
∑r
i=1 bτi − 1

r
+ [

∑r
i=1 bτi − 1

r
e− b]+.

2. More Results
In the main paper, we have presented the SR results of 3 images by the competing methods. In Figs. 1-6 of this supple-

mentary, we present more visual comparisons of the SR outputs by the competing methods.
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(a) Ground Truth (b) LLE (c) ScSR (d) Zeyde et al. (e) ANR

(f) BPJDL (g) DPSR (h) CNN (i) A+ (j) CSC

Figure 1. Super resolution results on image Bird by different algorithms (zooming factor 3).

(a) Ground Truth (b) LLE (c) ScSR (d) Zeyde et al. (e) ANR

(f) BPJDL (g) DPSR (h) CNN (i) A+ (j) CSC

Figure 2. Super resolution results on image Comic by different algorithms (zooming factor 3).
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(a) Ground Truth (b) ScSR (c) Zeyde et al.

(d) ANR (e) BPJDL (f) DPSR

(g) CNN (h) A+ (i) CSC

Figure 3. Super resolution results on image Zebra by different algorithms (zooming factor 3).
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(a) Ground Truth (b) LLE (c) ScSR (d) Zeyde et al. (e) ANR

(f) BPJDL (g) DPSR (h) CNN (i) A+ (j) CSC

Figure 4. Super resolution results on image Bridge by different algorithms (zooming factor 4).

(a) Ground Truth (b) LLE (c) ScSR (d) Zeyde et al. (e) ANR

(f) BPJDL (g) DPSR (h) CNN (i) A+ (j) CSC

Figure 5. Super resolution results on image Woman by different algorithms (zooming factor 4).
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(a) Ground Truth (b) ScSR (c) Zeyde et al.

(d) ANR (e) BPJDL (f) DPSR

(g) CNN (h) A+ (i) CSC

Figure 6. Super resolution results on image Foreman by different algorithms (zooming factor 4).
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