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ABSTRACT

Color demosaicking plays a key role in digital imaging
with a color filter array. Most existing demosaicking methods
are based on hand-crafted priors, which may exhibit unpleas-
ant visual artifacts in hard cases (e.g., regions with high color
saturation and sharp color transition). This paper presents
a customized convolutional neural network (CNN), which is
trained in an end-to-end manner from natural color images to
address the color demosaicking problem. Specifically, by uti-
lizing the residual learning strategy, our network learns the
demosaicking prior with a two-stage architecture: the first
stage aims to recover an intermediate result of the G chan-
nel as guidance prior, while the second stage uses the inter-
mediate G channel information to guide the reconstruction
of final color demosaicking result. Our experimental results
on the widely-used Kodak and McMaster datasets and a new
dataset demonstrate that the proposed CNN model not only
yields superior results to state-of-the-art demosaicking algo-
rithms both quantitatively and qualitatively, but also enjoys a
fast demosaicking speed by GPU computation.

Index Terms— Color Demosaicking, Convolutional
Neural Network, Demosaicking Dataset, Residual Learning

1. INTRODUCTION

Most digital cameras adopt a single CCD/CMOS sensor with
a color filter array (CFA) to capture the natural scenes. In or-
der to reconstruct a full color image from the mosaicked CFA
image, the missing color components need to be recovered by
a process called color demosaicking (CDM). Since color de-
mosaicking locates at the early stage of the digital imaging
pipeline, it will largely affect quality of acquired color im-
ages. Among the many CFA patterns, the solution suggested
by Bayer [1] in 1976, is still among the most popular and ef-
ficient one.

The CDM algorithms have been well-studied in the past
decades [2]. At the early stage, basic interpolation meth-
ods such as bilinear interpolation [3] have been used for
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CDM. Later on, researchers have been focusing on introduc-
ing various image priors (e.g., inter-channel correlation [4–7],
sparsity [8] and non-local similarity [8, 9]) into the CDM
algorithms. For a better study of inter-channel correla-
tion, Zhang et al. [5] developed an adaptive filtering method
by directional linear minimum mean-square error estima-
tion (DLMMSE). Mairal et al. [8] proposed a learned simul-
taneous sparse coding (LSSC) method to learn the sparse and
self-similarity priors of images. In order to exploit the non-
local image redundancy, Zhang et al. [9] developed a demo-
saicking method by local directional interpolation and non-
local adaptive thresholding (LDI-NAT). Recently, the resid-
ual interpolation (RI) based methods [7, 10, 11] have been
proposed to interpolate the differences between observed and
tentatively estimated pixel values, which explore the image
sparse residual prior.

However, the above-mentioned hand-crafted prior learn-
ing methods can still exhibit obvious artifacts in the demo-
saicking results. As a data-driven model, the convolutional
neural networks (CNNs) [13] have shown their effectiveness
in both high-level and low-level vision problems. The deep
residual learning network [15] has been successfully applied
to image recognition and restoration applications with a very
deep network architecture. The CDM problem can be for-
mulated as a deep residual learning procedure; however, the
study of using deep residual learning for CDM is still lacking.
In Bayer pattern based CDM, since the number of captured G
pixels is twice of that of the R and B pixels, most state-of-
the-art CDM methods [4–7, 9–11] restore the G channel first,
followed by the reconstruction of R/B channels. Such demo-
saicking domain knowledge can be integrated into the design
of CNN architectures for a more effective CDM algorithms.

In this paper, we address the CDM problem by learning a
deep residual convolutional neural network that can be trained
in an end-to-end manner. The powerful CNN model allows
us to learn the adaptively demosaicking priors directly from
a large amount of training images rather than learning or pre-
defining some hand-crafted priors. Particularly, in order to
integrate the demosaicking domain knowledge into the CNN,
we design a two-phase network architecture to explore the
G-guidance prior for R and B channel reconstruction. To ac-



celerate the training, the first stage only reconstructs the in-
termediate estimation of G channel, while the second stage
reconstructs the R and B channels with the guidance of re-
constructed G channel. The G channel will also be further
refined in the second stage.

The contribution of this work is summarized as follows.
(1) We propose an end-to-end deep residual demosaicking
model by taking advantage of the recent development of CNN
technologies (2) We design a customized CNN model for
CDM, which adopts a two-stage architecture to incorporate
the demosaicking domain knowledge. Specifically, the net-
work first constrains the G channel and then restores the full
color images with the guidance of tentative G image. (3) We
present a new dataset for more comprehensively evaluating
the CDM algorithms. Experiments show that our method
significantly outperforms state-of-the-arts on the Kodak, Mc-
Master, and the new dataset both quantitatively and qualita-
tively.

2. METHOD

Recent years have witnessed the great success of CNN in a
wide variety of challenging applications. Such a success can
be attributed to the advances of deep CNN models and learn-
ing strategies, as well as the availability of large scale visual
data. The representative achievements include the proposals
of Rectified Linear Unit (ReLU) [13], batch normalization
(BN) [14] and residual learning [15]. Other factors such as the
efficient optimization algorithms, implementation on modern
GPUs, and the easy access to large scale datasets are also very
important. In the following, we first discuss the modeling of
CDM problem and then illustrate our deep demosaicking net-
work from architecture design and network training.

2.1. Demosaicking Modeling

The CDM problem can be modeled as maximum a posteri-
ori (MAP) estimation problem. In particular, by using the
Markov random fields inference as the analysis-based prior,
in [17] the CDM is formulated as the following optimization
problem:

min
x

1

2
‖y −M� x‖2+λ

K∑
k=1

N∑
p=1

ρk((fk ∗ x)p) (1)

where y is the CFA image, x is the desired full-color image,
M is a 3-dimensional matrix with binary elements indicat-
ing the missing color values in Bayer pattern, ‘�’ denotes
element-wise multiplication, N denotes the image size, λ is
the regularization parameter, fk ∗ x stands for the convolu-
tion of the image x with the k-th filter kernel fk, and ρk(·)
represents the k-th penalty function.

The gradient descent algorithm can be employed to solve
the optimization problem in Eqn. (1). For CDM, it is natural

to assume that M�xt = M�xt−1 = M�y. By setting the
step parameter of gradient descent to be 1, the t-th inference
step can be given by

xt = xt−1 − λ
K∑

k=1

(f̄k ∗ φk(fk ∗ xt−1)) (2)

where f̄k is the adjoint filter of fk (i.e., f̄k is obtained by rotat-
ing 180 degrees the filter fk and ρ′k(·) = φk(·).

From Eqn. (2), we can see that xt is updated by using a
two-layer network to learn the residual xt − xt−1. This mo-
tivates us to combine the proposed network with the residual
learning formulation [15] for CDM. By letting f̄k be an inde-
pendent filter to fk; and both of them can be learned from data,
we can easily increase the network depth and adopt ReLU for
nonlinearity.

The above analysis indicates intuitively the relation be-
tween MAP inference of CDM and residual learning, which
is helpful to the design of our proposed demosaicking net-
work architecture. Our model is not strictly based on but is
similar in spirit to the MAP-based inference. Moreover, the
recent achievements of CNN can be utilized to train a pow-
erful CDM network. These properties make our model very
promising in terms of both quantitative metrics and computa-
tional efficiency.

2.2. Network Architecture

In color demosaicking with Bayer pattern CFA, 50% of the
pixels are sampled from the G channel, while 25% of the
pixels are sampled from the R and B channels, respectively.
Since the G channel has more samples than R/B channels,
in general it will have much better reconstruction accuracy
than R/B channels. On the other hand, the high correlations
among R/G/B channels are crucial factors for achieving ac-
curate CDM results. Therefore, in many traditional CDM al-
gorithms [4–7, 9–11], the G channel is recovered first, then
it is used to guide the reconstruction of R/B channels. In or-
der to incorporate this domain knowledge into the CNN, we
propose a two-phase scheme for the CDM. Moreover, in or-
der to adopt the residual learning network structure, a simple
CDM algorithm can be used to initialize the full color im-
age so that the residual image can be computed. Instead of
directly outputting the demosaicked image, the proposed net-
work is designed to predict the residual image, i.e., the differ-
ence between the initialized full color image and the desired
ground-truth full color image.

Fig. 1 shows our proposed CNN architecture for CDM.
The proposed network contains two basic modules ofK-layer
CNNs, stacked by convolutional layers, batch normalization
and ReLU nonlinearity layers. For each module, the first layer
uses 64 filters of size 3×3 to generate 64 feature maps, while
the last convolutional layer adopts the filter of size 3×3×64
to generate the corresponding output. In the hidden layers
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Fig. 1: The architecture of the proposed deep residual CNN for color demosaicking. The input of the network is initialized by
applying bilinear interpolation to the color filter array image. The network consists of two main stages. The first stage aims
to recover an intermediate result of the G channel as guidance prior, while the second stage uses the intermediate G channel
information to guide the reconstruction of the final RGB channels.

of each module, 64 filters of size 3×3×64 are adopted. The
number of layers K for each module is set to 5. As a result,
the proposed network has a depth of 10 and a receptive field of
size 21×21. Note that we directly pad zeros before each 3×3
convolution to ensure that each feature map of the middle lay-
ers has the same size of the input image. To ease the training
as well as boost the performance, the residual learning strat-
egy is adopted to learn the difference between the initialized
image and ground-truth image.

As discussed before, the G channel usually has more de-
tailed information than R/B channels. The first stage of our
network produces an intermediate reconstruction of the G
channel. As any reconstruction error introduced in the G
channel will be inevitably propagated to the subsequent pro-
cessing steps, a G channel loss function is used in the first
stage. In the second stage, the reconstructed intermediate G
channel together with the initialized R/B channels are used as
input to produce a more accurate demosaicking result. A loss
function defined on the R/G/B channels is used for the second
stage training.

To sum up, the proposed CNN based CDM model has
two distinct characteristics. First, instead of using the CFA
image as input, we take the initial images by simple bilinear
interpolation as input, and then the residual learning strategy
is used to reconstruct the demosaicked images. Second, the
proposed model adopts a two-stage scheme to make use of the
detailed G channel information to guide the reconstruction of
R/B channels.

2.3. Network Training

Training Data. It is widely known that deep learning gener-
ally benefits from the availability of large scale training data.
In order to train the proposed network effectively, we need

to collect enough high quality full color images as training
data. Recently, Ma et al. [18] established the Waterloo Ex-
ploration Database (WED) with 4,744 high-quality natural
images for the study of image quality assessment methods.
We randomly choose 4,644 images from WED as our train-
ing dataset, which are sufficient for the training of a deep net-
work. (The remaining 100 images are used for testing.) To
generate the corresponding input image of a ground-truth im-
age, we first downsample a CFA image from it based on the
Bayer pattern, and then adopt the simple bilinear interpola-
tion demosaicking method to generate an initial demosaicked
image. Patches are extracted from the demosaicked/ground-
truth image pairs for training. As the patch size should be
larger than the receptive field size (i.e., 21 × 21) such that
enough spatial information can be involved for better recon-
struction. In practice, we set the training patch size as 50×50.
Finally, we generate 3,000×128 patch pairs for training, and
rotation or flip based data augmentation is used during train-
ing.

Loss Function. Given the training set (yi,xi}Ni=1, where yi

is the i-th input of initially demosaicked image, and xi is
the corresponding ground-truth image. The following average
mean square error loss function is used to learn the network
parameter Θ,

(3)`(Θ) =
1

2N

N∑
i=1

(
‖F(yi,G; Θ1)− xi,G‖2

+ ‖F(yi; Θ1,Θ2)− xi‖2
)

where Θ1 and Θ2 are the parameters of the first stage and sec-
ond stage, respectively, N denotes the number of patch pairs.
And yi,G is the G channel of i-th initially demosaicked im-
age, xi,G is the G channel of the corresponding ground truth
image.



Parameter Setting. In our experiments, the network weights
are initialized based on the method in [19]. The Adam [16]
solver is adopted to optimize the network parameters Θ. With
batch normalization, the learning rate is started from 2e−4
and then fixed to 1e−4. Specifically, the training is termi-
nated if the training error is fixed within three sequential
epochs. For the other hyper-parameters of Adam, we use its
default setting. The min-batch size is always set to 128. Rota-
tion or flip based data augmentation is used during min-batch
learning. All the experiments are carried out in the Matlab
(R2015b) programming environment on a PC with Intel(R)
Core(TM) i7-5930K CPU 3.50GHz and an Nvidia Titan X
GPU. Benefiting the merits of batch normalization, residual
learning, good starting point and G-channel guided recon-
struction, our model converges very fast and takes about only
one day to train the model.

3. EXPERIMENTS

Fig. 2: The WED-CDM Dataset. One hundred representative
full color images from WED are selected to form this testing
set of CDM algorithms.

3.1. Testing Datasets and Compared Methods

There are two widely-used datasets (i.e., Kodak and McMas-
ter) for evaluating CDM performance in literatures. The Ko-
dak dataset contains 24 digital color images (768×512) de-
rived from various of film source materials. However, it has
been revealed that the Kodak dataset has relatively low res-
olution and high spectral correlation, making it unsuitable
for objective evaluation of CDM algorithms for modern dig-
ital cameras. To remedy this, Zhang et al. [9] proposed the
McMaster dataset which contains 18 sub-images (500×500)
cropped from eight high resolution natural images. In the past
decades, most CDM algorithms have been developed, opti-
mized and tested based on these two datasets. However, the
McMaster is still limited in color gradations and scene vari-
ety. To make a more objective comparison of existing CDM
algorithms, we use the remaining 100 high quality full color
images from the WED dataset (the other 4,644 images are
used as training data for our CNN model) to form a new test-
ing set, named WED for Color Demosaicking (WED-CDM).

The WED-CDM contains five categories of images: animal,
building, food, human and plant with 20 images each cate-
gory. Some example images are shown in Fig. 2.

Each full color image from the datasets is firstly down-
sampled according to the Bayer pattern [1], and the down-
sampled CFA images are input to the competing CDM al-
gorithms for full color image reconstruction. Our proposed
method is compared with seven state-of-the-art demosaick-
ing algorithms, including AHD [4], DLMMSE [5], GBTF [6],
LDI-NAT [9], RI [7], ARI [11] and MLRI [10].

3.2. Experimental Results

Quantitative Evaluation. To quantitatively evaluate the ob-
jective performance of CDM algorithms, the PSNR and the
composite PSNR (CPSNR) are adopted to measure the qual-
ity of each color channel and all the three channels, respec-
tively. The PSNR/CPSNR results of different methods on Ko-
dak, McMaster and WED-CDM datasets are listed in Table 1.
We can see that, the proposed method achieves a much better
average PSNR/CPNSR results than the compared methods on
all the three datasets. Particularly, our method outperforms
the second best method by 2.2 dB, 1.4 dB and 1.8 dB on Ko-
dak, McMaster and WED-CDM, respectively.

Qualitative Evaluation. Besides the PSNR improvement, our
proposed method also shows clear advantages in terms of sub-
jective quality assessment. Fig. 3 and Fig. 4 illustrate the
cropped demosaicked images of different methods. It can be
seen that the visual quality perception is consistent with the
subjective quantitative evaluation. In particular, false color ar-
tifacts and zippers along edges accompanied by the compared
methods can be easily observed, while no obvious artifacts
are observed from the demosaicked image of the proposed
method.

Running Time. The proposed demosaicking method is im-
plemented in MatConvNet [20]. We compare its testing time
on CPU/GPU with the other seven state-of-the-art demosaick-
ing methods. All algorithms are tested on the same machine
and running environment described in section 2.3. The total
running time on Kodak and McMaster (42 images) of differ-
ent methods is presented in Table 2. It can be seen that the
proposed method not only enjoys a fast demosaicking time
on GPU and but also has a competitive speed on CPU.

4. CONCLUSION

This paper presented a powerful color demosaicking (CDM)
scheme by embracing the popular deep CNNs. Motivated by
the demosaicking modeling with analysis prior, we adopted a
residual learning formulation for CDM problem. In particu-
lar, considering that the missing pixels of the G channel are
only half of those of the R/B channel, we designed a two-stage
architecture, which first estimates the G channel and then uti-



Table 1: Average PSNR performance result (in dB) on three datasets. The best results are highlight in bold.

Dataset Kodak Dataset (24) McMaster Dataset (18) WED-CDM Dataset (100)
Methods R G B RGB R G B RGB R G B RGB

AHD 37.23 39.76 37.43 37.96 34.19 37.80 33.26 34.62 35.22 38.74 34.98 35.93
GBTF 39.68 43.34 40.01 40.62 33.98 37.34 33.07 34.38 35.67 39.50 35.36 36.39

DLMMSE 39.18 42.63 39.58 40.11 34.03 37.99 33.04 34.47 35.55 39.79 35.25 36.32
LDI-NAT 36.99 39.44 37.12 37.69 36.28 39.76 34.39 36.2 36.2 40.08 35.69 36.82

RI 37.82 41.00 37.80 38.56 36.07 39.99 35.35 36.48 36.52 40.58 36.17 37.21
MLRI 38.34 40.86 38.26 38.95 36.59 40.02 35.41 36.77 36.89 40.47 36.45 37.48
ARI 39.10 42.31 38.90 39.79 37.41 40.72 36.05 37.52 37.18 40.92 36.84 37.86
Ours 41.38 44.85 41.04 42.04 39.14 42.10 37.31 38.98 39.01 43.04 38.54 39.67

Table 2: Total demosaicking time on Kodak and McMaster (42 images).

Methods AHD GBTF DLMMSE LDI-NAT RI MLRI ARI Ours(CPU) Ours(GPU)
Time(s) 32 301 531 39766 39 52 64 136 29

(a) Original Image (b) Ground Truth (c) AHD [4] (d) GBTF [6] (e) DLMMSE [5]

(f) LDI-NAT [9] (g) RI [7] (h) MLRI [10] (i) ARI [11] (j) Proposed

Fig. 3: The comparison of demosaicking results on Kodak 01.

(a) Original Image (b) Ground Truth (c) AHD [4] (d) GBTF [6] (e) DLMMSE [5]

(f) LDI-NAT [9] (g) RI [7] (h) MLRI [10] (i) ARI [11] (j) Proposed

Fig. 4: The comparison of demosaicking results on McMaster 17.



lizes the tentative G channel to guide the final demosaicking
result. While most existing CDM methods are based on hand-
crafted priors which are limited in capturing the complex and
long range dependency among pixels, the proposed method
directly learns the demosaicking priors from training data and
embed them into the CNN-based demosaicking framework in
an end-to-end manner. Experiments on the Kodak, McMaster,
and our proposed WED-CDM datasets have demonstrated the
superiority of our method compared with the state-of-the-art
demosaicking algorithms.
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